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NORM CONVERGENCE OF
MARTINGALES OF RADON-NIKODYM

DERIVATIVES GIVEN A (/-LATTICE

R. B. DARST AND G. A DEBOTH

Suppose that {^£Ίύ is an increasing sequence of sub σ-
lattices of a σ-algebra Sf of subsets of a non-empty set Ω.
Let ^S be the sub (/-lattice generated by \Jk ^Jtu Suppose
that Lφ is an associated Orlicz space of -^measurable func-
tions, where Φ satisfies the J2-condition, and let heLφ. It
is verified that the Radon-Nikodym derivative, fk, of h given
^£Ίc is in Lφ and shown that the sequence {fk} converges to
/ in Lφ, where / is the Radon-Nikodym derivative of h
given

1* Introduction* H. D. Brunk defined conditional expectation
given a σ-lattice and established several of its properties in [1]. Sub-
sequently S. Johansen [5] described a Radon-Nikodym derivative
given a σ-lattice and showed that the Radon-Nikodym derivative was
the conditional expectation in the appropriate case. Then H. D. Brunk
and S. Johansen [2] proved an almost everywhere martingale conver-
gence theorem for the Radon-Nikodym derivatives given an increasing
sequence of σ-lattices. We shall establish norm convergence of these
derivatives in Lt and in the Orlicz spaces Lφ, where Φ satisfies the
4rcondition. The theory of these Orlicz spaces can be found in [6],
so we shall assume and build upon the results therein. Thereby,
we can place fewer restrictions on Φ and obtain Z/Γconvergence as a
byproduct.

2* Notation* Let Szf be a tf-algebra of subsets of a (non-
empty) set 42, and let μ be a non-negative (bounded) tf-additive func-
tion defined on s%f.

For our purposes the following information about Φ will suffice:
Φ is an even, convex function defined on the real numbers, R, with
Φ(0) = 0 and Φ(x) Φ 0 for some x. Moreover, there exists K > 0
with Φ(2x) <: KΦ{x) for all xeR. This latter property is called the
J2-condition; it implies

1)) (^±Jθ «g (^ [φ(x)

Then Lφ denotes the collection of (real valued) j ^ measurable func-

tions h defined on Ω with I Φ(h)dμ < co. Since Φ is convex and not
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identically zero, UaL^ Lφ is usually a proper subset of Lx if li
Φ(x)/x = c>o. This latter property and limx^QΦ(x)/x — 0 are required
of an Orlicz space; but, these two properties are not necessary for
our estimates to be valid. Examples are Φ(x) = \x\p, 1 ^ p< oo.

Let he Lφ and X(E) = 1 hdμ, where Ee J^f. Let ^f be a sub
JE

o -lattice of Sf and let / be the Radon-Nikodym derivative of λ with
respect to μ. Thus, / is the ^f-measurable function defined on Ω
(φ: the empty set, Ω, and [f>a] belong to ^€, for all aeR) satis-
fying

( 2) X(A Π [/ ^ b]) ̂ bμ{AΓ\[f g &]) , where A e Λf and b e R ,

and

( 3 ) λ([/> a] Π 5C) ^ α^([/ > a] Π 5C) ,

where Bc = Ω - B, Be ^/f, and αe i? .

Our first result is a preliminary step to an Lφ martingale convergence
theorem.

3* The derivative of an Lφ-function is an Z/φ-function* We
shall verify this assertion by establishing a sequence of estimates,
the first of which is

(4) [ Φ(f)dμ ^ \ Φ(h)dμ , for all a ^ 0 .
JΓ/>α] J[/>αl

To verify ( 4), choose δ > 0 and a = aQ<aι<a2< with Φ{ak) =

k__^ + <L Let Afc — [αfc ̂  / > αfe_J and notice that ( 3) implies

I λ I (Ω) ̂  λ ([/ > αj) ^ α&^ ( [ / > α j ) .

Thus, μ ([/ > αj) -> 0 and

Φ( )dμ = ±\ Φ(-)dμ+\ Φ(-)dμ = ±\ Φ ( ) dμ .

Applying (3) again, I hdμ = MAk) ^ ak-xμ(Ak), so

a>k-i ^ \ hdμ , where αfc = μ(Ak) > 0

Then, applying Jensen's inequality,

( hdμ) ^ — (
/ ak Uk

Next, notice that
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£\ Φ(h)dμ + δμ(Ak) .

Thus \ Φ(f)dμ ^ ί Φ(h)dμ + δμ(Ω), for all <5>0, which implies

J[/>α] J[/>α]

(4) .
By a similar argument, one obtains

(5) ( Φ(f)dμ g ( Φ(h)dμ , for all a ^ 0 .

Hence, splitting £? into two pieces, [/>0] and [/ <g 0], and applying
(4) and (5), yields

(6) ( Φ(f)dμ£ \ Φ(h)dμ;
JΩ JΩ

thus verifying Theorem 1.

THEOREM 1. The Radon-Nikodym derivative of an Lφ-function
is an Lφ-function.

4. A Martingale convergence theorem* Suppose that
is an increasing sequence of σ-lattices of subsets of Ω, and ̂  is the
σ-lattice generated by the lattice ^ ^ = U * ^ * Denote by J ^ the
σ-algebra that is generated by ̂ €h and by Xk and μk the restrictions of λ
and μ to s^fk. Let hk be an j^-measurable function satisfying \{E) —

\ hkdμ, where EeJϊfk, and denote by fk the Radon-Nikodym deriva-

tive of λfc with respect to μk on

THEOREM 2. The sequence {fk} converges to f in Lφ-norm:

(7) limί Φ(f-fk)dμ = 0.
/c-voo JΩ

Proof. To begin, notice that applying (4) and (5) to fk yields

(8) [ Φ(hk)dμ ̂  ( Φ(fk)dμ , for all a ̂  0 ,
J[/jk>α] J[/A > « ]

and

(9) ( Φ(hk)dμ ̂  ( Φ ( Λ ) ^ , for all a ̂  0 .

Since Xk is the restriction of λ to j^J, a variation on the theme
which established (4) verifies

(10) ( Φ(h)dμ^\ Φ{hk)dμ, for all Ee*S*ί:
JE JE
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To substantiate this latter assertion, suppose α ̂  0, <5>0, 6 > α,

Φ(b) = Φ(a) + δ, Eejzήt, F = E Π [b ̂  hk > a], and μ(F) > 0. Then

\ hkdμ = 1 Mμ, since Fej^k. Moreover,
JF JF

\ Φ(hk)dμ ^ Φ{b)μ{F) = [Φ(a) + δ] μ(F) ,
JF

and

Thus,

( Φ(hk)dμ ^ ( Φ(h)dμ + δμ(F) .

Hence, appealing to the proof of (4) and to the sentence containing
(5), we claim (10). Consequently,

(11) ( Φ(h)dμ ̂  ( Φ(fk)dμ ,
J[fk>a] J[fk>al

where a ̂  0 and k = 1, 2, ,

and

(12) ί Φ(h)dμ ^ (
J Γ / ^ ] JC/

where α ̂  0 and k = 1, 2, .

Moreover, α^([ |/ f c | > a]) ̂  | λ | ([\fk \ > α]) ^ | λ | (β), where a ̂  0;
thus,

(13) lim sup* f Φ(fk)dμ = 0 .

So we can truncate the functions and still approximate them uniformly

as follows. Whenever n is a positive integer and u is a (real valued)

function defined on β, let un(x) — u(x), where \u(x)\ ^ n9 and un(x) =

nu(x)/\u(x)\ otherwise. Then, using (1) and setting M = max{(lΓ/2),

(#74)},

\QΦ{f-f*)dμ = \nf-fn) + {f*-(fk)%} + {(fk)*-fu))dμ

^ M(An + Bn + Cn) ,
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where

An = [ Φ(f)dμ ,

Bn= \ Φ(fn-(fk)
n)dμ,

jo

and

Cn = [ Φ{fk)dμ .
J [ | / l > ]

From ( 4 ) , (5) and (13), we obtain An-+0 and Cn—*0. Moreover,
for each δ > 0,

Bn rg Φ(2n)μ([\r-(fkr\ > δ]) + Φ(δ)μ(Ω)

^ Φ(2n)μ([\f-fk \>δ]) + Φ(δ)μ{Ω) .

But, Brunk and Johansen have shown that \imk μ([\f — fk\> δ]) = 0,
where δ > 0, so Theorem 2 is established.

Because of the approximation properties which are verified in
[4], the results of this paper extend immediately to analogous results
for the derivatives of additive set functions defined on algebras of
subsets of Ω given a sub lattice (cf. [3]). Results for vector valued
functions with respect to lattices which are related to the results:
[7], [8], [9], of J. J. Uhl, Jr. for vector valued functions with respect
to algebras should appear subsequently.
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