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DEGREES OF MEMBERS OF Π\ CLASSES

CARL G. JOCKUSCH, J R . AND ROBERT I. SOARE

This paper deals with the degrees of members of Π\ classes
of sets or function which lack recursive members. For in-
stance, it is shown that if a is a degree and 0 < α | 0', then
there exists a 77? class of sets which has a member of degree
a but none of degree 0. By way of contrast there is no Π\
class of functions which has members of all nonzero r.e.
degrees but no recursive members. Furthermore, each non-
empty Π\ class of sets has a member of r.e. degree but not
necessarily of r.e. degree less than 0 ;. As corollaries results
are derived about degrees of theories and degrees of models
such as: (1) There is an axiomatizable, essentially undecidable
theory with a complete extension of minimal degree; (2) (Scott-
Tennenbaum): There is a complete extension of Peano arith-
metic of degree 0 ; but none of r.e. degree < 0'; (3) There is
no nonstandard model of Peano arithmetic of r.e. degree < 0'.
The recursion theorem is applied to yield new information
about standard constructions such as Yates' simple non-
hypersimple set of given nonzero r.e. degree.

We now turn to definitions and notation. Let N be the set of
natural numbers. A function is a mapping from a subset of N into
N, and a total function is a mapping from N into N. A class is any
collection of total functions. A class is called special in case it is
nonempty and has no recursive member. Two classes are called
degree-isomorphic if there is a one-to-one correspondence between them
which preserves (Turing) degree.

A theory is any deductively closed set of sentences in a countable
language. We often view theories as sets of numbers via Godel-
numbering.

A string is a function whose domain is a finite initial segment
of N. If / is a function and j e N, we define [f]3 to be the restriction
of / to {k: k < j}. Thus if / is total, [/]y is a string for all j . If
S is a set of strings, we define S* to be the class of total functions
/ such that [f]3 € S for all j e N. If S is a recursive set of strings
(under some Gδdel numbering), S* is called a 77J — class. Any Π[ class
may be put in the form Γ*, where T is a recursive set of strings
closed under initial substring, i.e., a recursive tree. Then T* may
be viewed intuitively as the class of all infinite paths through the
tree T.

A class is called recursively bounded if there exists a recursive
function which majorizes all of its members. (We say g majorizes f
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if g(ri) ̂ > f(n) for all n e N.) We identify sets with their charac-
teristic functions so that any collection of sets is a recursively
bounded class. In the converse direction, every recursively bounded
Π[ class (of functions) is degree-isomorphic to a Π[ class of sets.
This may be proved by a simple coding argument or by appeal
to [4, Proposition 6.5] where it is shown that every recursively
bounded 77J class is degree-isomorphic to the class of complete exten-
sions of some axiomatizable theory. Thus, for our purposes, there is
no essential distinction between recursively bounded 77J classes and
771 classes of sets.

If A is an infinite set, the principal function of A (denoted pA)
is the total function which enumerates A in increasing order. For
sets Ay B the notation A^TB means that A is recursive in B, and
similarly for functions. We assume a standard indexing and enumera-
tion of all r.e. sets. The eth r.e. set is denoted We and the finite
subset of We enumerated after s steps is denoted W%

In general, there is a strong distinction between recursively
bounded 77? classes and arbitrary 77? classes, but the first theorem
indicates a point of similarity.

THEOREM 1. For any special Π\ class S^ there is a special
recursively bounded Π\ class ^~ such that {f: fe 6^} £ {f: fe ^Γ),
where f denotes the degree of f.

Proof. Let us say that a string has type 1 if its range is con-
tained in {0, 1} and type 2 if its range is disjoint from {0, 1}. Clearly
there is a recursive set T2 of strings of type 2 such that T2 is
degree-isomorphic to 6^. Let ϊ\ be any recursive set of strings of
type 1 such that T* is a special 77? class of sets. (For instance, Tf
could be the class of complete extensions of some axiomatizable essen-
tially undecidable theory [14].)

If σ, τ are strings, we write σ * τ for the string obtained by
viewing σ and τ as finite sequences and then concatenating them. If
σ*τ is a string, σ may be "factored" as follows:

where for 1 ^ i ^ n, σ{ is of type 2 and τ{ is of type 1. To make
the factorization unique we also require that at most cr:, τn be empty
and n > 0. Now define t(σ) (the 1-tail of σ) to be τn and s(σ) (the
2-skeleton of σ) to be ^ * a 2 * ••• *σn.

We define T to be the set of strings σ such that
(i) t(σ)e Tx and s(σ)e T2

(ii) σ(n) g n + 1 for all n in domain of σ.
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We claim that if SΓ = Γ*, then ^~ satisfies the requirements
of the theorem. T* is clearly a recursively bounded Π\ class. To show
that T* has no recursive member it suffices to show that if / e T*
then there exists g e T? U T2* such that g <L τf (Recall that neither
T* nor T* has any recursive members.) Assume fe T*.

Case 1. {n: f(n) > 1} is infinite. Let g be the "2-skeleton" of /.
More precisely, let g = foh, where h is the principal function of {n:
f(n) > 1}. Then g <Zτf and ge T* because for each n there exists
k such that [g]n = s([f]k). Since [f]ke T for all k, [g]ne T2 for all n.

Case 2. {n: f(n) > 1} is finite. Let g be the "1-tail" of/. More
precisely, let % be the least number j such that f(i) e {0, 1} for all
ί^j and define g(n) = f(i0 + n) for all n. Then g <£Γ/ and #e Γ*
because for each n there exists & such [#]TO = t([f]k). This completes
the proof that T* has no recursive member. It remains to show that
if ge T2*, then T* has a member / of the same degree as g. Given
ge T2*, let / be a function in T* whose 2-skeleton (as defined in Case
1) is gr. The function / is constructed by viewing g as an infinite
sequence and inserting between each pair of consecutive terms a
sufficiently long string from Tι to insure f{n) <£ n + 1. This is possible
because ϊ\ is an infinite set of strings of type 1. Since the 2-skeleton
of/ is g, g^τf. Also f^τQ assuming the strings from Tx used
to construct / are chosen in an effective manner. Thus g is the
desired function in T* of the same degree as /, so the proof is
complete.

COROLLARY 1.1 If a is a degree and 0 < a ^ 0', then a is the
degree of a member of some special recursively bounded Π\ class.

Proof. It is shown in [3, Theorems 4.10 and 4.13], that if 0 <;
a ^ 0' then a contains a function / such that {/} is a Π\ class. The
Corollary follows from this and the Theorem.

COROLLARY 1.2 There is an axiomatizable, essentially undecidable
theory which has a complete extension of minimal degree.

Proof. Since by [4, Proposition 6.5] each recursively bounded
Π\ class is degree-isomorphic to the class of complete extensions of
some axiomatizable theory, the Corollary follows from Corollary 1.1
and the existence of a minimal degree below 0' [10, Theorem 1].

According to a result of Scott and Tennenbaum [13] the theory
in Corollary 1.2 cannot be Peano arithmetic. In fact it is shown in
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[4, Corollary 4.4] that if a is the degree of any complete extension
of Peano arithmetic, then any countable partially ordered set can be
embedded in the degrees < a.

The following Corollary extends Theorem 1.

COROLLARY 1.3 For any special Π\ class S^ there is a special
recursively bounded Γi\ class J7~ such that {f: f e 6^\ £ {f: / e J7~}
where f denotes the degree of f.

Proof. By [3, Theorem 3.1] each Π°2 class is degree-isomorphic to
some 77° class.

It is not possible to extend Corollary 1.3 by replacing Π\ by Πl.
This is because by [16, p. 691] the class of all nonrecursive functions
is Π°3 while the class of all functions Turing equivalent to any member
of a special Π\ class is meager, i.e. of first category [4, Theorem 5.1].
In fact by using the effectiveness of the proof of [4, Theorem 5.1]
one may show that there is a degree a such that 0 < a <̂  0" and no
member of any special Π\ class has degree α. Therefore 0' cannot
be replaced by 0" in Corollary 1.1.

We now develop notation for functionals which will be useful in
the proof of the next theorem. In this we are essentially following
Lachlan [5, pp. 537-538], and we refer the reader there for the
definitions omitted here. A functional is a mapping from the set of
all functions into itself. If Φ is a functional and / is a function, we
write Φ(f; n) for the value (if any) of the function Φ(f) at argument
n. We assume that {Φs

e} is an s.r.e. double sequence of finite func-
tionals such that for each e, Φs

e is increasing in s with limit denoted
Φe, and every partially recursive functional is Φe for some e.

In a sense, the next theorem contrasts with Corollary 1.1, because
it shows that there is no single special Π[ class of functions suffici-
ently large to have members of all degrees α, 0 < a ^ 0'.

THEOREM 2. If ^ is a special Π\ class of functions, then there
exists a nonzero r.e. degree a such that & has no member of degree ̂  a.

Proof. Let ^ be T*, where T is a recursive tree. We must
construct a nonrecursive r.e. set A such that for no e is Φe(A) e Γ*.
Let As be the finite subset of A enumerated by the end of stage s
of the construction. In order to arrange Φe(A) $ T* we follow the
method of Sacks [11, §5, Theorem 1]. That is, we attempt to
preserve information about As which forces a long initial subfunction
of Φs

e{As) to be in T. Although at first glance this appears to be
just the opposite of what one should do, it has the desired effect
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because if Φe(A) were in T*, the values of Φs

e(As) would be so well
preserved that Φβ(A) would be recursive, in contradiction to the
assumption that Γ* has no recursive member. To insure that A is
nonrecursive, we make A simple as in [8, §5]

We now define three binary recursive functions p, q, r.

p(e, s) = max{w: n <: s & [Φs

e(As)]n e T)

q(e, s) = min{j: Φs

e([As]3) n) is defined for all n < p{e, s)}

r(e, s) = max{g(β, s') : s ' ^ s}

To see that p(e, s) is defined for all e and s, observe that we
may assume without loss of generality that the empty string is in T.
It then follows easily that q(e, s) and r(e, s) are also defined. In the
construction all numbers < r(e, s) will be prevented from entering
A s+1 (in order to insure Φe(A) $ T* as described previously) unless
such a number can be used to make Wit1 Π As+1 Φ 0 for some ef <
e. More precisely, the construction is as follows:

Stage 0. Let A0 = 0 .

Stage s + 1. Let es+1 be the least number e ^ s such that We

s Π
As — 0 and Wl contains a number u ^ max({r(e', s): er ^ e) U {2β}).
Let As+1 = As U {u}, where u is the least such number for e = e8+1.
(If es+1 does not exist, let As+1 = A\)

The construction is effective, so A is r.e.

LEMMA 2.1. iVo function in T* is recursive in A.

Proof. Assume, for a contradiction, that Φe{A) e T* (and thus
Φe(A) is a total function.)

Then it follows from the continuity of Φe that lims p(e, s) = oo.
We claim now that Φe(A) must be recursive. Let ί be a stage such
that for all e' < e, if We, n AΦ 0 , then W\, {Λ A1 Φ 0 . Thus for
all 8 > ί, either es is undefined or es ^ β. To compute Φe(A; n) effec-
tively, find a number sw ^ ί such that ^ < p(e, sn). Note that Φe(ASn;
n) is defined because n<p(e, sn). We claim in fact that Φe(ASn; n) =
Φe(^4; ^ ) . To show this it suffices to prove that no number u < q(e, sn)
enters A after stage sw. But if u e As+1 — As and s + 1 > sn, then βs+1 ̂  β
and so % ̂  r(β, 8) ̂  q(e, sn) by the construction. Since Φe(ASn; n) is
effectively computable from n, it follows that Φe(A) is recursive.

LEMMA 2.2. For fixed e, r(e, s) is bounded over all s.

Proof. Let % be the least number such that [Φe(A)]% ί T. (Such
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a number exists by Lemma 2.1). Let t be as in the proof of Lemma
2.1. By almost exactly the same argument as for Lemma 2.1 one
may show, using the assumption that [Φe(A)]n £ T, that p(e, s) <^ n
for all s ^ t. By choice of n, Φe(A; n') is defined for all n' < n.
Choose a number j such that Φe([A]y; n') — Φe(A; nf) for all nf < n.
Thus if s is sufficiently large OJ[AB\s

m

f n') is defined for all n' < n and
hence for all nf < p(e, s). Then it follows from the definition of q
that q(e, s) ^ j for all sufficiently large s and in turn from the definition
of r that r(e, s) is bounded over all s.

LEMMA 2.3. A is simple.

Proof. Since each r.e. set We "contributes" at most one member
u ^ 2e, A contains at most e elements ^ 2e and the complement of
A is infinite, just as for Post's simple set [8, §5]. Fix a number e.
Let j be the largest of the numbers r(e\ s) over all ef ^ e and all
s. The bound j exists by Lemma 2.2. Then if s i> t (where t is
as in Lemma 2.1) and Ws

e contains a member ^ max{i, 2e}, then
Ws

e

+1 Π A Φ 0 by the construction. Hence if We is infinite then
WeΓ\ Aφ 0. This completes the proof of the theorem.

In Theorem 2 we proved in particular that no special Π\ class
has members of all nonzero r.e. degrees. On the other hand, we now
show that if such a class is recursively bounded, it must have a
member of some r.e. degree.

THEOREM 3. If ^ is a nonempty recursively bounded Π\ class
of functions, & has a member of r.e. degree.

Proof. Let f0 be the least member of & in the lexicographic
ordering of functions by first differences. (Since & is closed and
nonempty, /0 exists.) Let & = T*9 where T is a recursively bounded
recursive tree. Clearly f0 = τ B, where B is the set of nodes on T
which strictly precede f0 in the lexicographic ordering. To see that
B is r.e. note that the set C of nodes of T not extendible to functions
of T* is r.e. because T is recursively bounded. If lh(σ) = lh(τ), let
τ < σ denote that τ lexicographically precedes σ. Since

B = {σ: σ e C & (Vτ)[τ e T & lh(σ) = lh(τ) & τ < σ => τ e C]}

and since T is recursively bounded, B is r.e.
Conversely to Theorem 3, for every nonrecursive r.e. set B there

is a special Π\ class of sets whose lexicographically least element /0

has the same degree as B.
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In [14, Theorem 2] Shoenfield proved that every nonempty re-
cursively bounded Π\ class has a member of degree a < 0'. In view
of this and Theorem 3 it is natural to conjecture that every nonempty
recursively bounded Π\ class has a member of r.e. degree < O' We
now refute this conjecture.

THEOREM 4. There is a nonempty recursively bounded Π\ class
&> such that if a is the degree of any member of & and b is an
r.e. degree and a ^ 6, then b = 0\

Before proving Theorem 4, we give a definition and a lemma. A
set A is called effectively immune in case A is infinite and there is a
recursive function g such that for all e, if WeS A then | We\ < g(e),
where \We\ is the cardinality of We. (This definition is essentially
due to Smullyan [17].) In [6], Martin proved that every r.e. set
with effectively immune complement has degree 0'. The following
lemma, which is an easy extension of his result, will immediately
yield Theorem 4.

LEMMa 4.1. If A is effectively immune, B is r.e., and A ^ TB,
then B has degree 0\

Proof. We only outline the proof, since it is mostly a repetition
of Martin's argument in altered format. From the assumptions that B
is r.e., A is infinite, and A ^ TB it is easy to show as in [15, Theorem
2] that there is a recursive sequence of recursive functions {an} such
that limnan = pA (where pA is the principal function of A) and {an}
has a modulus recursive in B. (cf [15, Theorem 2].) Assume that g
is a recursive function such that if WecA, then | We\ < g(e). Let C
be any r.e. set. We shall prove C ^ TB. Fix an enumeration of
C and let Cs be the finite subset of C obtained after s steps. Given
a number e, define an r.e. set Wh(e) as follows. If eeC, let s(e) =
μs{eeCs). Then let Wh{e) be the range of [ocs{e)]gh{e). If e$C, let
Wh{e) = 0 . Note that h(e) enters (circularly) into the definition of
Wh{e), but this may be justified by the recursion theorem. Also we
may assume that h is recursive.

Let r(e) be a number such that for i ^ r(e), [oCi\gh{Λ) = [pA]Ohw
In particular, if eeC and s(e) ̂  r(e), then Wh{e)ciA and |TΓΛ(β,| =
gh{e), which is impossible. It then follows that

eeC<—>eeCr{e)

for all e.
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However r(β) may be found recursively in B because g and h are
recursive and {αj has a modulus recursive in B. Thus the above
equivalence shows that C ^ TB, and the proof of Lemma 4.1 is
complete.

Proof of Theorem 4. Let S be Post's simple, nonhypersimple set
[8, §5]. As Smullyan [17, p. 893] observed, S is effectively immune.
Let {Df{k)} be an s.r.e. sequence of pairwise disjoint sets all intersect-
ing S. Let

^ = {E: EdS and (Vk)[Df{k) f] E Φ 0]} .

Then & is easily seen to be a nonempty Π\ class of sets con-
taining only effectively immune sets. Theorem 4 now follows from
Lemma 4.1.

COROLLARY 4.2. There is a degree a such that
only r.e. degree ^ α is 0'.

Proof. Let & be the nonempty recursively bounded Π\ class
of Theorem 4. Then by [4, Theorem 2.1], & has a member of
degree a such that α' = 0'.

In [19, p. 270] Yates proved that there is a degree α < 0' such
that the only r.e. degrees comparable with a are 0 and 0'. It is
easy to modify his proof so that α' = 0' also and thus obtain a
different proof of Corollary 4.2. On the other hand, we have been
unable to modify our proof of Corollary 4.2 to obtain Yates' result.
What we lack is a proof of the following conjecture.

Conjecture. Every special recursively bounded Π\ class & con-
tains a member of some degree a < 0', such that the only r.e. degree ^
a is 0.

(If 0' is replaced by 0", the conjecture follows from [4, Corollary
2.11]).

We now apply Theorem 4 to Peano arithmetic. Considerable
further information along these lines may be found in [4].

By the degree of a countable model M we mean the degree of a
set which encodes the elements and relations of the model. It is
well-known that Peano arithmetic has no recursive nonstandard
models. (The standard model is of course recursive.) The proof given
in reference [1, p. 48] establishes more. Namely,

REMARK. If M is any nonstandard model of Peano arithmetic,
and & is any nonempty recursively bounded Π\ class, then & con-
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tains a member recursive in M.
Scott [12, p. 118] has observed that if T is any complete extension

of Peano arithmetic, then the above remark holds with T in place of
M. Finally, one can replace "complete extension" by "consistent
extension" since it is easy to see that if T is any consistent extension
of Peano arithmetic then there is a complete extension T recursive
in T [4, Proposition 6.1] If we let & be the special Π\ class of
Theorem 4, these observations yield:

COROLLARY 4 3. If a is the degree of any consistent extension or
nonstandard model of Peano arithmetic, and b is an r.e. degree such
that a <£ 6, then b = 0\

In [13] Scott and Tennenbaum announced that no complete ex-
tension of Peano arithmetic can have r.e. degree < 0'. This result,
which of course is a consequence of Corollary 4.3 can also be used
to refute the conjecture made just before Theorem 4.

COROLLARY 4.4. (Scott-Tennenbaum [13]). There is a complete
extension of Peano arithmetic of degree 0\

Proof. Let S? be the class of all complete extensions of Peano
arithmetic. Then & is a nonempty Π\ class of sets, so by Theorem
3, &" has a member of r.e. degree 6. It follows from Corollary 4.3
that b = 0\

In [13], Scott and Tennenbaum actually announced the stronger
result that if α ^ 0', then there is a complete extension of Peano
arithmetic of degree a. This result can be obtained by first using
the Friedberg completeness criterion [9, p. 265] to obtain a degree 6
such that b' — a and then relativizing Theorem 3 and Corollary 4.3
to 6 with the aid of the two results of Scott stated on [12, p. 118].

All of the results we have obtained here for Peano arithmetic
apply as well to any theory in which the provable and refutable
formulas are effectively inseparable, such as ZF set theory (cf [4],
Proposition 6.1 or 6.4).

We close with an extension of Theorem 4 in which 0' is replaced
by an arbitrary r.e. degree c. The proof is similar to the former
except that Post's simple set is replaced by Yates' simple, nonhyper-
simple set of degree c for c Φ 0 [20, Theorem 2]. An additional
difficulty arises in the proof, however, and to overcome it we introduce
a method which yields new information about results of Yates and
Martin as we discuss at the end of the proof.

THEOREM 5. If c is any r.e. degree, there is a recursively bounded
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ΐl\ class & such that the r.e. degrees of members of & are precisely
the r.e. degrees ^ c.

Proof. Assume c Φ 0 (else the theorem is obvious) and let A be
an r.e. set of degree c. Following Yates [20, Theorem 2], let A =
range /, where / is a 1 — 1 recursive function. At stage s, for each
e 2* s, if We

s Π Bs — 0 and W7 contains a number ue >̂ max {2e, /(s)}
place the least such ue into B s + 1 . It follows that B is simple, non-
hypersimple, and B^TA. Construct & as in the proof of Theorem
4 with B in place of S. Yates then constructs his simple set S as
the join of B and a hypersimple set of the same degree as A to
insure that A ^ τ S. The following lemma shows that this is un-
necessary since automatically A ^ τ B.

LEMMA 5.1. If C is an r.e. set and D is an infinite subset of
B and D ^TC, then A ^τ C.

Proof. As in the proof of Lemma 4.1 there is a recursive se-
quence of recursive functions {an} such that limw an — pD, the principal
function of D, and {an} has a modulus recursive in C. Given e, let
s(e) = μs[e = f(s)] ifeeA. Define Wh(e) to be the range of [as{e)]2h{e).
(If e$ A, let Wh{e) - 0.) Let r(e) be so large that [aJ2 A ( e ) = [Pz>]2Λ(e)

for all £ ̂  r(e). Such r can be found recursively in C because {an}
has a modulus recursive in C

We cannot argue as in Lemma 4.1 that ee A iff ee Ar{e) since if
s(e) > r(e) we can only conclude that Wh[β), not Wζ\e

e], has a member
u ^ 2h(e). Thus we must define,

i = { e : e e i - Ar{e)] .

Case 1. JL is finite. Then clearly A^TC.

Case 2. A is infinite. Clearly A is r.e. in C. Let k be a given
number. Find e e A such that 2h(e) > k. This e exists because A is
infinite and we may assume that h is 1 — 1. Also e may be found
recursively in C because A is r.e. in C. Let sk be a stage such that
8k ^ Λ(e) and Ws

h

k

{e) contains a number u ^ 2Λ(e). (T7A(β, has such a
M because e e i implies that s(e)^r(e).) Then M (or some v^u)
will be used in the construction to make Wh(e)ΠBΦ0, unless
f(s) Ξ> u(> k) for all s ^ sfc. This must be the case because Wh{e) S
D s JB since e 6 A. Thus,

/b e A <—> keAs*.

Since sk can be found recursively in C, uniformly in fe, A ^ Γ C
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Remark. The division of the above proof into two cases makes
the argument nonuniform. This lack of uniformity may be avoided
by an application of the recursion theorem to slightly modify Yates'
construction [20, Theorem 2] so that A must be empty.

By Lemma 5.1, the r.e. degrees of members of & are all above
c. We complete the proof of Theorem 5 by establishing the converse.

LEMMA 5.2. Given any degree a ^ e, there is a member A e &
of degree a.

Proof. Let B be as above, and assume that the strong array
{Df{n)}nBN1 which witnesses the nonhypersimplicity of B, satisfies
I Df(n) Π BI ^ 2 for all n. Choose a set At of degree α, and find A e
& such that A^τ Ax and \Df{n) Π A\ = 1 iff neAx. Clearly A has
degree α, so the proof of Theorem 5 is complete.

Frequently in recursion theory, one constructs an r.e. set S having
some property P and recursive in a given nonrecursive r.e. set A by
enumerating elements in A for the sake of P only when A "permits",
i.e., only when a sufficiently small element is enumerated in A. This
clearly guarantees that S ^TA, but the method of Lemma 5.1 some-
times insures that A ^ τ S also. For example, by the "permitting"
method Yates [20, Theorems 1 and 2] constructs a simple set and a
semicreative set each recursive in a given nonrecursive r.e. set A,
while Martin [7, Theorems 2 and 4.1] constructs a maximal set and
an r.e. set with no maximal superset each recursive in a given dense
simple set A. Yates and Martin also code A into the constructed
set S, so that A^TS. By applying the recursion theorem as in
Lemma 5.1, one can show that the latter is unnecessary, since in
each case automatically A^TS. In the case of Martin's maximal set
construction this saves considerable work as is shown in [2].

These observations suggest a "maximum degree principle" which
asserts that if an r.e. set S is constructed with weak "negative re-
quirements" it automatically has degree 0' and if S is constructed
recursive in A by Yates' method then A ^TS automatically. Although
most finite injury priority constructions of an r.e. set S can be com-
bined with Yates' method to produce S^TA, a given nonrecursive
r.e. set [18, Theorem 3], it rarely happens that A ^TS automatically
unless the negative requirements of the original construction are ex-
tremely weak. For example in the original Friedberg-Muchnik con-
struction of incomparable r.e. degrees α, 6, one automatically gets
a U 6 = 0', but when the incomparable r.e. degrees α, b are constructed
below a fixed nonzero r.e. degree c by Yates' method, one does not
automatically get a\Jb — c [18].
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