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LATTICES OF LOWER SEMI-CONTINUOUS FUNCTIONS
AND ASSOCIATED TOPOLOGICAL SPACES

Louis D. NEL

In this paper the lattice of all real-valued lower semi-conti-
nuous functions on a topological space is studied. It is first
shown that there is no essential loss if attention is restricted to
To-spaces. By suitably topologizing a certain set of equivalence
classes of prime ideals, it is shown that a topological space
is determined by the lattice. This topological space is homeo-
morphic with the original space X whenever X has the property
that every non-empty irreducible closed set is a point closure.
The sublattices of functions taking values only in intervals
of the form (a, b] and [a, b] are compared. Relations between
the above function lattices and the lattice of all closed subsets
are also discussed.

Preliminaries* Let LR(X) (or briefly LR) denote the lattice of all
lower semi-continuous functions defined on the topological space X into
the real line R. It is well known that LR is a conditionally complete
distributive lattice under the usual order relation / <̂  g which means
f(x) ίg g(x) for all x e X (except where otherwise indicated, lattice—
theoretic terminology will follow [1]). For an arbitrary bounded non-
empty set FcLR the join \/Fsatisfies \/F{x) = sup{/(^): f e F}; the
meet AF is defined as \f{geLR: g <^f for all f e F} and it should be
noted that ^F{x) — inf {f(x): fzF) need not hold when F is infinite.
The constant function with value s will be written s.

The elements of LR can be regarded more conveniently as con-
tinuous functions on X into Rx where Rt is the Γ0-space obtained by
giving the real line the topology having as non-empty closed sets those
of the form {x: x ^ r) (re R).

Some other function lattices will also be considered towards the
end of the paper. Let H, I denote the real intervals (0, 1], [0, 1]
respectively and LH(X), LΣ(X) the sublattices of LR(X) consisting of
those functions which take values only in H, I respectively (no essential
difference will arise if any extended real intervals (α, b], [a, b] are taken
for iJ, I).

We will use ^(X) to denote the lattice of closed subsets of the
topological space X. The set of nonzero irreducible elements of <&
will be denoted by J^(X); thus S>/ consists of the nonempty closed
sets A which cannot be expressed as the union of two properly smaller
closed sets. Closures will be written cl A with cl x = cl {x} for point
closures.
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Relations between X and the lattice Ί^{X) have been studied by
several authors notably Thron [3] and Blanksma [2]. We now give
a summary of relevant facts from these two papers in a form suitable
for our needs. We restrict attention to Γ0-spaces as this entails no
essential loss of generality.

The set S%f can be topologized by taking as closed sets those of
the form {Ae jsf; A(zF] where Fer^ (see [3, proof of 3.1] and [2,
I, ch 2]. We will denote the topological space thus obtained by πX.
Since every point closure cl x is irreducible, the mapping Ύ(X) — cl x
is an embedding of X into the set Sϊf and moreover it is a topological
embedding of X into πX (see [2, I, 3.4]). An important class of spaces
are those in which every Ae Szf is a point closure (see [2, I, 2.2]).
Such spaces will be called pc-spaces; ΪVspaces (see [3]) are defined to
be those for which cl x — {x} is always a closed set. It is perhaps
worth pointing out that these two types of spaces can be regarded
as the extreme cases of a certain situation. If we use J^/* to denote
the set of strongly irreducible elements of J^f (i.e. those A e S^ which
cannot be written A = c\\JsesBs f° r a nY family (Bε) c cέ? with Bs §S
A), then we have for any T0-space X

c Ύ(X) C sf.

(It is easily verified that each Ae J ^ * must be a point closure). The
ΪVspaces can now be described as those for which j y * = y(X) while
the point closure spaces are those for which Ύ(X) = S^/. The specific
results concerning πX and ^ which will be needed in this paper can
now be stated as follows. (When we say X is determined as a space
with property P by the lattice C(X) (resp. LB{X)) we mean that if Y
is also a space with property P then X and Y are homeomorphic iff
C(X) and 9f(F) (resp. LB{X), LR{Y)) are isomorphic.)

1* Known facts*
For any T0-space X we have
(a) πX is a pc-space.
(b) If X is a pc-space, then X and πX are homeomorphic.
(c) Every f e LH{X) has a unique extension fπ e LH(πX) (here we

have identified X with a dense subspace of πX, as may be done).
(d) The lattices r^(X) and r^(πX) are isomorphic.
(e) The space πX is determined as a pc-space by the lattice

{hence if X is a pc-space, it is determined as such by the lattice
(f) If X is a TD-space, it is determined as such by the lattice

For (a) through (e), see [2, I, chapters 2, 3]; (c) is not stated
explicitly, but H. Herrlich has pointed out in his review of [2] (MR
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37, 5851) that the pc-spaces form an epireflective subcategory of the
To-spaces and (c) follows at once from the fact that πX is the epirefl-
ection of X. See [3] for a proof of (/).

THEOREM 2. Let T be any topologίcal space and X its Ί^-identifica-
tion. Then the lattices LR{T) and LR{X) are isomorphic.

Proof. X is the quotient space T/p, where the relation xpy means
cl x — cl y. Let c denote the canonical mapping of T onto T/p. Notice
that clίc^clT/ iff f(x) ψ f(y) for some feLB(T). Hence for each
feLR(T) there is a unique function /* on T/p such that f*oc = /•
Since /* is defined on a quotient space, its continuity follows from
the continuity of /. The proof is completed with the simple verification
that / - + / * is an isomorphism of LR{T) onto LR{T/ρ).

In view of this theorem all spaces X under discussion will from
now on supposed to be Γ0-spaces.

Closed prime ideals in LR{X). By an ideal in LR will be meant
a nonempty proper subset J of LR such that / Λ gzJ whenever / e
J, ge LR and / V geJ whenever f,geJ (here we differ from [1] where
an ideal in a lattice need not be a proper subset). An ideal J will
be called closed if for any GaJ such that V G exists in LR we have
\/GeJ. As usual, prime ideal will mean an ideal which contains
/ Λ g only if it contains / or g.

PROPOSITION 3. The set I(r, A) = {feLR(X): f(x) <; r when xe
A} is a closed prime ideal, where reR and A e Sf. Every closed prime
ideal in LR is of this form.

Proof. If /i Λ / 2 € /(r, A), then the closed sets At = {x e A: ft(x) ^
r) (i = 1, 2) have A as their union. Since A is irreducible we conclude
that A — Ai and fι(x) ^ r when xe A for some i. Hence 7(r, A),
which is clearly a closed ideal, is prime. Let us now consider any
closed prime ideal P in LR and let B denote the set of all xe X for
which the number

m{x) — sup {p(x): peP}

exists. We show that m(x) is the same number for all xe B. If
m{y) < m{z) holds we can chose s,te R such that

Given any ge P we define elements u, ve LR as follows: u = s V g and
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(g(x) when g(x) ^ s

| ί V g(x) when g(x) > s .

Then g — u A vy u£P and v$ P which is absurd. We conclude that
B is of the form {xe X: m(x) — r} for some re R. The function e =
\/{p As: pe P) belongs to P (where r < s) and so {x: e(x) ̂  r} = B is
a closed set. Moreover, i? is irreducible for if it is the union of
closed proper subsets B19 B2 then

r if x e Bi
.- * (i = 1, 2)

s lίxίBi
satisfy Λ Λ Λ - e e P J ^ P , / ^ P. Finally, if / 6 I(r, 5), then / =
Vί/ Λ p: peP}eP and we conclude P = J(r, B).

The symbol J>^ will be used from now on to denote the set of
closed prime ideals in LR. For a given Pe,3Γ the irreducible set A
such that P = /(r, A) will be called the carrier of P and for elements
P, Q 6 J5̂ ~ we define P ~ Q to hold iff P and Q have the same carrier.
The relation thus defined is evidently an equivalence relation and it
will be of importance to know that this relation can be characterized
in terms of the lattice structure of LB{X) without reference to X.
For this purpose we make the following definition. An ideal /(r, A) e
3Γ is called quasi-minimal if {Pe K: Pa /(r, A)} forms a chain under
the relation c .

LEMMA 4.

(a) An ideal I(r, A) e 3ίΓ is quasi-minimal iff A is maximal
irreducible.

(b) For quasi-minimal ideals the relation I(r, A) c I(s, B) holds iff
r <; s and A = B.

Proof. The elements Pe.'yΓ with P c ί ( r , 4 ) are those of the
form I(r', B) where rf fg r and BID A. These elements form a chain
iff B = A holds. Thus (a) follows and (b) is an immediate consequence.

Notice that P ~ Q can hold only if P c Q or Q c P. So in order
to obtain the desired characterization of the relation ~ it is enough
to consider comparable ideals.

LEMMA 5. Let P,Qe,3Γ satisfy PaQ. Then P~Q holds iff
there exists a pair of quasi-minimal ideals J19 J2e .sf such that

J, c J2, JiCPD J2 and PVJ2 = Q ,

where P V J2 = {fVg: f e P, ge J2}.

Proof. If P - Q with PaQ, then P - I(r, A), Q = I(s, A) for
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some r < s. A standard application of Zorn's lemma shows that there
is a maximal set Me Stf such that Mi) A. Put Jx — /(r, M), Jz =
I(s, M). It is easy to verify that Jly J2 satisfy the requirements of the
lemma. Conversely, let us start with P = I(r, A) c J(s, B) = Q and
Ji = /(m, ilf), Ja = /(w, iV) as stated. From J, d P and P V J2 = Q
we deduce respectively MZDA and AnAΓ=J?. Using J1c:J2 and
Lemma 4 we conclude that M — N and hence A = B. This completes
the proof.

In view of Lemma 5 and the remark preceding it we have the
following important fact.

COROLLARY. The set Ω(LR) {or briefly Ω) of equivalence classes
ω(P) — {Q: P ~ Q} (Pe 3tΓ) is determined by the lattice structure of LR.

The topological space Ω(JLR\ Our next undertaking is to introduce
a topology in the set Ω. We do this by specifying a subset ΣCLΩ to
be closed iff it has the following property: if P, Qt e <5ίΓ (te T) are
such that PzDf\teτQtΦ 0 holds where each Qt belongs to some σe Σ,
then (o(P) e Σ. This is reminiscent of the hull-kernel topology encoun-
tered in commutative ring theory.

THEOREM 6. The topological space Ω(LR) is determined by the lattice
structure of LR(X). It is a pc-space, homeomorphic to the space πX.

Proof. It will be shown that Ω can be put in a 1—1 corres-
pondence with the pc-space πX in such a way that the sets called
closed above correspond to the closed subsets of πX. We note first
of all that, by definition, a class o)(P) e Ω consists of all ideals Q e 5ίΓ
which have a common carrier. Thus by putting

I(A) - {I{r,A): reR}

we obtain a 1 — 1 correspondence between the elements A e πX and
the elements I(A) e Ω. Let us now consider an arbitrary subset Σ =
{I(A):Ae ^}{S^c:πX)oίΩandanγI{s,B)e JϊΓ. Then/(s, B)z>nteτl{rt,
At) Φ 0 holds for some family {I(rt, At): te T} with all Ate&* iff
B c cl U Sf. Indeed, if B <£ cl (j S? and / e Π teτ I{ru At) holds with
all At e S^, then either f£l(s, B) or any function g such that g(x) =
s' V f(x) (s' > s) when xeX\c\\JteτAt and which agrees with / on
<A\JteτAt satisfies gef[tI(rt, At) and g$I(s,B); and if Bczcl{j<9*
holds then I(s, B)i) f) {I(s, A): Ae S^} Φ 0 clearly holds. We conclude
that Σ is closed in Ω iff it is the image of some closed set £f c πX
under the mapping A —• I(A). Hence Ω is homeomorphic to πX. That
the topological space Ω is determined by the lattice LR is clear from
the corollary to Lemma 5 and the definition of closed sets in Ω: only
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the lattice structure of LR is used to define it.

COROLLARY 7. If X is a pc-space, then X is homeomorphic to Ω(LR)
and is therefore determined by the lattice structure of LR(X).

This follows at once in view of Theorem 6 and the known fact 1(6).

Remarks on the lattice LH(X). We will now turn our attention
to the sublattice LH{X) of LR{X). The results proved above for LR(X)
all remain valid if LH is substituted for LR and some minor adaptations
are made, the most important of which is to restrict the variable r
in the ideals I (r, A) to the interval 0 < r < 1. As a matter of fact, the
theory for LH(X) can be simplified by using prime elements (i.e. those
g e LH such that g < 1 and g — u A v only if g — u or g — v) rather
than closed prime ideals. This will be clear from the following fact.

PROPOSITION 8.

(a) g G LH is prime iff g is of the form erA where erA(x) — r when
x e A and erA(x) — 1 when x e X\A (0 < r < 1 and A e J^f).

(b) Every closed prime ideal in LH is of the form {/: / ^ erΛ}.

The proof is very much like that of Proposition 3 and is therefore
omitted.

By using equivalence classes of primes in LH one can now prove
as for LR that the lattice LH determines a topological space Ω{LH)
which is homeomorphic to πX and hence to X whenever X is a £>c-space.

We now consider some properties of LΠ which are not included
in the theory presented for LR.

PROPOSITION 9.

(a) The lattices LH(X) and LH(πX) are isomorphic.
(b) For a given X the lattices L(X) and ^(X) determine each other.
(c) If X is a TD-space, then it is determined as such by the

lattice LH{X).

Proofs, (a) The mapping / —> fπ (see l(c)) is easily seen to be
an isomorphism of LH{X) onto LH{πX).

(b) If the lattice LH(X) (resp. C^(X)) is known then πX is known
and thus also the lattice i f (πX) = ^(X) (resp. LH{πX) = LH{X)).

(c) The lattice LH{X) determines the lattice ^{X) which deter-
mines X as a TVspace.

Let us give an example to show that 9(a) is not valid for LR{X).
If X is the subspace (0, 1) of Ru then πX is the subspace (0, 1] of i?z.
In the case of both X and πX there is just one maximal irreducible
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set namely the whole space. Thus the quasi-minimal ideals in both
LR{X) and LR{πX) are the principal ideals {/: / ^ r} of the constant
functions (see Lemma 4(a)). Now every / in LR(πX) attains a maximum
value /(I) and so every feLB(πX) belongs to some quasi-minimal
ideal. This cannot hold for LR{X) which clearly contains functions
unbounded above. The two lattices are therefore not isomorphic.

There is in fact a class wider than the pc-spaces such that the
lattice LR(X) determines X whenever X belongs to this class. This
will be discussed in a later paper. L. D. Nel and R. G. Wilson, Epi-
reflections in the category of T0-spaces (to appear in Fund. Math.).

Remarks on the lattice LΣ{X). The method used above to prove
that the lattices LR{X) and LH{X) determine pc-spaces cannot be
applied to Lj(X). Theorem 2, Propositions 3 and 8 remain valid for
L7(X) but Lemma 4(a) fails (and therefore all further results based
on it). It fails because in the case of L^X) there are two types of
quasi-minimal ideals, namely those of the form 7(0, A) for non-maximal
A e J^ and those of the form I(r, A) for 0 < r < 1 and maximal A e
Szf. There appears to be no lattice theoretic method of distinguishing
between these types.

It seems plausible nevertheless that LZ(X) should determine X
whenever it is a pc-space. A settlement of this open question should
be interesting.
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