TWO BRIDGE KNOTS ARE ALTERNATING KNOTS

R. E. Goodrick

Abstract

H. Schubert introduced a numerical knot invariant called the bridge number of a knot. In particular, he classified the two-bridge knots and proved that they were prime knots. Later, Murasugi showed that if K is an alternating knot then the matrix of K is alternating. The latter is true of twobridge knots. The purpose of the following is to give a somewhat unusual geometric presentation of two-bridge knots from which it will be seen that they are alternating knots.

By a knot we will mean a polygonal simple closed curve in E^{3}. Let C denote the unit circle in the $x y$ plane and f a homeomorphism from C to a knot K. We will assume that K is in a regular position with respect to a projection into the $y=0$ plane [1] and that those points of K which do not have unique images will be the crossing points of K. Let $f^{-1}\left(a_{1}\right), f^{-1}\left(a_{2}\right), \cdots, f^{-1}\left(a_{2 n}\right)$ be the points of C ordered clockwise where a_{1} are the crossing points of K. If K has a presentation with an associated f such that a_{i} is an overcrossing point if and only if i is odd, then K is said to be an alternating knot. By a twobridge knot we mean a nontrivial knot in E^{3} which can be represented by two linear segments through a convex cell and two arcs on the boundary of the cell.

Theorem 1. If K is a two-bridge knot, then K is an alternating knot.

Proof. We will start with K in a two-bridge representation (Fig. 1a) and apply several space homeomorphisms to E^{3}, so that the resulting representation of K is described by an arc 'monotonely' approaching the center of the cube and four linear segments (Fig. 1b). The proof

will be completed by proving a lemma that shows that this representation is an alternating representation.

First assume that the knot K is respresented by two arcs $A_{i}=$ $\{(x, y, z) \mid x=i / 3, y=1 / 2,0 \leqq z \leqq 1\}, i=1,2$, through the cube $I=$ $\{(x, y, z) \mid 0 \leqq x \leqq 1,0 \leqq y \leqq 1,0 \leqq z \leqq 1\}$ and two connecting arcs on the boundary of I, i.e. B_{1} and B_{2}. Furthermore, we can assume that $B_{1} \cup B_{2}$ does not intersect the planes $y=0$ and $y=1$ (Fig. 2).

Figure 2.

Figure 3.

The first homeomorphism h_{1} will move the arc B_{1} to an arc starting at the boundary and monotonely approaching the center of I so that it will not cross itself (in the y direction). h_{1} will be constructed by the following five steps:
(1) Move B_{1} on the boundary of I, leaving the A_{i} fixed, so that no segment of B_{1} lies on the simple closed curve defined by (boundary of $I) \cap$ (the plane $y=1 / 2$).
(2) Define L to be the cone from the center of I to B_{1} and define O_{t} to be the annulus $\{(x, y, z) \mid \max (x-1 / 2, z-1 / 2)=1 / 2-t, 0 \leqq y \leqq$ $1\}, 0 \leqq t \leqq 1 / 2$.
(3) From (1) we have $L \cap\left(A_{1} \cup A_{2}\right)$ equal to a finite set of points. Hence define ε so that the interior of $\bigcup_{0}^{\&} O_{t} \cap L$ contains no point of $A_{1} \cup A_{2}$.
(4) Let x_{1}, \cdots, x_{m} be the vertices of B_{1} ordered from A_{1} to A_{2}. If $1 \leqq k \leqq m$, let x_{k}^{\prime} be the point common to $O_{k \varepsilon / m+1}$ and the linear segment joining x_{k} to the center of I and let $x_{m+1}^{\prime}=O_{\varepsilon} \cap A_{2}$.
(5) $L \cap \bigcup_{0}^{\varepsilon} O_{t}$ is a disk whose intersection with K is B_{1}. Hence the vertices $x_{1}^{\prime}, x_{2}^{\prime}, \cdots, x_{m}^{\prime}, x_{m}^{\prime}, \cdots, x_{1}$ determine a simple closed curve which bounds a disk in $\bigcup_{0}^{\varepsilon} O_{t}$ whose intersection with K is B_{1}. Move B_{1} to $x_{1}, x_{1}^{\prime}, \cdots, x_{m}^{\prime}, x_{m}$ without moving $A_{1} \cup A_{2} \cup B_{2}$. Then move $x_{m+1}^{\prime} x_{m} x_{m}^{\prime}$ to the segment $x_{m+1}^{\prime} x_{m}^{\prime}$ without moving the rest of K (Fig. 3).

The points of $h_{1}\left(B_{1}\right)$ approach the center of I in the sense that if $x_{i}^{\prime}, x_{j}^{\prime}$ are vertices of $h_{1}\left(B_{1}\right)$ such that $i<j$ and $x_{i}^{\prime} \varepsilon O_{t_{i}}, x_{j}^{\prime} \varepsilon O_{t_{j}}$, then $t_{i}<t_{j}$. Hence if $h_{1}(K)$ is projected in the y direction, $h_{1}\left(B_{1}\right)$ will not cross itself.

As $h_{1}(K) \cap$ (boundary of $\left.I\right)=B_{2} \cup\left|x_{1}\right|$, we can find a homeomorphism h_{2} such that h_{2} is fixed on $A_{1} \cup\left\{A_{2}-\left|x_{m+1}^{\prime}, x_{m}\right|\right\} \cup h_{1}\left(B_{1}\right)$ and h_{2} takes B_{2} to an arc on the simple closed curve formed by (boundary of I) \cap (plane $y=1 / 2$).

Next, we will define a homeomorphism h_{3} which will move $h_{1}\left(B_{1}\right)$ so that the crossings of $h_{3}\left(h_{1}\left(B_{1}\right)\right)$ will alternate with respect to a projection in the $y=0$ plane and $h_{3}\left(h_{1}\left(B_{1}\right)\right)$ will still approach the center of I monotonely. Let $\mathrm{b}_{1}, b_{2}, \cdots, b_{r}$, be the crossing points of $h_{1}\left(B_{1}\right)$ ordered from A_{1} and let $E_{1}=A_{1} \cap\{(x, y, z) \mid z \geqq 1 / 2\}, E_{2}=A_{1} \cap$ $\{(x, y, z) \mid z \leqq 1 / 2\}$, and $E_{3}=A_{2}-\left[x_{m}, x_{m+1}\right]$. A two valued function g may be defined on $\left\{b_{i}\right\}$ so that $g\left(b_{i}\right)=0$ if b_{i} is an over-crossing and $g\left(b_{i}\right)=u$ if b_{i} is an undercrossing (in the y-direction). Assume that two successive values of g are equal and then there are essentially two cases; i.e., case a, b_{i} and b_{i+1} both lie above (or below) E_{1}, E_{2}, or E_{3}, and case b, b_{i} lies above (or below) E_{l} and b_{i+1} lies above (or below) E_{k} with $l \neq k$.

If case a holds, then there exists t^{\prime} and $t^{\prime \prime}$ such that $\mathbf{U}_{t^{\prime} \leq t \leq t^{\prime \prime}} O_{t}$ contains only b_{i} and b_{i+1} as crossings of $h_{2} h_{1}(K)$. There is an arc α, such that (1) $\alpha \subset \bigcup_{t^{\prime} \leq t \leq t^{\prime \prime}} O_{t}$ (2) α has endpoints $h_{1}\left(B_{1}\right) \cap O_{t^{\prime}}$ and $h_{1}\left(B_{1}\right) \cap O_{t}, 3$) α does not cross E_{1}, E_{2} or E_{3} and (4) α monotonely approaches the center of I. Let f_{i} be a space homeomorphism moving $h_{1}\left(B_{1}\right) \cap \bigcup_{t^{\prime} \leq t \leq t}, O_{t}$ to α and leaving $E_{1} \cup E_{2} \cup E_{3}$ and $E^{3}-\left[\bigcup_{t \leq t \leq t^{\prime \prime}} O_{t}\right]$ fixed (Fig. 4).

Figure 4.

Figure 5.

If case b holds, define $t^{\prime}, t^{\prime \prime}$, and α as above, except α will cross the third E segment once in the same way that $h_{1}\left(B_{1}\right)$ crosses the other two. Define f_{1} as a space homeomorphism taking $h_{1}\left(B_{1}\right) \cap$ $\bigcup_{t t^{\prime} \leqq t \leqq t^{\prime \prime}} O_{t}$ to α and leaving $E_{1} \cup E_{2} \cup E_{3}$ and $E^{3}-\left[\bigcup_{t t^{\prime} \leqq t \leq t^{\prime \prime}} O_{t}\right]$ fixed (Fig. 4).

Hence if $h_{2} h_{1}\left(B_{1}\right)$ is not alternating then there exists a sequence of $\left\{f_{i}\right\}$ such that $f_{i_{1}} f_{i_{2}} \cdots f_{i_{k}} h_{2} h_{1}\left(B_{1}\right)$ is alternating. Let $h_{3}=f_{i_{1}} f_{i_{2}} \cdots f_{i_{k}}$. Then $h_{3} h_{2} h_{1}(K)$ is alternating by the following lemma.

Lemma 1. Let K be a knot in regular position with respect to
the $y=0$ plane, and B a subarc of K such that (1) B does not cross itself, (2) every crossing of K has exactly one crossing point in B, and (3) the crossings of B alternate, then K is an alternating knot.

Proof. It can be assumed that $B=\{(x, y, z) \mid 0 \leqq x \leqq 1, y=0$, $z=0\}$ and B satisfies conditions (1) through (3). If K is not an alternating knot, then there are two successive crossings of K, b_{1}, b_{2}, such that both b_{1} and b_{2} are overcrossings (or undercrossings). Let A be the arc joining b_{1} and b_{2} which has no crossings in its interior (Fig. 6). As the crossings of B alternate, A cannot lie in B.

Figure 6.
A cannot contain both endpoints of B. If A contains neither endpoint of B, define C to be the simple closed curve containing A, the subarc B^{\prime} of B with endpoints below (above) b_{1} and b_{2}, and the two vertical segments joining b_{1} and b_{2} to their respective undercrossing (overcrossing) points. If K contains a single endpoint of B, define C to be the simple closed curve containing A, the subarc B^{\prime} of B containing one of b_{1} or b_{2} in its interior and having as endpoints the other b_{i} and the endpoint of B in A, and the vertical segment joining the b_{i} endpoint of B^{\prime} to A.

As the crossings of B alternate and b_{1} and b_{2} are both overcrossing points, there is an odd number of crossings on B^{\prime} between b_{1} and b_{2}, and hence an odd number of crossings on $C . C \cup K$ is the union of three simple closed curves, C, C_{1}, and $C_{2}\left(C_{2}\right.$ is possibly degenerate). But $C_{1} \cup C_{2}$ must cross C an even number of times, contradicting the fact that C is crossed an odd number of times.

References

1. R. Crowell and R. Fox, Introduction to Knot Theory, Ginn C., 1963.
2. K. Murasugi, On the Alexander polynomial of the alternating knot, Osaka Math.
J., 10 (1958), 181-189.
3. H. Schubert, Uber Eine Numerishe Knot. an invariante, Math. Z., 61 (1954), 254-288.
4. -_, Knoten Mit Zwei Brucken, Math. Z., 65 (1956), 133-170.

Received August 24, 1970.
California State College, Hayward

