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FINITELY-VALUED /-MODULES

STUART A. STEINBERG

Let M be a right /-module over the directed po-ring R
(i.e., M is a lattice-ordered E-module that is a subdirect pro-
duct of a family of totally ordered ϋJ-modules), and let g be
a nonzero element of M. There is a natural one-to-one
correspondence between the set of ϋί-values of g in M and
the set of ^-values of g in M. This basic fact enables one
to obtain all of the local structure theory for /-modules that
Conrad [Czechoslovak Math. J. 15 (1965)] has obtained for
/-groups. There is, in addition, the interaction between
the two structures. For example, a special element g has
the same value in Cn(g), the convex /-submodule generated
by g, that it has in Cz(g). Using this structure theory and
the fact that a special element is basic in a Johnson semi-
simple /-ring, it is shown that a finitely-valued Johnson
semisimple /-ring is a direct sum of unital /-simple /-
rings.

It is well-known that an abelian lattice-ordered group (/-group)
can be represented as a subdirect product of a family of totally
ordered groups. In this paper we begin the study of those lattice-
ordered modules (/-modules) that can be represented as subdirect
products of totally ordered modules. An /-module that can be so
represented is called an /-module.1 We will continue this study in
a later paper, considering the problem of supplying the injective hull
of an /-module with a lattice order so that it becomes an /-module
extension, and considering the related problem of characterizing re-
lative injectives in the category of /-modules (see [16] and [19]). Here
we are concerned with the structure of /-modules.

We wish to mention that many of the results in this paper hold
in the more general situation where M is a not-necessarily abelian
/-group with appropriate operator set R. Appropriate means, here,
that the mapping induced by each reR preserves all polars and
sends positive elements to positive elements.

Throughout Z and Q will denote the totally ordered rings of in-
tegers and rational numbers respectively.

1. Characterizations of /-modules* Let R be a partially order-
ed ring (po-ring). An (right) /-module over R is a right i?-module

1 We have recently learned that Bigard [2] has defined an /-module (he calls it an
/-module) and has proven the equivalence of (a) and (b) of 1.1 for the case that R is
an /-ring with a positive identity element.

723



724 STUART A. STEINBERG

M that is also an /-group for which M+R+ S M+. The /-module
M will be called an f-module if it is isomorphic to a subdirect pro-
duct of a family of totally ordered modules. A convex /-submodule
of the /-module M is a convex /-subgroup N that is also an R-
submodule. The set of convex /-submodules of M, partially ordered
by inclusion, is a distributive lattice. If M/N is totally ordered, then
N is called a prime submodule of M. A minimal prime submodule
of M is a prime submodule that does not contain any other prime
submodule of M. When R ~ Z, these definitions agree with the usual
definitions for /-groups. The following theorem is just a translation
of the theorem about representable /-groups.

THEOREM 1.1. Let M be an /-module over the directed po-ring
R. The following statements are equivalent.

(a) M is an f-module.
(b) If x and y are in M and r is in i?+, then x A y = 0 implies

xr A y = 0.
(c) Every minimal prime subgroup is a submodule.
(d) Every polar of M is a submodule.

Proof. That (a) implies (b) and (c) implies (a) is trivial. That
(b) implies (c) follows from the fact that if N is a minimal prime
subgroup and xeN, then the polar of x is not contained in AT[14,
Theorem 6.5]. Finally, (c) and (d) are equivalent since each minimal
prime subgroup is the union of principal polars, and each polar is the
intersection of minimal prime subgroups.

The proof of (b) implies (c) is essentially the proof of the fact
that a polar preserving endomorphism preserves minimal prime sub-
groups [8].

If R is not directed, then Theorem 1.1 is false. In particular,
let R = D2 be the two-by-two matrix ring over a totally ordered
division ring D. Then R is a po-ring if its positive cone is defined

by R+ = {(o°) : χy V e D + ) L e t M = {(θθ) : α ' b e D} a n d M+ =

l(θθ) : α> beD+\- T h e n (M, MΛ) is an /-module over R that satis-

fies (b), but neither (a), nor (c), nor (d).

If R is a po-ring, then S = R+ — R+ is the largest directed po-
subring of R. Thus, if M is an /-module over R, then M is an
/-module over S if and only if M satisfies (b). For this reason and
for the sake of simplicity, unless specified otherwise, all po-rings will
be directed for the remainder of this paper.

It is known that an /-ring can be characterized as an /-ring
for which every subdirectly irreducible homomorphic image is totally
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ordered. An /-module can be characterized in an analogous manner.
For a non-empty subset S of the /-module MR let CR(S) be the

convex /-submodule generated by S.

PROPOSITION 1.2. Let MR be an /-module, and let a e M. Then

CR(a) = {xe M: \x\ ^ n\a\ + \a\r for some reR+ and some n e Z+).

Proof. Let N be the set defined in the proposition. Since
ae NξΞ:CR(a), we only have to verify that N is a convex /-submodule.
If x , y e N, t h e n \x — y \ < ^ \ x \ + \ y \ ^ ( n \ a \ + \ a \ r ) + ( m \ a \ + \a\s) =
(n + m) I a | + | a \ (r + s). Therefore N is a subgroup, and hence it
is a convex /-subgroup. If xeN+ and reR+, then xreN, and it
follows that N is a convex /-submodule.

COROLLARY 1.3. If MR is an f-module, then x Λ y = 0 implies
cR(χ) n c ^ ) - o.

Proof. If 0 <̂  α 6 CΛ(&) Π CΛ(i/), then α ̂  (nx + ^r) Λ (m^ + ys) =
0, since M is an /-module.

COROLLARY 1.4. An /-module M is an f-module if and only if
each of its subdirectly irreducible homomorphic images is totally
ordered.

Proof. Since a homomorphic image of an /-module is an /-module,
a subdirectly irreducible homomorphic image of an /-module is totally
ordered, by 1.3.

The converse follows from the fact that an /-module is a sub-
direct product of its subdirectly irreducible homomorphic images.

It is sometimes convenient to work with unital modules, so we
will show that this can always be arranged. For a po-ring R let
R* be the po-ring obtained by freely adjoining an identity to R. Thus,
•K* = R Θ Z as a po-group with multiplication given by (r, n) (s, m) =
(rs + mr + ns, nm). Then R* is a po-ring with a positive identity
element (0, 1). lϊ M is an /-module over R, then M becomes a
unital /-module over R* if we define x(r, n) = xr + nx for xe M
and (r, n)e R*.

A n / - m o d u l e MR i s c a l l e d a d i s t r i b u t i v e /-module i f f o r x , y e M
and r e R+, (xV y)r = xr\/ yr. This is, of course, equivalent to say-
ing that multiplication by reR+ is a lattice homomorphism of M.
Not every distributive /-module is an /-module. The following pro-
position is well known for /-rings [4, p. 59].

P R O P O S I T I O N 1 . 5 . // MR i s a d i s t r i b u t i v e /-module and if x e M
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and xR = 0 implies x — 0, then M is an f-module.

Proof. Suppose that xΛy = 0 in M. Let a, be R+ and let ce R+

with c ̂  α&, b. Then 0^(mΛl/) δ ̂  #αδ Ayb ^ xc Aye = 0. There-
fore (xaΛy)R = 0, so xa Ay = 0.

COROLLARY 1.6. The following statements are equivalent for the
/-module MR.

(a) M is an f-module over R.
(b) M is a distributive /-module over R*.
(c) M is an f-module over R*.

Proof. The equivalence of (b) and (c) follows from 1.5. That
(a) and (c) are equivalent follows from the fact that the iϋ-submodules
and the j?*-submodules of M are the same.

We mention next a special type of /-module that arises frequently.
Suppose that ψ: M—> ΠίeI Mi is a representation of the /-module MR

as a subdirect product of the family of totally ordered ϋJ-modules
{Mi'.iel}. The representation is irredundant (and M is called an
irredundant f-module) if, for each ie I, the map &: M—> Πύ^iMύ that
is induced by φ has nonzero kernel. Using [12, p. 40] and Theorem
1.1 we immediately get

PROPOSITION 1.7. The f-module M is an irredundant f-module if
and only if its Boolean algebra of polars is atomic. If this is the
case, then M is an irredundant subdirect product of the family of
totally ordered modules {MjN'.N a maximal polar of M}, and this is
the unique (up to isomorphism) irredundant representation of M.

We close this section with a negative observation.

PROPOSITION 1.8. Let R be a (not necessarily directed) po-ring
with a set of positive matrix units {eiά: i, j — 1, , n) of degree n>l.
If M is an f-module over R, then Meiό = 0 for all i, j .

Proof. Since M is a subdirect product of totally ordered R-
modules we may assume that M is itself totally ordered. If x e M,
then N — R/r(x) is isomorphic to xR as an ίϋ-module. (r(x) =
{reR: xr = 0}.) Thus N can be made into a totally ordered R-
module.

Let xi3 = ei3 + r(x) e N. Suppose xi3 > 0 for some i, j . Then
xik = xi:jejk > 0 for all k = 1, , n. Since xh — xh |Ξ> 0 or xh — xh ^ 0,



FINITELY-VALUED /-MODULES 727

-xh = (xh - xi2)e21>0 or -xh = (a^ - ^ 2 ) ( - e n ) > 0 , which is a con-
tradiction. Similarly, xiS < 0 for some i, j leads to a contradiction.
Therfore xtί = 0 for all i, i; i.e., {ei3 : i, j = 1, , w} £ r(a?). Since a?
was arbitrary we are done.

If R is a po-ring, then the n-by-n matrix ring over R, Rn, be-
comes a po-ring if its positive cone is defined by R£ = {(<%): ai3-eR+

for all i, i}. The module MR is said to be non-trivial if MR Φ 0.

COROLLARY 1.9. If R is a (not necessarily directed) po-ring with
a positive identity element and n>l, then Rn has no nontrivial f-
modules.

If the matrix units are not positive, then 1.8 is false. For let

R= Z2,R+= \l°°\:aeZ+\ , M= {(α, b): α, be Z) ,

and

M+ = {(α, b): b > 0 or b = 0 and α ^ 0} .

Then Λί is a totally ordered i2-module.

2* Finitely-valued /-modules* In this section we obtain all of
the local structure theory for /-modules that Conrad [6] has obtained
for ^-groups. In addition, it will be seen that there is a strong
interaction between the ^-group and /-module structures of an /-
module. Many of the arguments used in this section are modelled
after those used by Conrad for the /-group case.

The /-module MR is a lexicographic extension of its convex /-
submodule N if N is a prime submodule of M, and g e M+\N implies
g>N [5]. We write M= lexN. The convex /-submodule N of M
is called a lower submodule if there is an x e M such that N is a
maximal element in the set of convex /-submodules not containing
x. N is then called an R-value of x. It is clear that N is a lower
submodule if and only if it is covered by some convex /-submodule
K; i.e., K is the smallest convex /-submodule of M properly con-
taining N. Also, K — N + CR(x) for any x e K\N, and N is an up-
value of x e M if and only if x e K\N.

If N is a lower submodule covered by Kf then KjN is an /-
simple f-module) i.e., K/N has exactly two convex /-submodules.
It is well kown that an /-simple /-group is isomorphic to an /-
subgroup of the reals (see [18, p. II 41] or [10, p. 74]). No such nice
characterization of an /-simple /-module is available, in general. If
R is a commutative totally ordered integral domain with an identity
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element, Viswanathan [17] has given necessary and sufficient condi-
tions for an /-simple totally ordered i?-module to be isomorphic to
an /-submodule of the completion of the quotient field of R.

A po-set is said to be rooted if the set of all elements which
exceed a given element is totally ordered, A maximal totally ordered
subset of a rooted po-set is called a root. By the trunk of a rooted
po-set we shall mean the intersection of its roots.

Since a prime submodule is a prime subgroup, the po-set ΓR of
lower submodules of an /-module is rooted. ΓR will be called the R-
value set of M. Let M0(R) be the intersection of all of the elements
of the trunk of ΓR. For Γz and M0(Z) we will write Γ and Mo,
respectively. Weinberg [18, p. II 74] has shown that M— lex Mo and
that Mo is trunkless for any /-group M.

Another description of MQ has been given by Conrad [6]. An
element g > 0 of the /-module M is called a nonunίt if its polar
g1 Φ 0. Let No be the subgroup of M generated by the set of non-
units of M. Then M i s a lexicogaphic extension of a convex /-sub-
group K if and only if K 2 No; and No is the smallest convex
/-subgroup that is comparable with every convex /-subgroup of
M (smallest is to be understood as smallest nonzero if No Φ 0).
Since Mo also has these properties, Mo — No. It can be shown that
M is a lexicographic extension of a convex /-submodule K if and
only if K 2 M0(R). Since No is a submodule of M, Mo = M0(R). We
collect this information in the following theorem.

THEOREM 2.1. If M is an f-module over the po-rίng R, then
M0(R) = MQ — NQ. If K is a convex s-submodule of M, then M =
lex K if and only if K ^2 Mo. If K is a nonzero convex ^subgroup
of My then M = lex K if and only if K is comparable with every
convex /-submodule of M.

THEOREM 2.2. Let g be a nonzero element of the f-module M over
the directed po-ring R. If N is a value of g, then the largest convex
/-submodule of M contained in N is an R-value of g. This induces
a natural one-to-one correspondence between the value set of g and
the R-value set of g.

Proof. Let Nx be an ϋJ-value of g. Since g &Nγ and Nx is a
prime submodule, g has a unique value N containing N^ Therefore,
the correspondence ^—^N is a well-defined mapping from the up-
value set of g into its value set. Clearly Nλ is the largest convex
/-submodule of M contained in N, since Nt is an R-value of g. Thus
the mapping Nx —• N is one-to-one.
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Now suppose that N is a value of g. Then N is a prime sub-
group, and hence contains a minimal prime subgroup (the intersection
of a maximal chain of prime subgroups contained in N). By Theorem
1.1 every minimal prime subgroup is a submodule, and hence Nlf the
largest convex /-submodule of M contained in N, is prime. If K
is any convex /-submodule of M properly containing Nlf then K pro-
perly contains N. For K and N are comparable, be primeness of JV̂
and K §L N, by maximality of N^ Thus g e K, and Nx is an R-value
of g.

Notice that, in general, there is no one-to-one correspondence
between Γ and ΓR. For let R be an /-simple nonarchimedean /-
ring, and let MR = RR. Then ΓR = {0}, whereas Γ can be infinite.

We next show that, just as for /-groups [6], there is a one-to-
one correspondence between the R-values of g in M and the maximal
convex /-submodules of CB(g).

THEOREM 2.3. For 0Φ geM the map σ: A —> A Π CB(g) is a one-

to-one correspondence between the set of R-values of g in M and the
set of maximal convex s-submodules of CR(g). If N is a maximal convex
S-submodule of CR(g), then

σ~\N) = {xeM: \xr\ Λ\g\e N for all reR*} .

Proof. First note that N is a maximal convex /-submodule of
CR(g) if and only if N is an R-value of g in CR(g). Let {Ka: ae A}
be the value set of g in M, and let {La: ae A} be the R-value set of
g in M (where, of course, La is the largest convex /-submodule of
M contained in Ka). Now we have the theorem when R—Z [6,
Theorem 3.5]. Thus, {Ka Π C(g): aeA} is the set of maximal convex
/-subgroups of C(g), and Ka = {x e M: \ x \ A I g I 6 Ka Π C(g)}. Again,
using this theorem with M — CB(g), {Kr

a: ae A} is the set of values of
g in CB(g), where Kf

a = {^e CB(g): \ x \ A \ g I e Ka n C(g)}. Thus,
{Ka Π CB(g): ae A} is the set of values of g in CR(g). Clearly,
LaΓ)CB(g) is the largest convex /-submodule of CR(g) contained in
Ka (Ί CB(g), and so σ is one-to-one and onto by 2.2.

Finally, Lf

a = {x e M: \ xr \ A \g \ e La n CB(g) for all r e R*} is a
convex /-submodule of M since R is directed. Since le ϋ?*, L'aQKa.
But if xeLa and r e R*, then | xr \ A \ g I e La n ^(βr). Thus Lα s ^ά,
so La — L'a by maximality of La.

A nonzero element g of Λf is called R-special (special) if it has
exactly one iϋ-value (value) in M. Theorem 2.2 says that g is R-
special exactly when it is special. If Ne ΓR(NeΓ) is the unique R-
value (value) of g in Λf, then N is called R-special (special) also.
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The nonzero element g is called basic if CB(g) is totally ordered. Note
that g is basic in MR exactly when g is basic in Mz.

THEOREM 2.4. Let g be a nonzero element of the f-module M.
The following statements are equivalent.

(a) g is R-special in M.
(b) g is R-special in CR(g).
(c) CR(g) is a lexicographic extension of a proper convex /-sub-

module.
(d) g is special in M.
(e) g is special in C(g).
(f) g is special in CR(g).
(g) C(g) is a lexicographic extension of a proper convex ^-sub-

group.

If this is the case and if K (respectively N) is the unique ϋί-value
of g in M (respectively CR{g)), then N = Kf] CR(g), CR{g) = lex JV,
and K= Nφg1.

Proof. The equivalence of (a) and (b) comes from 2.3. In [6]
Conrad has proven that (d), (e), and (g) are equivalent, and thus that
(e) and (f) are equivalent. The equivalence of (a) and (d) follows from
2.2.

If (b) is true, then CR(g) has a unique maximal convex /-sub-
module N. Hence CR(g) = lex N, since N is comparable to every convex
/-submodule of CR(g). Thus (b) implies (c). Conversely, if CR(g) = lex/,
then I is comparable to every convex /-submodule of CR(g), and hence
CR(g) has only one maximal convex /-submodule.

Finally, Conrad has proven [5, Lemma 6.1] that if B is a convex
/-subgroup of M which is a lexicographic extension of a proper
convex /-subgroup, then (J5 0 BL)+ — {xe M+: x does not exceed
every element of B}. Since M is an /-module, CR(g)L = g1. Thus,
(CR(g) φ gL)+ = {x 6 M+: x does not exceed every element of CR(g)}.
Hence K S CR(g) (&gL. But gL S K, so, by the modularity of the
lattice of convex /-submodules, K = (K f) CR{g)) @gL =

COROLLARY 2.5. Let g be a special element of the f-module M,
and let N be the unique value of g in CR(g). Then N is the largest
convex ^-subgroup of C(g). Thus g has the same value in C(g) as
it has in CR{g).

Proof. By 2.4 NΓ\C(g) is the largest convex /-subgroup of
C(g), and N = [N Π C(g)) 0 [01 n CB(g)]. But g1 f) CR(g) = 0 since M
is an /-module, so N = N Π C(g).
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COROLLARY 2.6. Suppose that g is special in M. Let K and N
be the values of g in M and CR(g), respectively, and let Kx and Nx

be the R-values of g in M and CR(g), respectively. Then K/Kt and
N/N1 are isomorphic s-groups, and K/N and KJN1 are isomorphic
s-groups.

Proof. K = N@ g1 and KL = N, 0 g1 by 2.5 and 2.4.

COROLLARY 2.7. If g is special but C(g) is not totally ordered,
then C(g) contains a nonzero convex /-submodule of M.

Proof. If N is the value of g in CB(g) and N, is the R-value of
g in CR{g), then NtS NsC(g) by 2.5. Since Nt is prime in CR(g)
and thus in C(g), Nx Φ 0.

COROLLARY 2.8. If g is special and N (respectively Nt) is the
value (respectively R-value) of g in CB(g)f then CR(g) = lex N, CR(g) =
lex C(g), and C(g) = lex N^

Proof. JSΓi £ N^ C(flr) S CB(g) by 2.5, and CR(g) = lex Nx. So

CR(g) = 2βoj iV and C(g) = lex Nx.

If g is special, then C(g)/N is isomorphic to an ^-subgroup of
the reals. In general, C^g)/^ and CR(g)fC(g) could be large. For
instance, let R be an /-simple /-ring, M = 24, and 0 =£ ̂  e ikf. Then
Nx = 0, C t̂o) - M, and so ^(fl f)^ - M, CR(g)/C(g) = ΛΓ/C(flr). In
particular, if i? = Q[αj] is ordered lexicographically with the highest
term dominating, then R is /-simple. If

0 Φ g = a0 + α ^ + + <V*

with an Φ 0, then C(flr) = C(xn). Thus, CR(g)/C(g) = R/C(xn) = I a s
an /-group.

The following result follows from Theorem 2.2 and from the
known case R — Z ([6, Theorem 3.7] and [7, p. 90]) (for a special case
of the definition of lex-sum, see below; for the general definition see
[7, p. 95]).

THEOREM 2.9. A nonzero element g of the f-module M has only
a finite number of R-values if and only if it is the finite sum of
pairwise disjoint R-special elements. If Ku , Kn are the R-values
of g in M, then g = gλ + + gn where gι is special with R-value
Kiy and I & I Λ I f/i I = 0 for i Φ j . This decomposition of g into dis-
joint special elements is unique. Finally,

CM = CR(gi) 0 . . . 0 CM f
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and g11 is the lex-sum of gt1, •••, gi1-.

Note that if g has only a finite number of ϋί-values but is not
jS-special, then the values of g in C(g) and in CR(g) need not be the
same. Thus, 2.5 does not generalize. Theorem 2.9 implies that if g
has only a finite number of R-values, then each R-value of g is
special. Just as for /-groups, the converse of this statement is
true.

THEOREM 2.10. A nonzero element g of the f-module M has only
a finite number of R-values if and only if each R-value of g is R-
specίal.

Proof. For a family {Ka: aeA} of convex /-submodules of M
let VR{Ka} = {xe M: each R-vsilue of x is a submodule of Ka for some
a e A} U {0}. Then VR{Ka} is a convex /-submodule of M. Also,
KeΓB is jR-special if and only if VR{K) g K. For if K is the unique
iϋ-value of x, then clearly x e VB(K)\K. Conversely, if x e VR{K)\K,
then x has an 2?-value containing K, which must be K, since every
R-value of x is contained in K. Thus, K is the only R-value of x.

Now suppose that each element of ΓR(g) = {Ka: aeA} is iϋ-special.
Let L — ΣαeΛ VR(Ka). If gί L, then g has an jR-value containing L,
i.e., L g Ka for some aeA. Thus VR(Ka) £ iΓα, which contradicts
the hypothesis that JC is iϋ-special. So # e L, and

+ • + VR(KaJ £ F ^ , , Ka%) .

Thus, every R-value of g is contained in one of the Ka., so iΓαi, , Kan

are the only iϋ-values of g.
Following Conrad [6], we say that a lattice L is generated by its

set of meet irreducible elements S if every element of L is the great-
est lower bound of a dual ideal of S. L is freely generated by S if
every element of L is the greatest lower bound of a unique dual
ideal of S. Conrad has shown that the lattice of convex /-sub-
groups of an /-group M is freely generated by Γ if and only if M
is finitely-valued, i.e., each element of M has at most a finite number
of values. It is, of couse, no surprise that this result holds for /-
modules.

A lattice L is completely distributive if the following equation
and its dual hold in L, provided the indicated joins and meets exist:

THEOREM 2.11. For an f-module M with lattice of convex /-
submodules ^f(MR) the following statements are equivalent.
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(a) ΓR freely generates
(a') Γ freely generates j*f
(b) J*f(MR) is completely distributive.
(b') ^f{Mz) is completely distributive.
(c) (B V (AaAa) = Aa(B V Aa) for every subset {Aa, B) of ΓR.
(c') BV(AaAa) = Aa(BV Aa) for every subset {Aa, B) of Γ.
(d) Each element of ΓR is special.
(cΓ) Each element of Γ is special.
(e) Each element of M has at most a finite number of R-values.
(e') Each element of M has at most a finite number of values.
(f) Each element of M has a unique representation as the sum

of a finite number of pairwise disjoint R-special elements.
(f) The same as (f) with R replaced by Z.

Proof. The equivalence of (a), (b), and (c), and that of (a'), (b'),
(c'), (d'), (e')> and (f') is proven in [6]. The equivalence of (d), (e),
and (f) follows from 2.10 and 2.9. Theorem 2.2 implies that (e) and
(e') are equivalent. Since S^{MR) is a complete sublattice of Jέ?(Mz)y

(b') implies (b).
Now suppose that (a) is true and let Ke ΓR. Then Δ1 = {Ne ΓR:

N §£ K) and A2 = A, (j {K} are distinct dual ideals of ΓR. If Π {N:
NeA}^K, then Π {N: Ne Δλ) = ΓΊ {N: Ne J2}, contradicting (a). Thus
there exists g e (Ί {N: Ne A$\K. Let L be an R-value of g containing K.
If L a K, then L e Λ and ge L. Thus L = K. If P is any other R-
value of g, then PeAly so ge P. Thus if is ^-special, and (a) implies (d).

The concept of finitely-valued is strongly related to that of direct
sum.

THEOREM 2.12. The f-module MR is a direct sum of totally order-
ed R-modules if and only if it is finitely-valued and each special ele-
ment is basic.

Proof. Suppose that M is finitely-valued and each special element
is basic. If g is a basic element, then gλl is totally ordered ([7,
p. 88] or [1, Lemma 1]). Thus M is the sum of its totally ordered
convex ^-submodules. Since two totally ordered convex /-submodules
are disjoint or comparable [7, 3.1], M is the direct sum of totally
ordered J?-modules.

The converse is trivial.
The following theorem shows that finitely-rooted /-modules can

be built up from a finite family of totally ordered modules by means
of direct sums and lexicographic extensions. When R — Z and when
the lattice of convex /-subgroups of M has finite length the theorem is
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due to Birkhoff. It has been generalized to non-abelian ^-groups
(without the assumption of finite length) by Conrad. Our proof is
modelled after a proof that Weinberg [18, p. II75] has given for the
non-abelian case.

Observe that the /-module MR has at most a finite number of
roots exactly when Mz has at most a finite number of roots. More
generally, there is a one-to-one correspondence between the roots of
Γ and the roots of ΓR. For there is a one-to-one correspondence
between the roots of ΓR and the minimal prime submodules of MR

given by Ma—* Π {C: Ce Ma}. Since each minimal prime subgroup
of M is a submodule (1.1), the above correspondence establishes a
bijection between the roots of Γ and those of ΓR.

An /-module MR is a lexicosum of the family of totally ordered
ϋί-modules {Ma: ae A} if it is in the smallest class J*f of /-modules
containing {Ma: ae A} and satisfying

(1) If A, Be^f, then A@Be£f.
(2) If K= lex L, where L and K/Le^f, then Ke^f.

LEMMA 2.13. (Weinberg). Let Γ be a rooted po-set with only a
finite number of roots. If the trunk of Γ is empty, then Γ is the
cardinal sum of two nonempty subsets.

THEOREM 2.14. Let M be an f-module over the directed po-ring
R, and suppose that ΓR has only a finite number of roots. Then M
is a lexicosum of a finite number of totally ordered modules, and only
a finite number of extensions are needed to get to M.

Proof. Suppose that ΓR has n roots. If n = 1, then M is total-
ly ordered. Suppose that n > 1 and the theorem is true for M with
less than n roots. If the trunk of ΓR is empty, then ΓR is the car-
dinal sum of non-empty subsets A and B, by 2.13. Let M1 — ΓΊ {Ca:
aeA}, M2=C\ {Cβ: β e B}. Then Mι + M2 = Π Λ + ΠβCβ = ΓίaΠβ
(Ca + Cβ), by 2.11. If Ca + Cβ^ M, then Ca + CβSD for some
D e ΓR = A U B. This clearly cannot happen, so M = Ca + Cβ. Thus
M = M10 Mz. Since ΓR(M) is the cardinal sum of ΓR{M^) and
ΓR(M2), ΓR{M^) and ΓR(M2) each has less than n roots. So we are done,
by induction.

If the trunk of ΓR is not empty, then M— lexM0 and Mo is
trunkless by 2.1. Since every minimal prime submodule of M is
contained in Mo, Mo has n roots, also. Thus the previous case applies
to Mo.

3* Applications to /-rings* An /-ring is a lattice-ordered ring
S such that Ss and SS are both /-modules. (If Ss is an /-module,
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then SS need not be an /-module.) This two-sided condition may be
reduced to a one-sided one. For aeS let La be the map defined by
(s)La = as, and let Ta be the map defined by (s)Ta = sa. Then the
subring R of Romz(S, S) generated by the set {Γα, La:aeS} is a
directed po-ring if its positive cone is defined by

Now S is an /-ring if and only if SB is an /-module. The convex
/-submodules of Ss are, of course, the /-ideals of S. All of the pre-
ceding theory now applies to SR.

Using Theorem 2.12 and Proposition 1.7 we can obtain general-
izations of the results in [1]. In that paper Anderson studied /-rings
S that satisfy the ascending chain condition for polars. Since Polar
(S) is a Boolean algebra, this condition is equivalent to Polar (S)
being finite, which is a special case of Polar (S) being atomic. In
particular, we have that the /-ring S is an irredundant subdirect
product of totally ordered rings exactly when Polar (S) is atomic.
If S is semiprime, then it is an irredundant subdirect product of
totally ordered domains exactly when Polar (S) is atomic. (This
also follows from [13, Theorem 3.2].) Also, a finitely-valued semi-
prime /-ring is a direct sum of totally ordered domains if and
only if each special element is basic. An example due to Anderson
[1, p. 718] shows that a semiprime finitely-rooted /-ring need not have
this latter property.

A more interesting situation arises if we assume that S is
Johnson semisimple, i.e., that J(S), the intersection of the regular
maximal /-ideals of S, is zero (see [13] for the theory of the Johnson
radical for /-rings). The following theorem, and also Proposition 3.3,
have analogues in the theory of archimedean /-groups.

THEOREM 3.1. The following statements are equivalent for an /-
ring S.

(a) S is isomorphic to an j'-subring of a direct product of a
family of ^-simple unital f-rings that contains their direct sum.

(b) S is Johnson semisimple and its Boolean algebra of polars
is atomic.

Proof. Suppose that (b) holds, and let {Pa: a e A} be the set of
maximal polars of S. By 1.7 Π {Pa: ae A} = 0. By [1, Lemma 6],
S = Pa φ Pa and P£ is an /-simple unital /-ring. We have the
isomorphism φ: S—»ΠaeΛ1 which is induced by the projections
pΛ\ S-+P*1. Clearly, Σ ^ Θ ^ * 1 £ Φ(S). Thus (b) implies (a).

That (a) implies (b) follows from 1.7 and from the fact that the
Johnson radical is a radical.
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Note that in an /-ring satisfying the conditions of 3.1 a regular
maximal /-ideal need not be a polar. For an example, let Ra be an
/-simple unital /-ring for each a in the infinite set A. Then
Σ«e^Θ-B« is a regular maximal /-ideal of the /-ring

Σ Θ R« + Ql S Π i2«,
αe/i α e i

but it is not a polar.

LEMMA 3.2. If S is a unitable f-ring and e is an ίdempotent of
S, then Se and S(l — e) are /-ideals of S.

Proof. Since e is central [11, 2.1], Se is an ideal. Since (re)+ =
r+β, Se is a sublattice. Suppose that 0 ̂  $ ̂  re, and let φ(S) be a
totally ordered image of S. Then [11, 2.1] φ(e) — 0 or 1, so 0(a?) =
Φ(x)Φ(e). Thus $ = $eeSe, and Sfe is an /-ideal. Since S(l — e) is
the annihilator of e, it is an /-ideal, also.

PROPOSITION 3.3. If J(S) = 0, then every special element of S is
basic.

Proof. Let g e S be special. Then, by 2.4, CR{g) = lex N, where
N is the maximal /-ideal of S contained in CR(g). If K is a regular
maximal /-ideal of CR(g), then K is an /-ideal of S, since CR(g)/K is
semiprime [9, Lemma 61]. Thus K = JV, and J(CR(g)) = iV. But
J(CR(g)) = CR(g) Π J(S) = 0 [13, Theorem 4.16]. Thus JNΓ = 0, and #
is basic.

COROLLARY 3.4. // J(S) = 0 and g is special in S, then there is
an idempotent ee S such that CR(g) — Se. Also, Se is an /-simple /-
ring.

Proof. By 3.3 CR{g) is a totally ordered Johnson semisimple f-
ring, hence a unital /-simple /-ring. Let e be the identity of CR(g).
Since S is unitable [13, Theorem 3.6], Se is an /-ideal. Thus Se =
CR(g).

The following corollary follows immediately from 2.12 and 3.3.

COROLLARY 3.5. An f-ring is the direct sum of unital /-simple
f-rings if and only if it is finitely-valued and Johnson semisimple.
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