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MAXIMINIMAX, MINIMAX, AND ANTIMINIMAX

THEOREMS AND A RESULT OF R. C. JAMES

S. SIMONS

This paper contains a number of minimax theorems in
various topological and non-topological situations. Probably
the most interesting is the following: if X is a nonempty
bounded convex subset of a real Hausdorff locally convex
space E with dual E1 and each φeEf attains its supremum on
X then

for all nonempty convex equicontinuous Y c E'Λ /ΛS
>(*) .

infye Y sup <X, y} ^sυpxex inf (x, Y> J

It is also proved that if (*) is true and X is complete then
X is w(E, ϋ70-compact. Combining these results, a proof of
a well known result of R. C. James is obtained.

We suppose throughout that XΦ φ, Y' Φ φ, and f:Xx Y—>R.
We write ^~{X) for {F:φΦFaX,F is finite} and define J ^ ( F )
similarly. The maxίminimax inequality is the relation

(1) inf sup inf f(x, (?) fg sup inf sup f(F, y)
GeϊF(Y) xeX FeJ(X) yeY

and the minimax inequality is the relation

(2) inf sup f(X, y) ^ sup inf f(x, Y) .
yeY xeX

The main result of this paper is Theorem 5, which gives some
conditions under which (1) holds. These conditions are completely
non-topological and depend only on the fact that certain functions
attain their suprema on X. We prove Theorem 5 by defining a
"remoteness" relation on the subsets of Y, but we point out that
Theorem 5 can also be proved by first reducing the problem to the
"iterated limits unequal" situation (by using the technique of Remark
8 and then the diagonal process) and then going through the same
steps as in [6], Lemmas 1-7. The approach adopted here embodies a
new type of diagonal argument (Lemmas 2 and 3) which might find
applications elsewhere, and an argument similar to but subtler than
that used in [9], Lemma 2. There is another proof of Theorem 5
that is "frontended" in the sense that we can choose the functions
k19 k2, of Theorem 5 by a purely inductive process without having
first to choose a sequence {y^n^. The price one pays for the "front-
endedness" is that the induction is more complicated and that is why
we have avoided the alternative approach.

709



710 S. SIMONS

Remarks 6, 7, and 8 give certain topological conditions under
which (1) holds; the result in Remark 8 uses Theorem 5 and is con-
siderably deeper than the other two.

In Lemma 11 we give some conditions (far from the best, but
adequate for our purposes) under which (2) follows from (1) and thus
derive some minimax Theorems in Theorem 12, Remark 13 and Theo-
rem 14.

Theorem 15 is a converse minimax theorem and leads immediately
to Theorem 16, which contains the result of James referred to in the
title. Those sections of this paper that are needed for Theorem 16
are entitled "Lemma" and "Theorem", while those not so needed are
entitled "Remark".

1* A maximinimax theorem with no topology and hardly
any convexity*

NOTATION 1. If Z Φ ψ we write Sz for "supremum on Z". We
write "conv" for "convex hull of".

LEMMA 2. We suppose that f(X, Y) is bounded and Ae R. If
φ φ Wc Y and Zc Y we write W&Z if there exists he L(X) such
that, whenever G e J^{W U Z),

Sz(inf / ( . , G) - h) - sup inf SF(f( , y) - h) > A .
F ( ) yeW

If Y0^Z we write t(Y0, Z) = iτd0^wcrQtW^z sup/( , W) e L(X).

We suppose that Y0&φ. Then we can choose yly Y19 y2, Y21

such that, for all p ^ 1,

(3, p) y p e Yp^ a n d Z p = {yly - - - , y P } ,

(4, p) 0 Φ Yv c r_ l f YP^ZP, Sz(inf/(., Zp) - sup/( , Yp)) > A ,

and

for all g e conv /(•, Zp)

(5,P) SAg - sup/( , TQ) > SAg - t(Yp, zp)) - A..
p

Proof. We suppose inductively that p ^ 1 and that, for all n < p,
yn and Yn have been chosen so that (3, n), (4, n), and (5, n) are satis-
fied. We choose yp e Yp^ arbitrarily and define Zp so that (3, p) is
satisfied. Since Y^&Z^ and Yp_γ u Zp = Yp^ U Zp^ (with the con-
vention that ZQ — φ), it follows that Yp_γ&Zp. Hence there exists
h e L(X) such that (taking G = Zpe ^{YP-, U Zp))
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Sx(vat f(>, Z,) - h) - a> A ,

where a = supi?e^(X) inf,,^^ £>*.(/(•, y) — h). Consequently there exist
*o € X and rj > 0 such that

(6) inf f(x0, Z,) - h(x0) - a > A + rj .

We write Wo = {y.ye Y^lt f(x0, y) - h{x0) ̂  a + V) H Fe
then F U {%<>} e ^~{X) hence

inf {SF{f{ , v)-h)V (f(xot y) - h(x0))} ^ a

from which infyeWo SF(f( , y) — h) ̂  a. We have proved that

sup m£SF(f(-,y) - h) ̂  a

and it follows easily from this and YP^^ZP that WO&ZP. We next
choose gu , gs e conv / ( • , Zp) so that, for all g e conv / ( • , Zp),
there exists re{l, •••,«} such that Sx(\g — gr\) < lβp. We choose
Wly •••, Ws in sequence as follows: we choose Wr, φφWra Wr-γ such
that Wr&Zv and

Sτ(ίjrr - sup/( , Wr)) > Sx(9r - t(Wr-lf Z9)) - ^ - .
Zp

We write Yp = Ws. It is immediate that φ φ Yv c Yp_γ and
Further

Sz(inf/(., Z,) - sup/( , Γp)) ̂  Sz(inf/(., Zp) - sup/( ,
^inf/(a?0,Zp) -sup/(a?0,
^ inf f(x0, Zp) - h(x0) - a - η> A

from the definition of Wo and (6). Hence (4, p) is satisfied. Finally,
if g e conv/( , Zp) we choose re{l, •••,«} such that

Then

Sχ(^ - sup/( , Y,)) ̂  Sz(^ - sup/( , Wr))

( ,))
p

- t(Y9, zv)) - - 1 .

Hence (5, p) is satisfied and the Lemma is proved by induction.
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LEMMA 3. We use the notation of Lemma 2 and suppose p >̂ 1.
(a) // {zn}n^ is a subsequence of {yn}n>P then {zn: n ^ 1}^ZP.
(b) We suppose that ge conv /(•, Zp). Then

Sx(g - l imsup/( , yn)) ̂  Sx(g - liminf / ( - , yn)) - — .

Proof, (a) We write W = {zn: n ^ 1} and h = lim sup%_o=> /(•, zn).
If Fe ^r{X) then inf,eiF SF(f( , y) - h) = inf^ SF(f( , «n) - A) ^
lim supπ_>00 SF(f( , zn) — h) = SF(lim sup^oo /(•, zn) - h) = SF(0) = 0. On
the other hand if Ge^"(W[j Zp) then there exists q^p such that
inf/( . , G) ̂  inf/( . , ^ g) and since h ^ sup n > f f /(., i/Λ) ̂  sup/( Γ,)

, G) - h) ̂  S^(inf/(., ^ff) - sup/( , Γff)) > A

from (4, p). It follows that W&ZP, as required.
(b) If {zn}n^ is as in (a) then, from (a) and (5, p),

Sx(g - limsup/( , yn)) ̂  Sx(g - sup/( , Yφ))

(7)

Now the lim inf of a real sequence is the inίimum of the suprema of
all its subsequences (this is the crux of [6], Lemma 2) so, taking the
supremum of the right-hand side of (7) over all subsequences {zn}n^x

of {yn}n>p we get the required result.

LEMMA 4. We use the notation of Lemma 2. If g e conv {/(•, yn):
n ^ 1} then

(8) SX(Q - l imsup/( , yn)) = Sx{g - liminf/(•, yn)) > A .
n-*oo n-*oo

Proof. If p is sufficiently large then g e conv /(•, Zp). The
equality follows from Lemma 3(b) by letting p —> oo and the inequality
follows from (4, p).

THEOREM 5. We suppose that f(X, Y) is bounded and, whenever
0 < λ < 1 and {kn: n ^ 1} c conv /(•, Y) then there exists k e L(X)
such that lim inf̂ ooA^ ^ k ^ lim sup^eofc^ and Σ ^ i ̂ ~1(^% — k) attains
its supremum on X. Then (1) holds.

Proof. If (1) does not hold then, for an appropriate A > 0 (taking
h — 0) Y&φ. From Lemmas 2 and 4, there exists {yn: n ^ 1} c F
such that, whenever g e conv {/(•, y): n ^ 1}, (8) holds. For m ^ 1
we write /„ = /(-, 2/Λ) - lim supΛ^w /(•, i/Λ) and β - supn^ SA(/J. We
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write δ = A/3 > 0 and choose λ > 0, g19 g2, as in [9], Lemma 2.
Proceeding as therein we obtain ([9], relation (3)) for all m ̂  1

(9) S X ( Σ λ*"1^) - SA Σ λ - 1 ^ ) ̂  [A - δ(l + λ)]λ— ι .

For all m ̂  1 there exists kme conv {/(•, y»):n^ m) such that gm =
km — limsupw_oo/( , yn). We choose fceL(X) as in the statement of
the theorem and write g'm = km — k. Since lim infw_»eo/( , yn) ^ k ^
limsup%_co/( , yn), it follows from (8) that, for all m ^ 1,

Thus (9) is true with #„ replaced by g'%. Since Σ ^ i ^ Λ attains its
supremum on X we can continue as in [9], Lemma 2 and find xeX
such that, for all m ^ 1, #;<» ^ A - 2δ = A/3, i.e., km(x) ̂  Λ(α?) + A/3.
This contradicts our assumption that k ^ lim inf^oo kn.

2* Topological conditions implying the maximinimax rela-
tion*

REMARK 6. If X is a compact topological space and, for all y e
Y, / ( ' , y) is uppersemicontinuous on X then (1) holds.

Proof. If α: < mίGB^{Y) sup^e^ inf f(x, G) then, for all Ge
Γ\yeo {#• x e ̂ , /(», y) ̂ oc) ̂  Φ From compactness, Γli/er {̂  ^ e X,
/(α?, y) ̂ oc) Φ φ hence sup^exΠif /(α?, Y") ̂  α:. It follows that

inf sup inf f(x, G) ̂  sup inf f(x, Y)

and so (1) certainly holds.

REMARK 7. If X and Y are countably compact topological spaces
and / is separately continuous then (1) holds.

Proof. If

a < inf sup inf f(x, G) and sup inf sup f(F, y) < β
GJ^iY) eX Fe^(X) yeY

then we can construct inductively {xn: n ^ 1} c X and {yn: n ^ 1} c Y
such that f(xm, yn) ̂  β when 1 ̂  m ^ ^ and /(α?m, yn) ^ α: when 1 ^
n < m. We suppose that #0 e X is a cluster point of {xn}n^i and y0 e
Y is a cluster point of {yn}n^ι Then simultaneously f(x0, y0) ̂  /5 and
/(#<» l/o) ^ >̂ hence a ^ β. Thus (1) holds.

REMARK 8. If X is a pseudocompact topological space, f(X, Y) is
bounded and each sequence from conv/( , Y) has a continuous cluster
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point in the topology of pointwise convergence on X then (1) is true.

Proof. This is immediate from Theorem 5.

3* Some old and new minimax theorems for concave-convex
functions*

LEMMA 9. We suppose that X is a nonempty convex subset of a
real linear space and αlf , am are real concave functions on X.
Then there exist Xly , λm ^ 0, λx + + λm = 1 such that

Sz(\ai + ' + λmαw) = Slid,. A Λ am) .

Proof. The result is immediate if Sx(a1 A Λ am) = °° so we
suppose that Sx(at Λ ••• Λ α J < oo. If / e R m we write

a{f) = SA((h - /(I)) Λ Λ (α. - f(m))\

a is a well-defined concave function on Rm. If / € Rm we write

Then /3 is a well-defined sublinear functional on J?m. From the Hahn-
Banach theorem there exist λly , λm such that

for all feRm Xj(l) + + Xmf(m) ^ β{f) .

For all / 6 Rm, β(f) ^ /(I) V V /(m), hence λlf , λm ^ 0 and
λi + + λm = 1. Further

SAX,?,,. + + λmαm)

^ ) , •• ,αm(2/))

^ sup [α(0) - αrίαid/), ,
2/eX

= α(0) - inf sup [(a^x) - at{y)) A Λ (am(x) - am{y))]
p i ϋel

^ α(0) = ^ ( α ! Λ Λ α J .

REMARK 10. The axiom of choice is not used in Lemma 9. (The
Hahn-Banach theorem is used only in Rm.) Using the axiom of choice
one can prove the following extension: if N Φ 0 , for all neN,an is
a real concave function on X and, for all xeX, a.{x) e L(JV) then there
exists a positive linear functional μ on L(iV) such that μ(l) = 1 and
supsex μ{a.{x)) — SΣ(inΐneNan). This is closely related to the following
result: if S is a sublinear functional on a real linear space E and D
is a nonempty convex subset of E then there exists a linear func-
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tional φ on E such that φ is dominated by S on E and inf φ{D) =
inf S(D). This latter result is discussed in [4], [5], and [8], Theorem
28(d) and Remark 29.

We point out that Lemma 9 can be deduced from known minimax
theorems. On the other hand Lemma 9 generalizes [2], Theorem 6.

LEMMA 11. We suppose that X and Y are nonempty convex sub-
sets of real linear spaces and

(10) for all yeY f( ,y) is concave on X,

(11) for all xeX f(x, •) is convex on Y,

then

(12) inf sup inf f(x, G) = inf sup f(X, y)
Ge >'(Y) xeX yeY

and

(13) sup inf sup f(F, y) = sup inf f(x, Y) .
Fτ-(X) Y X

Proof. If G = {y19 , ym) e ̂ {Y) then, from (10) and Lemma 9,
there exist λlf , λm ^ 0, \ + + λm = 1 such that

Sx(\f( , 2/i) + + λm/( , ym)) = sup inf f(x, G) .
xeX

From (11), if

V — \Vι + + λmτ/m G Y then sup f(X, y) ̂  sup inf f(x, G) .
xeX

This establishes " ^ " in (12) and " ^ " is trivial. (13) is proved by an
analogous argument. (Compare [1], Theorem 1.)

THEOREM 12. We suppose that X, Y and f satisfy the conditions
of Lemma 11 and Theorem 5. Then (2) holds*

Proof. This is immediate from Theorem 5 and Lemma 11.

REMARK 13. Arguing as above, we can prove easily that if X, Y
and / satisfy the conditions of Lemma 11 and either Remark 6, 7, or
8 then (2) is satisfied. The first of these results is well known; the
other two do not seem to be.

THEOREM 14. We suppose that E is a real Hausdorff locally con-
vex space with dual E' and that X is a nonempty bounded convex
subset of E. Then (14)=>(15)=>(16)=>(17)«(18).
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(14) X is w(E, Er)-compact

(15) There exists Z such that X = conv" Z and Z is w(E, E')-compact

(16) For all φ e E'', φ attains its supremum on X

Whenever Y is a nonempty convex equieontinuous subset
(17)

\of E' then infj,6r sup<X, y} ^ sup^x inf <#,

(18)
Whenever Y is a nonempty convex equieontinuous subset

of Er and deZ then mfxex Sγ(d — ζx, •» ^ 0, where Z stands
for the closure in RE' of {ζx, ) : a ; G l ) .

Proof. It is trivial that (14)=>(15) and immediate from the bipolar
theorem that (15)=*(16). It follows from Theorem 12 that (16)=>(17).
(If {yn: n >̂ 1} c Y and y e Er is a w(Ef, £7)-cluster point of {yn}n^ then,
for all x e l , lim inf „_« ζx, yny ^ ζx, y} ^ lim sup^oo <a?, /̂Λ)>. Conse-
quently the conditions of Theorem 5 are satisfied.)

(17)=>(18). We suppose that Y, Z and d are as in (18) and o > 0.
Since d is bounded and affine on Y we can write Y = Y1 u U Ym

where, for all n — \, , m, F% is nonempty and convex and sup d(Yn) —
inf d(Yn) ^ δ. From (17) (with Y replaced by Yn) there exists xneX
such that

inf <X, Γ%> ^ inf sup <X, τ/> - δ

^ inf d(Yn) — δ since de Z

^ sup d( FΛ) — 2δ from the choice of Yn .

From Lemma 9, there exists x e X such that

SY(d - <x, •» = SY((d - <x19 •» Λ Λ (d - <xm, .»)

^ sup SYn(d - <a?Λ, -»

g sup [supc^ΓJ - inf <»„ ΓB>] ^ 2δ

from the inequalities above. The result follows since δ > 0 is arbitrary.
(18)=>(17). We suppose that ϊ" is as in (17) and we define Z as in

(18). We suppose, further, that a < infyey sup<X, #>• If G e ^ ( Γ )
then, from Lemma 9, there exists yeY such that sup <(X, y} —
sup x eχinf ζx, Gy, hence s u p ^ Γ inf ζx, Gy > a. Consequently

Π {d: d e Z, d{y) ^ a) z> Π {<», •>: « e X, <a?, y> ^ α:} ^ 0 .
2/ e G y eG

From TychonofΓs theorem, Z is compact hence f\yeγ{d: de Z, d(y) ^
α:} =̂  0 from which there exists de Z such that inf d(Y) ^ a. (Com-
pare the proof of Remark 6.) From (18)
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0 ^ inf Sr(d - <x, •» ̂  inf (inf d(Y) - inf <as, Γ »
xeX xeX

— ΊTTp flί ~V\ CΓΠΉ l i r f / Ί "V^N ~^> ΓV CΠTΠ 1TI"F /'V* V*S
— 1111. \Jϋ\ JL ) o l i y ILIA- \wy JL / ^ CΛ. DtlJ^ 111JL \«^, -£ /

xeX xeX

i.e.,

α ^ sup inf (x, F> .
The result follows since a < inf^y sup<(X, y) is arbitrary.

4. A converse minimax theorem, James's Theorem and Krein's
theorem*

THEOREM 15. We suppose that E, Ef and X are as in Theorem
14 and that X is complete. If (17) is true then X is w(E, E')-compact.

Proof. We suppose that Z, d are as in (18) and we write ^ for
the family of closed, circled neighborhoods of 0 in E directed by c .
If Ue^f then, since (17) => (18), there exists ψ(U)eX such that
Suo(\d — </τ/r(ί7), *y\) = 1/2. (The absolute value can be put in because
d - <>(Z7), •> is linear on Ef and U° is symmetric.) If U, V, We ^
and V, Wa £7then ψ(V) - ψ{W) e U00 = U hence the net ψ is Cauchy
in X. Since X is complete, there exists xe X such that ψ-*x. We
suppose that yeE'. If Ue ^ and U°3y then \d(y) — <SK£7), y)\ ^
1/2 and, passing to the limit, \d(y) — (x, yy\ ^ 1/2. By homogeneity,
d = <(α;, yeRE'. We have proved that <(X, ^ is closed in RE' hence,
by TychonofFs theorem, X is w(E9 £")-compact.

THEOREM 16. We suppose that E, Ef and X are as in Theorem
15. Then (14), (15) and (16) are equivalent.

Proof. This is immediate from Theorems 14 and 15. (14) <=> (15)
is Krein's Theorem and (14) <=> (16) is James's Theorem. (See [3], [6],
and [7].)
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