NORM CONVERGENCE OF MARTINGALES OF RADON-NIKODYM DERIVATIVES GIVEN A *σ*-LATTICE

R. B. DARST AND G. A. DEBOTH

Suppose that $\{\mathscr{M}_k\}$ is an increasing sequence of sub σ lattices of a σ -algebra \mathscr{A} of subsets of a non-empty set Ω . Let \mathscr{M} be the sub σ -lattice generated by $\bigcup_k \mathscr{M}_k$. Suppose that L^{φ} is an associated Orlicz space of \mathscr{A} -measurable functions, where φ satisfies the \mathcal{A}_2 -condition, and let $h \in L^{\varphi}$. It is verified that the Radon-Nikodym derivative, f_k , of h given \mathscr{M}_k is in L^{φ} and shown that the sequence $\{f_k\}$ converges to f in L^{φ} , where f is the Radon-Nikodym derivative of hgiven \mathscr{M} .

1. Introduction. H. D. Brunk defined conditional expectation given a σ -lattice and established several of its properties in [1]. Subsequently S. Johansen [5] described a Radon-Nikodym derivative given a σ -lattice and showed that the Radon-Nikodym derivative was the conditional expectation in the appropriate case. Then H. D. Brunk and S. Johansen [2] proved an almost everywhere martingale convergence theorem for the Radon-Nikodym derivatives given an increasing sequence of σ -lattices. We shall establish norm convergence of these derivatives in L_1 and in the Orlicz spaces L^{φ} , where Φ satisfies the Δ_2 -condition. The theory of these Orlicz spaces can be found in [6], so we shall assume and build upon the results therein. Thereby, we can place fewer restrictions on Φ and obtain L_1 -convergence as a byproduct.

2. Notation. Let \mathscr{A} be a σ -algebra of subsets of a (nonempty) set Ω , and let μ be a non-negative (bounded) σ -additive function defined on \mathscr{A} .

For our purposes the following information about Φ will suffice: Φ is an even, convex function defined on the real numbers, R, with $\Phi(0) = 0$ and $\Phi(x) \neq 0$ for some x. Moreover, there exists K > 0with $\Phi(2x) \leq K\Phi(x)$ for all $x \in R$. This latter property is called the \varDelta_2 -condition; it implies

$$(1) \quad \varPhi(x+y) = \varPhi\left(2\left(\frac{x+y}{2}\right)\right) \leq K\varPhi\left(\frac{x+y}{2}\right) \leq \left(\frac{K}{2}\right)[\varPhi(x) + \varPhi(y)].$$

Then L^{φ} denotes the collection of (real valued) \mathscr{A} -measurable functions h defined on Ω with $\int_{\Omega} \Phi(h) d\mu < \infty$. Since Φ is convex and not

identically zero, $L^{\phi} \subset L_1$; L^{ϕ} is usually a proper subset of L_1 if $\lim_{x\to\infty} \Phi(x)/x = \infty$. This latter property and $\lim_{x\to0} \Phi(x)/x = 0$ are required of an Orlicz space; but, these two properties are not necessary for our estimates to be valid. Examples are $\Phi(x) = |x|^p$, $1 \leq p < \infty$.

Let $h \in L^{\varphi}$ and $\lambda(E) = \int_{E} hd\mu$, where $E \in \mathscr{A}$. Let \mathscr{M} be a sub σ -lattice of \mathscr{A} and let f be the Radon-Nikodym derivative of λ with respect to μ . Thus, f is the \mathscr{M} -measurable function defined on Ω (ϕ : the empty set, Ω , and [f > a] belong to \mathscr{M} , for all $a \in R$) satisfying

(2)
$$\lambda(A \cap [f \leq b]) \leq b\mu(A \cap [f \leq b])$$
, where $A \in M$ and $b \in R$,

and

(3)
$$\lambda([f > a] \cap B^c) \ge a\mu([f > a] \cap B^c)$$
,
where $B^c = \Omega - B, B \in \mathcal{M}$, and $a \in R$.

Our first result is a preliminary step to an L^{φ} martingale convergence theorem.

3. The derivative of an L^{*} -function is an L^{*} -function. We shall verify this assertion by establishing a sequence of estimates, the first of which is

(4)
$$\int_{[f>a]} \Phi(f) d\mu \leq \int_{[f>a]} \Phi(h) d\mu , \quad \text{for all } a \geq 0.$$

To verify (4), choose $\delta > 0$ and $a = a_0 < a_1 < a_2 < \cdots$ with $\Phi(a_k) = \Phi(a_{k-1}) + \delta$. Let $A_k = [a_k \ge f > a_{k-1}]$ and notice that (3) implies

$$|\lambda|(\Omega) \ge \lambda([f > a_k]) \ge a_k \mu([f > a_k])$$
.

Thus, $\mu([f > a_k]) \rightarrow 0$ and

$$\int_{[f>a]} \varPhi(\cdot) d\mu = \sum_{k=1}^n \int_{A_k} \varPhi(\cdot) d\mu + \int_{[f>a_n]} \varPhi(\cdot) d\mu = \sum_{k=1}^\infty \int_{A_k} \varPhi(\cdot) d\mu.$$

Applying (3) again, $\int_{A_k} h d\mu = \lambda(A_k) \ge a_{k-1}\mu(A_k)$, so $a_{k-1} \le \frac{1}{\alpha_k} \int_{A_k} h d\mu$, where $\alpha_k = \mu(A_k) > 0$.

Then, applying Jensen's inequality,

$$\Phi(a_{k-1}) \leq \Phi\left(\frac{1}{\alpha_k}\int_{A_k}hd\mu\right) \leq \frac{1}{\alpha_k}\int_{A_k}\Phi(h)d\mu$$

Next, notice that

548

$$\int_{A_k} \varPhi(f) d\mu \leq \varPhi(a_k) \mu(A_k) = \left(\varPhi(a_{k-1}) + \delta\right) \mu(A_k) \leq \int_{A_k} \varPhi(h) d\mu + \delta \mu(A_k) \ .$$

Thus $\int_{[f>a]} \Phi(f) d\mu \leq \int_{[f>a]} \Phi(h) d\mu + \delta \mu(\Omega)$, for all $\delta > 0$, which implies (4).

By a similar argument, one obtains

(5)
$$\int_{[f \leq a]} \Phi(f) d\mu \leq \int_{[f \leq a]} \Phi(h) d\mu, \quad \text{for all } a \leq 0.$$

Hence, splitting Ω into two pieces, [f > 0] and $[f \leq 0]$, and applying (4) and (5), yields

(6)
$$\int_{a} \Phi(f) d\mu \leq \int_{a} \Phi(h) d\mu;$$

thus verifying Theorem 1.

THEOREM 1. The Radon-Nikodym derivative of an L° -function is an L° -function.

4. A Martingale convergence theorem. Suppose that $\{\mathscr{M}_k\}_{k=1}^{\infty}$ is an increasing sequence of σ -lattices of subsets of Ω , and \mathscr{M} is the σ -lattice generated by the lattice $\mathscr{M}_{\infty} = \bigcup_k \mathscr{M}_k$. Denote by \mathscr{M}_k the σ -algebra that is generated by \mathscr{M}_k and by λ_k and μ_k the restrictions of λ and μ to \mathscr{M}_k . Let h_k be an \mathscr{M}_k -measurable function satisfying $\lambda(E) = \int_E h_k d\mu$, where $E \in \mathscr{M}_k$, and denote by f_k the Radon-Nikodym derivative of λ_k with respect to μ_k on \mathscr{M}_k .

THEOREM 2. The sequence $\{f_k\}$ converges to f in L^{ϕ} -norm:

(7)
$$\lim_{k\to\infty}\int_{\mathscr{Q}}\Phi(f-f_k)d\mu = 0.$$

Proof. To begin, notice that applying (4) and (5) to f_k yields

(8)
$$\int_{[f_k>a]} \Phi(h_k) d\mu \ge \int_{[f_k>a]} \Phi(f_k) d\mu , \quad \text{for all } a \ge 0 ,$$

and

(9)
$$\int_{[f_k \leq a]} \Phi(h_k) d\mu \geq \int_{[f_k \leq a]} \Phi(f_k) d\mu , \quad \text{for all } a \leq 0.$$

Since λ_k is the restriction of λ to \mathscr{H}_k , a variation on the theme which established (4) verifies

(10)
$$\int_{E} \Phi(h) d\mu \ge \int_{E} \Phi(h_{k}) d\mu , \quad \text{for all } E \in \mathscr{M}_{k}:$$

To substantiate this latter assertion, suppose $a \ge 0$, $\delta > 0$, b > a, $\varPhi(b) = \varPhi(a) + \delta$, $E \in \mathscr{M}_k$, $F = E \cap [b \ge h_k > a]$, and $\mu(F) > 0$. Then $\int_{F} h_k d\mu = \int_{F} h d\mu$, since $F \in \mathscr{M}_k$. Moreover,

$$\int_F \Phi(h_k) d\mu \stackrel{.}{\leq} \Phi(b) \mu(F) = \left[\Phi(a) + \delta
ight] \mu(F) \; ,$$

and

$$egin{aligned} arPsi(a) &\leq arPsi\left(rac{1}{\mu(F)}\int_{F}h_{k}d\mu
ight) = arPsi\left(rac{1}{\mu(F)}\int_{F}hd\mu
ight) \ &\leq rac{1}{\mu(F)}\!\int_{F}arPsi(h)d\mu \;. \end{aligned}$$

Thus,

Hence, appealing to the proof of (4) and to the sentence containing (5), we claim (10). Consequently,

(11)
$$\int_{[f_k>a]} \Phi(h) d\mu \ge \int_{[f_k>a]} \Phi(f_k) d\mu ,$$

where $a \ge 0$ and $k = 1, 2, \cdots$,

and

(12)
$$\int_{[f_k \leq a]} \Phi(h) d\mu \geq \int_{[f_k \leq a]} \Phi(f_k) d\mu ,$$

where $a \leq 0$ and $k = 1, 2, \cdots$.

Moreover, $a\mu([|f_k| > a]) \leq |\lambda|([|f_k| > a]) \leq |\lambda|(\Omega)$, where $a \geq 0$; thus,

(13)
$$\lim_{n\to\infty}\sup_k\int_{[f_k]>n]} \Phi(f_k)d\mu = 0.$$

So we can truncate the functions and still approximate them uniformly as follows. Whenever *n* is a positive integer and *u* is a (real valued) function defined on Ω , let $u^n(x) = u(x)$, where $|u(x)| \leq n$, and $u^n(x) =$ nu(x)/|u(x)| otherwise. Then, using (1) and setting $M = \max\{(K/2), (K^2/4)\}$,

$$egin{aligned} &\int_{arrho} arPsi(f-f_k) d\mu = \int_{arrho} arPsi(\{f-f^n\} + \{f^n - (f_k)^n\} + \{(f_k)^n - f_k\}) d\mu \ &\leq M(A_n + B_n + C_n) \;, \end{aligned}$$

where

$$A_n = \int_{[|f|>n]} \Phi(f) d\mu ,$$
$$B_n = \int_{\Omega} \Phi(f_n - (f_k)^n) d\mu$$

and

$$C_n = \int_{[|f_k|>n]} \varPhi(f_k) d\mu$$
 .

From (4), (5) and (13), we obtain $A_n \to 0$ and $C_n \to 0$. Moreover, for each $\delta > 0$,

$$egin{aligned} B_n &\leq \varPhi(2n)\mu([|f^n-(f_k)^n|>\delta]) + \varPhi(\delta)\mu(arOmega) \ &\leq \varPhi(2n)\mu([|f-f_k|>\delta]) + \varPhi(\delta)\mu(arOmega) \ . \end{aligned}$$

But, Brunk and Johansen have shown that $\lim_k \mu([|f - f_k| > \delta]) = 0$, where $\delta > 0$, so Theorem 2 is established.

Because of the approximation properties which are verified in [4], the results of this paper extend immediately to analogous results for the derivatives of additive set functions defined on algebras of subsets of Ω given a sub lattice (cf. [3]). Results for vector valued functions with respect to lattices which are related to the results: [7], [8], [9], of J. J. Uhl, Jr. for vector valued functions with respect to algebras should appear subsequently.

References

1. H. D. Brunk, Conditional expectation given a σ -lattice and applications, Annals. Math. Statist., **36** (1965), 1339-1350.

2. H. D. Brunk and S. Johansen, A generalized Radon-Nikodym derivative, Pacific J. Math., 34 (1970), 585-617.

3. R. B. Darst, The Lebesgue decomposition, Radon-Nikodym derivative, conditional expectation and martingale convergence for lattices of sets, Pacific J. Math., **35** (1970), 581-600.

4. R. B. Darst and G. A. DeBoth, Two approximation properties and a Radon-Nikodym derivative for lattices of sets, Indiana Univ. Math. J., **21** (1971), 355-362.

5. S. Johansen, The descriptive approach to the derivative of a set function with respect to a σ -lattice, Pacific J. Math., **21** (1967), 49-58.

6. M. A. Krasnosel'skii and Ya. B. Rutickii, *Convex functions and Orlicz spaces* (Translation), Groningen, 1961.

7. J. J. Uhl, Jr., Orlicz spaces of finitely additive set functions, Studia Math., T. XXIX (1967), 19-58.

8. _____, Applications of Radon-Nikodym theorems to martingale convergence, Trans. Amer. Math. Soc., 145 (1969), 271-285. 9. J. J. Uhl. Jr., Martingales of vector valued set functions, Pacific J. Math., **30** (1969), 533-548.

Received April 7, 1971, R. B. Darst was supported in part by the National Science Foundation under grant no. GP 9470 and G. A. DeBoth was supported by a National Science Foundation Science Faculty Fellowship.

PURDUE UNIVERSITY COLORADO STATE UNIVERSITY AND ST. NORBERT COLLEGE

552