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GLOBALIZATION THEOREMS FOR
LOCALLY FINITELY GENERATED MODULES

ROGER WIEGAND

Each commutative ring has a coreflection R in the
category of commutative regular rings. We use the basic
properties of R to obtain globalization theorems for finite
generation and for projectivity of i?-modules.

1* Preliminaries* A detailed description of the ring R may be
found in [8]. Here we list without proofs the facts that will be
needed. We assume that everything is unitary, but not necessarily
commutative. However, R will always denote an arbitrary com-
mutative ring. All unspecified tensor products are taken over i?.
For each aeR and each PeSpec (R), let a(P) be the image of a
under the obvious map R-+RP/PRP. Then R is the subring HPRP/PRP

consisting of finite sums of elements [α, 6], where [α, b] is the element
whose Pth coordinate is 0 if b e P and a(P)/b(P) if b ί P. There is a
natural homomorphism φ: R-+R taking a to [α, 1]. The ring R is
regular (in the sense of von Neumann). The statement that R is a
coreflection means simply that each homomorphism from R into a
commutative regular ring factors uniquely through φ.

The map Spec (<£>): Spec (R) —> Spec (R) is one-to-one and onto; for
each PeSpec(iϋ) we let P be the corresponding prime (= maximal)
ideal of R.

If A is an iϋ-module and Pe Spec (R), then AP/PAP and ( A ® %
are vector spaces over RP/PRP and RP respectively. The map
φ: R—>R induces an isomorphism RP/PRP = RP, and, under the
identification, AP/PAP and (A®R)P are isomorphic vector spaces.

2* Globalization theorems*

LEMMA. J / i 0 β = O and AR is locally finitely generated then
A = 0.

Proof. For each prime P, AP/PAP = 0, by the last paragraph of
§ 1. Since AP is finitely generated over RP, Nakayama's lemma im-
plies that AP = 0 for each Pe Spec (R). Therefore A = 0.

THEOREM 1. Assume (A 0 R) is finitely generated over R, and
that AR is either locally free or locally finitely generated. Then AR

is finitely generated.
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Proof. Assume AR is locally free. Then, for each prime P, AP

is a direct sum of, say, fc copies of RP. Then AP/PAP is a direct
sum of ft copies of EP/PRP. But since (A 0 R) is finitely generated
over R, AP/PAP is finite dimensional over RP/PRP. Thus K is finite,
and we conclude that AR is locally finitely generated.

Now, if AR is not finitely generated, we can express A as a well-
ordered union of submodules Aa, each of which requires fewer
generators than A. We will get a contradiction by showing that
some Aa = A. Let Ba = lm{Aa 0 J? —• A 0 j?). Since

A (g) J2 = lim(Aα 0 #) , A 0 β = \J Ba .
—> α

Since the i?α are nested and (A 0 .β) is finitely generated over j£,
some Bao = A(g) R, that is, AaQ (g) j? -» A 0 R. Let C = A/Aαo. Then
C 0 Λ = Coker (Aαo 0 JB — A 0 #) = 0, and CR is certainly locally
finitely generated. By the lemma, C = 0, and Aαo = A.

THEOREM 2. Let AR be finitely generated and flat, and assume
(A 0 R) is R-projectίve. Then AR is protective.

Proof. By Chase's theorem [3, Theorem 4.1] it is sufficient to
show that AR is finitely related. Let 0-^K—>F—>A—>0 be an
exact sequence, with FR free of finite rank. This sequence splits
locally, so K is locally finitely generated. Since AR is flat, the long
exact sequence of Tor shows that 0—>K(g)R-^F(g)R--+A§ζ)R-->0
is exact. This sequence splits, so (ϋΓ0jB) is finitely generated over
R. By Theorem 1, KR is finitely generated.

3. Applications. The following result generalizes the well-
known fact that over a noetherian ring every finitely generated flat
module is protective.

PROPOSITION 1. // R has a.c.c. on intersections of prime ideals
then every finitely generated flat R-module is protective.

Proof. In [8] these rings are characterized as those for which
(A 0 R) is β-projective for every finitely generated AR. The conclu-
sion follows from Theorem 2.

Suppose AR is locally finitely generated. For each prime ideal P
let rA(P) denote the number of generators required for AP over RP.
By Nakayama's lemma, rA(P) = dA(P), the dimension of (A®R)P as
a vector space over RP. Since the map P—>P is continuous, it fol-
lows that if rA is continuous on Spec (R) then dA is continuous on
Spec (R). Using these observations we can give easy proofs of the
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following two theorems:

THEOREM 3 (Bourbaki [1, Th. 1]): Assume AR is finitely generated
and fiat, and that rA is continuous. Then AR is projective.

THEOREM 4 (Vasconcelos [7, Prop. 1.4]): Assume AR is projective
and locally finitely generated, and that rA is continuous. Then AR is
finitely generated.

Proof of Theorem 3. By Theorem 3 we may assume R is regular.
A proof of Theorem 3 in this case may be found in [5], but we in-
clude one here for completeness. For each k ^ 0 let

Uk = {Pe Spec (R) \ rA(P) = k} .

By hypothesis the sets Uk are clopen, and we let ek be the idempotent
with support Uk. Then A = A e0 0 0 A en1 and rAeh is constant
on Spec (Rek). Therefore we may assume rA is constant on Spec (R),
say rA{P) = n for all P. Given a prime P, choose au , ane R such
that ax{P), -",an(P) span AP. Then αx(Q), β ,αΛ(Q) span RQ for all
Q in some neighborhood of P. (Here we need AR finitely generated.)
In this way we get a partition of Spec (R) into disjoint clopen sets
Vl9 , Vm together with elements ai3 e R such that ai3-(P), , anj(P)
span AP for each P e Vj. Let e3- be the idempotent with support Vj,
and set b{ = ί ^ α^ . Then, if PR is free on uly , un, the map P—>A
taking Uι to b{ is an isomorphism locally, and therefore globally.

Proof of Theorem 4. By Theorem 1 and the proof of Theorem 3
we can assume R is regular and rA{P) = n for all P. Write A =
Θ Σ i e / Λ β , el = β< ̂ 0 , by [4]. Given Pe Spec (R), since (Rejp is 0
if βiβ P and RP if ef g P, we see that there are precisely n indices i
for which e{ $ P. For each ^-element subset J £ J let

[/(/) = {Pe Spec (B) \edίP for each j e J} .

These open sets cover Spec (J?), so Spec (R) = ϋVi) U U £7(Λ>). If
i ί e/"i U U e/m then βj is in every prime ideal, contradicting e5 Φ 0.
Therefore | /1 ^ m%, and A^ is finitely generated.

As a final application we give the following:

PROPOSITION 2. Let 0—>A-^B—>C-+0 be an exact sequence of
flat R-modules Assume AR is finitely generated and (B 0 R)R is pro-
jective. Then AR is projective.

Proof. Since CR is flat, 0-> A® R-> B ® R—>C(g)β->0 is
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exact. Since R is semihereditary (A(g)JR) is iϋ-projective. By
Theorem 2, AR is protective.

If BR is projective this proposition contains no new information.
(In fact, a trivial extension of Chase's Theorem shows that the
sequence splits.) On the other hand, if we let MR be projective,
take feR, and let B = Mf = {[m/fn]}, then BR is not in general
projective; but by the second corollary to Theorem 5 (next section),
B(g)R is JK-projective.

4* Epimorphisms* Suppose M is a multiplicative subset of R,
and let S = M~ιR. Since S(g)RP = SP/PSP for each prime P, we see
that S(g)Rp is J?£ if P Π M = 0 , and 0 if P n M"^ 0 . If we could
show that (S(g)R)R is finitely generated, it would follow easily that
S 0 R = K̂/î , where i£ is the intersection of those primes P for
which P Π M = 0 . We give an indirect proof of this fact in a more
general setting.

Suppose R and S are commutative rings and that a: R—*S is an
epimorphism in the category of rings. By a theorem of Silver [6]
this is equivalent to the natural map S 0 S —> S being an isomor-
phism. It is known [8] that R-+R is an epimorphism, and it fol-
lows readily that the natural maps / : S—>S(g)R and g: R—>S<g)R
are epimorphisms.

THEOREM 5. Let R and S be commutative rings and let a: R-^S
be an epimorphism in the category of rings. Then there is a unique
ring homomorphism β: S —> S (x) R making the following diagram
commute:

S0R .

Moreover, β is an isomorphism, and ά and g are surjections with
kernel K= Π{P\SPΦ PSP}.

Proof. We first show that S (x) R is regular. Suppose A and B
are (S <g) ̂ -modules. Then by Silver's Theorem B = S ®RB, and by
[2, p. 165] we have

A(g) S®RB = A(x) S0%(S(x) RB) = (A® SS) (g) fcasB = A<g) &B .

It follows that tensor products over S (x) R are exact, and therefore
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S(g)R is regular. Hence there is a unique map β: S—*S®R such
that βφs = f, where φs: S —> S is the natural map. Consider the
diagram:

R-

R-

S <g> R

->s .

Here 7 is defined by the equations yf = <ps, yg = ά. Now yβφs =
7/ = φs and /9τ/ = /3<Ps = /• Since φs and / are both epimorphisms,
we see that 7 = βr1. Also, Bά — Byg = g, as required. Uniqueness
of β follows from the fact that ά is an epimorphism (since both α
and φs are).

Next, we show ά is onto. To simplify notation, we assume R is

regular and α: R—> S is an epimorphism. Then S(g) S-^ S is an
isomorphism. But then SP (x) Rp SP —* SP is an isomorphism for each
P e Spec(.β). If se SP then l ® s - s(g)le ker μP = 0. It follows
that the dimension of SF as a vector space over RP is either 0 or 1.
Therefore αP is surjective for each P, (#(1) = 1), and we conclude
that α is surjective.

Finally, we compute kerg = K. If P e Spec (R), then

COROLLARY 1. Let M be α multiplicative subset of R and let
S = M~~XR. Then S (x) R is a cyclic R-module, and S (x) R is R-
projective if and only if {P\ M Γ\ P Φ 0} is closed in Spec (R).

Proof. Let K be as in Theorem 5. Then S®R = R/K is R-
projective if and only if if is a principal ideal, that is, if and only
if the set of primes containing K is open in Spec (R). But

K PSP Φ SF Mf] P= 0 .

The next corollary shows that Theorem 2 is false if AR is not
assumed to be finitely generated.

COROLLARY 2. For each f e R, Rf(g)R is R-projective.
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Proof. Set M = {/*: n ^ 0}. Then Pf) M^ 0 if and only if
φ(f)eP. Thus if is the principal ideal of R generated by φ{f), and
R/K is j?-projective.
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