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VECTOR SPACE DECOMPOSITIONS AND THE

ABSTRACT IMITATION PROBLEM

GEORGES G WEILL

Let S^ be a Hubert space, & a closed subspace of S^
L an orthogonal projection operator on <P? The "imitation
problem" consists of finding the solutions p e & of the equa-
tion

p — 8 = L(p - s)

for given s e £f. If W is a compact bordered Riemann surface,
A a boundary neighborhood, s a "singularity differential"
defined on A, p will be a harmonic exact differential which
imitates s on A in a sense precised by L (hence the name
"imitation problem"). Existence and uniqueness theorems are
given for the solution. Some concrete applications are des-
cribed. The paper ends with a constructive method of solu-
tion in the case of ZAnormal operators.

0* Introduction* The "imitation problem" has originally been
formulated by L. Sario (see for instance [1]). It is fundamental in
the construction of harmonic functions on a Riemann surface with given
singularities and given boundary behavior. It can be formulated as
follows: given a "singularity function" s defined in a boundary neigh-
borhood, and a "normal operator L", construct a harmonic function p
defined on the whole Riemann surface and satisfying in the given
boundary neighborhood the equation

p — s = L(p — s) .

Sario's original solution uses the sup norm. For problems involving
harmonic differentials, the U norm is introduced somewhat more
naturally and progress has been made in various directions, (see [5]).
In §1 we study the abstract "imitation problem" for an arbitrary
Hubert space and give an existence and uniqueness theorem for the
solution. In §2 we consider some decompositions of the vector space
!Q(A) of harmonic exact differentials defined on a boundary neighbor-
hood A of a compact bordered Riemann surface R and continuous in
A, and study some corresponding "imitation problems". In §3 we
return to the L2 case and give a constructive method of solution when
the operator L is IΛ-normal The method may be applied to the case
of harmonic differentials on a Riemannian manifold of dimension > 2,
and also to open manifolds.

1. The abstract imitation problem in a Hubert space* Let
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y be a Hubert space, &(&*) the algebra of bounded linear operators
on <$ί We are given a closed subspace & c £f corresponding to the
orthogonal projection F. Given the orthogonal projection L on 3^
we want to solve the equation

(*) p - s = L(p - s)

for p e & given the "singularity" s e £Z We assume moreover that
p = Ts where Te &(£f).

We are going to prove the theorem:

THEOREM, Let & be a closed subspace of the Hilbert space Sf
and let F denote orthogonal projection on &. Let L be an arbitrary
orthogonal projection operator on a subspace of S^ Then the imita-
tion problem

p - s = L(p- 8)

admits a unique solution in & of the form

p = Ts

(where T is a bounded linear operator on £f) if and only if

Proof. Observe that (*) may be written as:

(I- L)(I - T)s = 0

which is true for each se S^
It follows that I — T belongs to the right annihilator of I — L.

Now &{£S) being a Baer ring [4] it follows that there exists Xe
such that

(**) / - Γ = LX .

Moreover, since pelmF we have TselmF hence

( J - F)Ts = 0 .

We conclude that T belongs to the right annihilator of I — F hence
there exists Ye &(Sf) such that

(***) T = FY.

Adding up (**) and (***) we get the equation

(t) I = LX + FY

where, we recall L, F are given orthogonal projection operators and X,
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Y are unknown elements of &(£f). Clearly, if
the last equation has no solution. We show conversely that if Im L +
I m F = y the problem has always a solution. We need the:

LEMMA. Let A, B be closed subspaces of a Hίlbert space SS such
that A + B = £^ (vector sum). Then, there exist closed subspaces
Ama A, Bma B such that

Am + Bm = S^ (direct sum) .

Proof. Let {ea} be a basis for A, {eβ} a basis for B. Then,
{ea, eβ} is a set of generators for 6^. It contains a basis {ea., eβj\
where {ea.} c {ea} and {eβ} c {eβ}. Let then Am be the closed span
of {ea.}, Bm be the closed span of \ea.\. Then Am + Bm = S? and
AmΠBm = {0}.

We apply the lemma to A = Im L, B = Im F. There exist sub-
spaces Am c Im L, BmaImF such that

Am + Bm = ^ .

Let Xo and Yo be orthogonal projections on Am and Bm respectively.
Then

I = LX0 + FY0

and (Xo, yό) is a solution of (t). To study uniqueness, let (X, Y) be
another solution of (t). One must have:

L(X-X0) =F(Y0- Y) .

So if Im F ΓΊ Im L = {0} then necessarily X = Xo Γ = Fo. If Im F Π
I m L ^ {0} then, the operators of the form L(X - Xo) = F(Y0 - Y)
are the elements of the right annihilator of the set {I — L, I — F}
hence of the form G&(£f) for some orthogonal projection (?. The
f s w e are looking for are of the form FY = FY0 - F(Y0 - Y) =
FY0 - G&{SS). G^{SS) is non void: if Im F Π Im L = Im M where
M is a projection, ikf satisfies Lilί = FM. In that case uniqueness is
lost and we have proved the theorem.

Notes. (1) there is actually no restriction when dealing with
operators L which are projections: if L denotes any element of ^?(<9*),
(*) becomes (I — L)(I — T) — 0. So I — T belongs to the right anni-
hilator oΐ I — L and therefore / — F = ΛU where A is the orthogonal
projection generating the right annihilator of I — L.

(2) The preceding proof can be applied to the Baer ring of linear
endomorphisms of a vector space. Orthogonal projections should be
replaced by projection operators.



266 G. G. WEILL

As an example we apply the previous theory to the construction
of harmonic differentials on a Riemann surface which "imitate" some
singularity differential in the neighborhood of the ideal boundary
(whence the name "imitation problem").

2* Vector space decompositions and the corresponding "imi-
tation problems"* Let R be any compact bordered Riemann surface.
We consider the space Q(R) consisting of harmonic exact differentials
on Int (R), which are continuous on R. Let 7 be a cycle on R, [7]
the corresponding homology class. We introduce the space

= |ω e = θ}

(see [1]).
Let now W be a compact bordered Riemann surface, A the com-

plement of a regularly embedded domain Ω. We use the standard
notation

a = BdΩ

β = BdW .

In the vector space φ(A) we consider the subspaces

Hoβ(A) = {ωe £(A), ω = df, df\β = 0}

HOa(A) ={ωe Q(A), ω = df, df\a - 0}

#$(A) - {ω e Q(A); ω - d/, *d/|^ - 0,

— 0, for each component a. of a\

H&(A) - {ω 6 $(A); ω = df, *df\a = 0,

— 0, for each component βi oί β

iϊo'α(A) - Hoa(A) Π

Observe that:

m;{A) - ίβJ(A) Π Hm{A) = H0*β(A) .

Another important subspace will be

Hext(A) = {ωe®(A):ω = ώ\2 where

Clearly Hext(A) ci_Hm(A).
Let now Γ(A) be the space of square integrable harmonic differ-

entials on Ά. We denote
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hm{A) — closure in Γ(A) of Hm(A)

hfor(A) = closure in Γ(A) of Hir(A)

h*(A) - closure in Γ(A) of

where 7 stands for <x or β. We have the following vector space decom-
positions:

PROPOSITION.

hm(A) = Λίβ(Λ) 0 h$(A)

hm(A) = ho*(A) 0 h'oβ(A) .

Proof. We prove the first equality. The second is obtained by
symmetry. First, we show

hm{A) = HL(Ά) © m(A) .

Observe that HL(A) is orthogonal to h$(A): let df e HL{Ά), dg e H${A).
The innner product on the Hubert space Γ(A) induces an inner product
on Hm{Ά). So,

{df, dg)Ί = \ f*dg = \ f*dg - 0 .

Let now dk be an element of Hm{A). We want to find dfeH'a and
dgeH^(A) such that

dk = df + dg .

We must have dg\a = dk\aj *dg\β = 0, I *cί̂  = 0 for each component
Jai r r

oίi of α. Also df\a — 0, ĉZ/l̂  = *dk\β and \ *d/ = 1 *dh for each

component α f of α. Such a problem has a unique solution.
We now take closures in Γ(A). Observe that h[a{A) and h$(A)

are orthogonal since H;

Qa(A) and H$(A) are dense and orthogonal. It
follows that

hm{A) - KΛA) + ^ ( Λ ) .

We now consider some orthogonal projections in the space hίβ](A),
which may be used as operators L of §1.

(1) Let Λo be orthogonal projection on h$(A). We have

ker ΛQ = h[a{A) .

In particular *Λodf e hoβ(A) and hence Λo df has "vanishing normal
derivative" on β. Moreover (I — Λo) df ehf

Oa. So Λo df\a — df\a and
Λo has the property of Sario's "Lo operator".
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(2) Let Ax be orthogonal projection on hΌβ(A). We have

ker Λι = hoa(A) .

So Λ^flββhΌβ and "ΛjLf vanishes on β" However *(/ — Λ^df\aeh'Qa

hence

*Adf\a = *df\a

and Λ1 differs from Sario's UL1 operator" by its behavior on a. Some
other vector space decompositions will be of interest:

PROPOSITION. Hm(A) = Hext{A) © Hϊβ{A).

Proof. Observe that Hext(A) Π Hόβ(A) = {0}. This is a consequ-
ence of the fact that on W, Γ*se Π Γhe is orthogonal to Γhe Π Γho.

_ /\
Now consider any df e Hm{A). Let df be the unique harmonic

exact differential on W which has same boundary values as df. Now:

and

e Hext(A), (df - df)\-Ae H0'β

which proves the validity of the direct sum decomposition.
We shall denote by Kt the corresponding projection on Hext(A) and

by Lt the corresponding projection on Hlβ(A).

PROPOSITION. Hm{A) = Hext(A) φ H&(A) .

Proof. Hext(A) Π fZoί(^) = {0}. Thus assume ω = df e Hext(A) and
*df I /3 = 0. By the uniqueness of the solution to the Neumann problem
df — 0. Consider now any df e Hίβ](A). Let df be the harmonic exact

differential on W such that *(df)\β — *df\β and \ *df = \ *df for

each component a{ oί a. We can write

df = df\-A + (df- (df))\i

where

d/ li e flβίBί(A) , (d/ - (d?) li e fl5(A) ,

which proves the validity of the direct sum decomposition. We denote
by Ko the projection on Hext(A) and by Lo the projection on H$(Ά).

Application. Solution to the "imitation problem" for harmonic
differentials in Hm(A). (cf. §1. note 2).
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Assume that we have a decomposition:

Hm(A) = Hext(A) 0 H(A) . (direct sum) .

We denote by L the corresponding projection onto H{A) and by K the
corresponding projection onto Hext(A).

The "imitation problem" consists in studying the solutions ω e
Hext{Ά) of the equation:

(*) co — s = L(ω — s) , s e Hm{A) .

One can apply the existence and uniqueness theorem of §1, or check
directly.

Uniqueness of the solution: let ω1? α>2 be two solutions of (*) then

ωι ~ ω2 = L(o)1 — ω2)

or

(/-L)K-ω2) = 0

i.e. o)1 — ω2 G Ker (I — L) = IτnL .

Now o>x — ω2 e Im iΓ and Im i ί Π Im L = {0}. It follows that c^ — ω2 =
0 and the solution is unique.

Existence of the solution. To solve (I — L)(ω — s) = 0 set α> =
^ s . We then get:

(Z - L)(I - K)s = 0

which is verified for all s G Hm(A) since

Im (I - Jf) = Ker L

from the direct sum decomposition.

EXAMPLES.

(1) Lι and Kλ. The unique solution to

ω — s = Lγ{ω — s)

is given by ω = i ί^ . Such a ω has the same boundary behavior as
s.

(2) I/o and iΓ0. The unique solution to

Q) — s = L0(ω — s)

is given by ω = Kos and *ω and *s have same boundary behavior-

s ' — L2-normal operators and the " imitat ion problem"* We



270 G. G. WEILL

now return to the U theory and show a constructive method of solu-
tion. We consider the Hubert space φi defined as the closure in the
ZΛ-norm on A of the space of harmonic exact differential on A. We
are considering operators

L: & > &

such that
( i ) L is an orthogonal projection operator, (in particular U =

L and | | L | | - 1)
(ii) lm(I-L)f)Hext(A) = {0}.

Such operators will be called ZΛ-normal.
We consider in particular the operator

where K denotes orthogonal projection onto the subspace $ of exact
harmonic differentials in £>x which admit a harmonic extension to all
of W. The next generalized ^-lemma shows that St is closed.

GENERALIZED ^-LEMMA. There exist numbers q(A) and q'{A) lying
between 0 and 1 such that for each ω e Γhe(W). q'(A)\\ω\\ψ ^ H^IIT ^
q(A)\\o)\\w.

Proof. We know that Γhe{W) has the Montel property. Consider
the subset S c Γhe(W) defined as

S= {ωeΓhβ(W):\\ω\\iy = 1}.

We first want to show that then exists q(A), 0 < q(A) < 1 such that

for each ωe S.
If this is not the case, there is a sequence (ωn) from S such that

| | ω Λ | | 7 - > l .
By the Montel property, (con) has a convergent subsequence (β)n)

and ωn.-+ώe S. (since S is closed). Now \\ωn.\\j-^l and hence
| |ώ | | i = 1 and so supp ώ g l . But no element of Γhe{W) has support
contained in A a proper subset of Int W. ([3] p. 186).
Hence there exists q(Ά), 0 < q{A) < 1 such that

\\ω\\-A^q{A)\\ω\\λy.

To get the second inequality, consider Ω:

\\ω\\-Ω^q(Ω)\\ω\\Ψ

hence
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H ω | U - \\ω\\2£q(δ)\\a>\\w

or

(l-q(ΰ))\\o>\\w£\\*>\\l

and we have qr{A) — 1 — q{Ω). Which proves the lemma.

NOTE. We have 1 - q(Ω) ^ q(A). So q(A) + q(W - A) ̂  1.

COROLLARY. & is a closed subspace of φ l β

Proof. We show $ contains all the limits of its Cauchy sequences.
Let (ωn) be Cauchy in Λ. Let (ώn) be the corresponding sequence in
Γhe(W) (such that ώn\j = ωΛ). Now (ώj —> ώ e Γhe(W) in the L2 norm
on Γhe(W). Since the IΛ-norms on Γke(W) and ̂  are equivalent. It
follows that

(ωn) >ώ\A

in the U norm on $ and hence $ is closed. We now prove:

THEOREM. Let L be a U-normal operator on φ l β Then the equa-
tion a) — s = L(co — s) admits a solution ω e i The solution is unique
provided B f] Im L = (0).

Proof. Assume there exists p e & such that

(+) -ΛΓp - s = L(p - s) .

We then have

L(-Kp - s) = U{p - s) = L(p - s) = --Kj) - β .

Setting ω = — ifp we obtain an element of $ such that

ω — s — L(o) — s) .

It then suffices to solve (+). We rewrite it as:

(++) [I~(I-(K + L))]p = -(I-L)8.

The latter admits a solution p e & (which can be written as a Neumann
series) if

or, what is the same, if the aperture

0 ( I m ( J - K),I
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(For the definition and properties of the aperture see [2] p. 69.) Now

0(lm (I- L), lm(K))

= max {dist [S(lm (I - L)), Im K], dist [S(lm K), Im (I - L)]}

(where S(V) denotes the unit sphere in the subspace V).
Now the unit spheres in Im (I — L), im if are closed and bounded

hence compact since & has the Montel property.
Assume that the max is given by the first term; let x e S(Im (I —

L)). The projection of x on Im K lies in the unit ball of Im K which
is compact. Hence we can consider in the computation of θ the distance
from S(Im(I — L)) to the unit ball of ImK and the distance is thus
attained.

Let

dfeS(lm(I- L)), dgelmK

be corresponding points. One has

e = \(df,dg)\
\\df\\\\dg\\ '

If now θ — \, then \(df, dg)\ = \\df\\ \\dg\\ and hence df = Xdg where

λ is a constant, and also df — (I — L)dh.
Now dg is extendable and df e Im (I — L). It follows that df =

0, a contradiction.
(A similar reasoning is valid in case the max in the definition of

θ is given by the second term.)
It follows that θ < 1 and (++) has the solution.

ω = -Kp - KΣi [I- (K + L)]n(I - L)s .
n = 0

NOTE. Instead of & one could work in a closed subset of & e.g.
hm{A).

The uniqueness is discussed as before: we get uniqueness provided

Im K Π Im L = {0} .

i.e. no differential in the image of L is extendable to W.
If ωγ and ω2 are solutions, then

(1 - L){ω1 - ω2) = 0 .

Now

(Oi = —Kpi i = 1, 2 .

So
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(I - L)K(Pl -p2) = 0.

Hence if

Im K Π Im L = {0} , p, = p2 and ωι = ω2 .

Conversely, if there is a differential r e ^ such t h a t

τ = L// = i£i;

t h e n if ω is a solution in 5ΐ of

ω — s = L(o) — s)

we have

a) + τ — s = τ + L(ω - s) = L(μ + ω — s) = L(τ + ω — s)

and uniqueness is lost.

As examples we could take:

(i) L = Λo orthogonal projection on h$(A) .

Then

Im (I-L) = tC(A)

and

Im (I- L)Π Hext{A) = {0} and Im L Π fl..*(A) = {0}

(ii) L = Ax orthogonal projection on h'oβ(A). Similar results are valid.
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