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SOME RESULTS ON NEAREST POINTS AND SUPPORT
PROPERTIES OF CONVEX SETS IN c0

M. EDELSTEIN AND A. C. THOMPSON

The space c0 is shown to contain a closed and bounded
symmetric convex body such that no point of its complement
has a nearest point in it. Related results involving the
existence of functionals which support each member of a
family of convex sets are also discussed.

1* Introduction and preliminary results* It has been shown
in [3] that if X is a separable conjugate Banach space (i.e., if
X — E * where E is a normed linear space and X contains a countable
dense set) and if S is a closed, bounded set in X then, for every
nonnegative real number d, there exist x in X and s0 in S such that

d = \\χ — so\\ = inf{ | | a? — s\\: s e S} .

Further, it was shown that under the additional assumptions that the
unit ball in X and the weak* closed convex hull of S are both strictly
convex, the set of points in X admitting nearest points in S is weak*
dense in X. The aim of the present paper is to define more precisely
the relationship between these geometrical properties and the assump-
tion that X is a separable conjugate space. The paper is concerned,
for the most part, with the behaviour of c0 in this respect. As is
well known, this space is separable but not a conjugate space.

Our results show, first of all, that cQ belongs to the class N2

([4]), i.e., the class of those Banach spaces which contain a closed,
bounded convex set such that no point in its complement has a nearest
point in the set; thus correcting an oversight of Klee. In the third
section extensions of this result are presented in two directions.
Finally, it is shown that, in a certain sense, the geometry of c0 on
the one hand and that of separable conjugate spaces on the other,
are diametrically opposed; here we are indebted to V. L. Klee for
remarks (in a private communication) which led us in this direction.

We have tried to obtain results (one way or the other) about
m — a conjugate, nonseparable space—but have so far failed.

Before coming to the main theorem we give a preliminary pro-
position which relates various geometric properties.

PROPOSITION 1. Let X be a real normed linear space and C a closed,
bounded, convex set in X. Let N denote the set of points in X\C
which have a nearest point in C. Then the following are equivalent:
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( i ) N=φ;
(ii) if B is the closed unit ball and λ > 0 then XB + C is open;
(iii) if f e X*{fΦϋ) then either f(B) or f(C) is an open interval.

Proof. That (i) and (ii) are equivalent follows from Lemma 1 of
[3]. Now if NΦ Φ and aeN then, for some X > 0, (XB + a) Π C
consists of a convex, nonempty, subset D of the boundary of XB + a
so that a closed hyperplane exists which separates XB + a and C and
which contains D. It follows that (iii) implies (i). On the other hand,
if (iii) fails, i.e., if there exists a continuous functional which attains
either its inίimum or its supremum on B and C then a simple argu-
ment involving a translation of B (and possibly a reflection in the
origin) produces an a in JV (cf. also [4] p. 172) so that (i) implies (iii).

2* The space c0 is of class N2 ([4])*

THEOREM 1. There exists a closed, bounded, symmetric, convex
body S in c0 such that if / e c o * ( / ^ O ) then either f(S) or f(B)
{where B denotes the unit ball in c0) is an open interval.

Proof. Let x = (ζlf ξ2, ξ3, ) denote a typical element of c0.
Consider the following linear functionals and linear operators on cQ:

foe c0* = I, defined by / 0 - (2~2, 2~3, 2~4, , 2~(*+1), . . )

Tx = (ζ19 f3, ξ5, , <f2w-i, •)

Ux = (ξ2, ί3, f4, •••,£*+!, •••)

x = (ξkf, ξύ ξk<9 , ξk*n, . . . )

where

K = 2i~1(2n+ 1), (< = 1, 2, 3,

Let

and let

Since each gi is a continuous linear functional on c0, S is an intersec-
tion of closed half-spaces and, therefore, is closed and convex. More-
over, since | | δ 4 | | = | | P 4 | | = 2 | | / 0 | | = 1, if ||a;|| ^ ϊ then xeS. Also, if
| |α? | |>2, since there exists i such that |<^| = ||a?||, we have

\ β i ( x ) \ > I « , ( » ) ! - \ U P i ( χ ) ) \ ^ \\χ\\ - l l / o l l \\Pi\\ I M I = i l l » | | > 1 .
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Thus S is bounded and has nonempty interior.
It remains to show that if /ec 0 * then either f(B) or f(S) is an

open interval. To see this, define A* by A*δt = g^i = 1, 2, 3, •)
and extend A* to the whole of lt — c0* by linearity and continuity.
Then

so that the linear transformation A on c0 can be represented by the
infinite matrix:

/ 1 0 2~2 0 2~3 0 2~4 0 2~5 0 2~6 0 2~7 0 •

0 1 0 0 0 2"2 0 0 0 2~3 0 0 0 2~4..

001 0 0 0 0 0 0 0 0 2~20 0 •••

0 0 0 1 0 0 0 0 0 0 0 0 0 0 •••

/
where the ith row has zeros except for the set

N{ = {%} U {2hι(2n + 1) \n = 1, 2, S •}

and

/y — 1 /Ύ - O-(n+l)
W'ti — -M U/ί,2*~1(2w+l) — •"

It is readily verified that A maps c0 onto c0 and is one-one.
Now

= {xecQ\

= {a?| I Af^ίa?) I ̂  1 Vi}

Since S is bounded this shows, incidentally, that A has a bounded
inverse. Also

f(x) = f(AA-iχ) = (A*f)(A'1x)

and so

f(B) = A*f{A-\B)) = A*f(S) .

Thus f(B) is a closed interval if and only if A*f(S) is a closed
interval. But those continuous linear functionals which attain their
norm on B are (finite) linear combinations of the δ/s. Hence the
functionals which attain their norm on S are (finite) linear combina-
tions of the g/s. Since these latter functionals, as Zx sequences, clearly
have infinitely many nonzero entries it is obvious that the two sets
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are disjoint. This concludes the proof.

3* Two extensions* (i) The previous section was concerned with
two sets (the unit ball B and the set S) in c0 such that the sets of
nontrivial functionals which support B and S respectively are disjoint.
Here we show that it is possible to construct a family S^, indexed
by the real numbers in the interval [0, 1), of closed, bounded, sym-
metric, convex bodies in c0 such that if / e e0* then / attains its
supremum on at most one member of Sf.

Let a = O α^αg be a real number in [0, 1) represented as a
binary expansion which does not terminate in l's, i.e., an = 0 or 1
and there are infinitely many 0's. Let fa be the element of c0* = k
defined by

fa = (Φl, <f>2, ' *, Φn, ' * ' )

where

(2-(n+D i f a n = 0

(0 ιίan = l;

and let

gita = «* + Pi*fa .

Finally, define

Sa = {xec0\ |jjr4,β(α?)|^l, i = l, 2, 3, . . . } .

As before Sa is a closed, bounded, convex set with interior and, as
before, each Sa is supported by finite linear combinations of the
functions {gi>a \ i = 1, 2, 3, }. If a Φ af then, for some n, an Φ a'n and
we can suppose that an — 1, a!n = 0. Let / support Sa. Then / is a
finite linear combination of the gi>a. Let i0 be the maximal index
which occurs in this combination. Then the sequence representing /
has a zero in the k0 = 2ί°~1(2^ + 1) place. If / ' supports Sv, in order
that / ' have a zero in that same place either / ' has no contribution
from giQta, or / ' does have a contribution from gkQ,a: In the first case
/ ' has zeros on the whole set

and therefore differs from /, while in the second case, since kQ > i0, f
has zeros on the whole set Nko and again / Φ / ' . We thus have the
desired conclusion.

(ii). The set S in the proof of Theorem 1 is similar to the unit
ball in the sense that it is the image of the unit ball under an
invertible linear transformation and hence each of its faces has finite
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codimension. We show here that it is possible to construct a set S'
with the required properties and which is, moreover, strictly convex,
i.e., its faces are O-dimensional. With the same notation as in §2, let

p(x) = \\x\\ -

and let S' = {xeco\p(x) ^ 1}. Since, as can be readily seen, p is a
norm on c0 which is equivalent to the original norm, S' is a centrally
symmetric, convex body which is closed and bounded. Further, since
gn(x) = 0 for all n if and only if x = 0 (this follows from the fact
that S in §2 is bounded), S' is strictly convex; (cf. Kothe [5] p. 365).
To complete the proof we show that if x is in the complement of S'
then x has no nearest point in S'. Suppose, on the contrary, that
there exists x0 with p(x0) > 1 and sQ with p(s0) = 1 such that

||ajo-soll = inf { p o - s | | | s e S ' } .

Now, since x0, s0 e c0 there exists N such that

\δ, (xQ — s0) I < i\\xQ — Soil and |^(so)l < έl|s,
o|

for all j > JV, (clearly the numbers on the right are nonzero). Let
n = 2ι-ι{2k + 1). If s0 = (σ19 σ2, , σn, •), consider so = (^i, σ*, ,
σn — ε, •)• Clearly gj(s0) = ^(sό) for all j except j — n and j = ί.
For these integers we have gn(s'o) = ^(s0) - ε and ^.(sj) = ^-(s0) - ε2~u+1>.
Hence

2~2w(^(sζ)2 - gn(so)2) - 2-2^ε2 - 2 " 2 ^ ( s 0 )

and

We can assume that ^(s0) is positive (otherwise replace ε by — ε).
Then, since gn(s0) —• 0 as n —> oo, choose Λ so large and ε sufficiently
small so that

(a) n = 2ί~ι{2k + 1) > N

(b) e<4l |βoll
(c) ε < ί - | | α ; 0 ~ β01|
(d) 2~2*+&+1ε + 2-2i-*-1ε + 2-2 +*+1|flf.(80)| < 2-2i0i(so)

Thenp(β{) < p(sQ) - 1 but | |a? 0-βίll = ll&o-*oll = inf { | |^0-s| | \seS}.
This is clearly absurd since x0 cannot have a nearest point which is
interior to the set and the proof is complete.

4* H o w to support a family* It was shown in |3(i) that in
c0 it is possible to construct an uncountable family of closed bounded
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convex bodies such that no linear functional supports more than one
of them. In contrast we have the following theorem.

THEOREM 2. Let {Cu C2, , Cft •} be a countable family of closed
and bounded sets in a separable Banach space X which is the conjugate
of some Banach space Y. Let S denote the set of points y in Y with
the property that for each i — 1, 2, there is a ĉ  e Ci such that

sup {<>, c>:ceCi} = ζy, c,)1 .

Then S is a dense Gδ.

Proof.2 The set Si of all y e Y for which sup {<j/, c):ce d} is
attained is, by a result of Asplund (cf. Theorem 3 and proof of
Proposition 5 in [1]), a dense G> It follows that S = ΓlΓSi too is a
dense Gδ.

To show that countability of the family {CΊ, C2, } in Theorem
2 is essential we bring the following

PROPOSITION 2. To every continuous linear functional u on lγ

with \\u\\ = 1 there is a closed and bounded convex set C such that u
fails to attain its supremum on it*

Proof. It suffices to show that a C as required exists for each
u = (uly u2, « ) e m for which a natural number k exists with \\u\\ =
uk\ = 1 as the unit ball may clearly serve as C for all other u of

norm 1. Clearly, if C satisfies the conclusion for a given u then — C
does for — u; thus we may assume that uk = 1. Now the sequence
{uk+1, uk+2, •••} contains a subsequence {uni, u%2, •••} which is either
nonincreasing or nondecreasing. The proofs being similar in both
cases we assume that

i.e., the subsequence is nondecreasing.
Let A = {x{l), xi2\ •• } c i 1 be defined by setting

1 _ _1 for i = k
m

1 for i = nm

0 otherwise

and set C = cό A. Suppose there is a

1 Here, and in the sequel, we find it advantageous to use the customary <x, />
for f(x).

2 We are indebted to the referee for suggesting this proof.
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z — ( « ! , z 2 , , «A—i, Zk9 z k + l 9 * " ) e C

at which u attains its supremum. Then, as can be readily seen,

z1 = z2 = = zk-! = 0, Σϊ=iS»m = 1 a n d Zk = 1. Since snj f ^ 0 for
some natural number M, if δ = |sβjlf|/2Af then ||« — a?|| ^ 5 for all
x = X?=1λ^( ί) with λ{ :> 0 and Σ?=Λ» = l Indeed,

| | z - &II ^ k ^ - ̂ J ^ | s e j f l - KM

so that we may assume that \nM ^ — l ^ l But then

II* s | | S 1

It follows that zgC so that w cannot attain its supremum on C, as
asserted.

5Φ Concluding remarks and problems^

1. We have already pointed out that the behaviour of m in this
respect is unknown.

2. A procedure first given by Day [2] was shown by Rainwater
[6] to yield a locally uniformly convex unit ball in c0. It is possible
that a similar procedure applied to our construction of the set Sf in
§3 (ii) will give a locally uniformly convex set with the same
properties.

3. It is unknown whether, given any closed and bounded convex
body Si in c0, it is possible to construct a second set S2 such that
no functional supports both St and S2 (i.e., whether Theorem 1
remains true under any equivalent renorming of cQ).

4. The above construction can be used in a more general co(Γ).
5. The definition of the set S in Theorem 2 can be modified so

as to obtain a stronger conclusion. Indeed, without changing the
proof, one can require that each element yeS strongly expose each
of the sets C<; i.e., whenever {cίn): n = 1, 2, •} c d and ζy, cln)y-~*

0 . c4> then cΓ -> φ = 1, 2, . . . ) .
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