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CONDITIONAL EXPECTATIONS ASSOCIATED
WITH STOCHASTIC PROCESSES

R. A BROOKS

A stochastic process, E[x(t, -)\J^7](o)), on a probability
space (Ω, Jzf, P) and an interval D, where x e Li(D x Ω) and
L^T, t e D} is an increasing collection of sigma-fields in j y ,
is considered. Sufficient conditions for the joint measurability
of E[x(t, OI ^ΓKω) in (£, ω) are given, and if xeL2(D x Ω),
it is shown that, under certain fairly general conditions,
E[x(t, •) I J^t](ω) can be identified with the projection of x
onto a certain subspace of the Hubert space associated with
L2(D x Ω). The results obtained herein have application in
certain classes of stochastic optimization problems.

l Introduction* Interest in the application of mathematical
analysis to problems associated with optimizing control systems has
been significant in recent years. [16], [6], [7], [9], [13]. A particular
class of stochastic optimization problems [1] which are of interest in
certain control system applications can be abstractly formulated in
the following manner.

Let (Ω, jy, P) be a probability space and let (D, &, m) be a
measure space, where D = [a, b]a R, & is the collection of Borel
measurable subsets of D, and m is a finite measure defined on (D, &).
Consider the product measure space (D x Ω, & x j ^ , m x P), and
denote by L2(D x Ω) the collection of real valued & x j^-measurable
functions defined on D x Ω which are square-integrable with respect
to m x P. Let y(t, co) be a stochastic process on (Ω, jy, P) and R,
and let

Y(t, o)) = [y(τ, ω), τ < ίj, (ί, ω) e R x Ω .

For each t e R, denote by ^/t the minimal sigma-field of subsets
of Ω with respect to which every element of the random vector
Y(t, •) is measurable, and observe that t',t"eD, tf<t" implies

In the stochastic optimization application under consideration,
the random vector Y(t, •) is the observation available to a controller
at time te D, and the control problem is the following: For an arbitrary
but fixed element v e L2(D x Ω) determine a control u0 e L2(D x Ω)
with the property that uo(t, ) is ^-measurable for each te D and
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ί [uo(t, ω) - v(t, ω)]\m x P)(d(t, ω))
JDXΩ

= inf {( [u(t, ω) - v(t, ω)]2(m x P){d(t, ω)); ue L2(DxΩ) ,

u(t, ) is ^-measurable for each t e D > .

The ^-measurability condition is imposed in order that the minimizing
control uQ(t, •) be a Baire function of the observation vector Y(t, •)
for each te D.

Now let

^ T = {G e & x j^f) Gt. e %/t for all t e D) ,

where G«.Ξ{α>e Ω; (t, ω) eG}, te D, and observe that ^/έ c & x
is a sigma-ίield. Consider the Hubert space H of m x P-equivalence
classes in L2(D x Ω), and let SczH be the collection of m x P-
equivalence classes generated by the .^f-measurable elements in
L2(D x Ω). It is readily verified that S is a subspace of H, and
hence Ps, the projection operator which maps H onto S, exists.
Consequently, for each ve H, there exists a unique uoe S such that

I K - v| | = inf {||% - v\\;ueS) ,

and, by the Projection theorem,

u0 =

Thus, ascertaining a solution to the stochastic optimization problem
stated above is tantamount to identifying the projection operator
Ps, and this is done in the following theorem, the proof of which
will be given later.

THEOREM 1.1. Let veL2(DxΩ). Then there exists an
measurable real-valued function defined on D x Ωf denoted by
E[v(t, •) I ̂ K G ) ) , which is a conditional expectation of v(t, •) given
^/t for m-a.e. te D, and moreover,

(Psv)(t,ω) = E[v(t, )\%/t](ω)

for m x P-a.e. (£, ω)e D x Ω.

The crux of the proof of the above theorem is to prove the
existence of the ^f-measurable function E[v(t, •) | ^/t](ω). The main
result obtained in the sequel is that an ^Γ-measurable function
E[v(t9 •) I ̂ Jίω) does indeed exist. Other results which make use
of this measurability are also presented.

The utility of the conditional expectation representation of the
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operator Ps is twofold. First, some interesting and useful facts
regarding the solution of the stochastic optimization problem can be
deduced using properties of conditional expectations [1]; and second,
the problem of calculating conditional expectations of the type
encountered above has received much attention in the literature, and
efficient computational algorithms have been developed in certain
cases. [8], [10], [11], [12], [3], [15], [17], [5], [4].

2* Preliminaries* Let {̂ 7, te D) be a collection of increasing
sigma-fields in s*f, i.e., for each teD, J^ajz? and V, V'eD,
V < ί" implies ^ v c ^ v , . Let xeL,(D x Ω). Then x(t, •) e LX{Ω)
for m-a.e. teD, and consequently, [14], a conditional expectation
E[x(t, •) I J^](ω) exists for m-a.e. teD. By defining E[x(t, •) | ^](ω)
to be an arbitrary random variable for each t in the exceptional set,
E[x(t, •) I ^l](ft>) can be extended to be a stochastic process on
(Ω, <S^, P) and D, and this is the basis of the following definition.

DEFINITION 2.1. Let x e Lγ{D x Ω). A conditional expectation
of x with respect to {^t,teD}, denoted by E[x(t, •) I-^Π(ω)> is a
stochastic process on (Ω, Ssf, P) and D with the property that for
m-a.e. teD,

( i ) E[x(t, •) I ̂ 7] is ^-measurable,
(ii) E[x(t, *)\^rt\eLlΩ),

(iii) ( E[x(t, )\^](ω)P(dω) = [ x(t, ω)P{dω) for all Fe^t.
JF )F

It has already been mentioned that a conditional expectation of
x with respect to {^, teD} exists, although not necessarily uniquely,
for each xeL^DxΩ), and the question which is now asked is
whether there exists a & x jy-measurable representation for the
conditional expectation of x with respect to {J^l, teD}. Before
addressing this fundamental question, several preliminary results
will be given.

LEMMA 2.1. Let x e LP(D x Ω), 1 ^ p < oo. // E[x(t, •) | ]()
is & x J&'-measurable, then E[x(t, •) | ^](co) e LP(D x Ω). More-
over, if E[x(t, •) I J^]r(ω) is any other & x j^-measurable condi-
tional expectation of x with respect to {J^ϊ, teD}, then

E[x(t, •) I &l\'{ω) = E[x(t, •) I J^7](ω) m x P-a.e.

Proof. The uniqueness of & x j^-measurable representations
for the conditional expectation of x with respect to {^t, teD} up to
m x P-equivalence on D x Ω is immediate, and an application of
Jensen's inequality for conditional expectation, together with Tonelli's
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theorem, proves E[x(t, •) | <β^](ω) e LP(D x Ω).

LEMMA 2.2. Let J^ c Szf be a sigma-field and let xeL^D x Ω).
Then there exists a έ%? x ^-measurable stochastic process on (Ω, s^, P)
and D, denoted by E[x(t9 •) | J^~\(ω), which is a conditional expecta-
tion of x(t, •) given JF for each teD such that x(t, ^

Proof. It is sufficient to prove that the lemma holds on L[(DxΩ),
where L[(DxΩ) = {xeL,(D x Ω); x(t, ^eL^Ω) for all teD}, and to
this end let S be the collection of elements in L[(D x Ω) for which
the lemma holds.

(1) To show that S contains the characteristic functions of
measurable rectangles, observe that if F = B x A, where ΰ e ^ ,

then χF(t, ω) = χB{t)χA{ω), (t, ω) e D x Ω, and, for each teD,

E[χF(t, •) I ^Π(ω) - χB(t)E[χA

for P-a.e. ωeΩ, where E[χA \ ^~\{(ύ) is a conditional expectation of
χA given ^ 7 Thus the right-hand side of (1) is a & x ..^measurable
stochastic process on (Ω, jy, P) and D which is a conditional expecta-
tion of χF(t, •) given ^ for each teD.

(2) Observe that S is closed with respect to linear operations
in the sense that if xx{t, ω), , χn(t, ω)e S, cly , cne R and x (t, ω) =
ΣΓ=i Wat, ω), (ί, ω)e D x Ω, then x(t, ω) e S.

(3) S is also closed with respect to dominated convergence
in a certain sense. To show this let {xn(t, co), n — 1, 2, •} c S,
x(t, ω), w(t, ω)e L[(DxΩ), and suppose that x(t, ω) = \\mn^xn{t, ω)
for all (t, ω)e D x Ω, and also that | xn(t, ω) \ ̂  w(t, ω) for all
(t, a)) e D x Ω, n = 1, 2, . It is now shown that xe S. For each
n = 1, 2, , let i7[α;Λ(£, •) | ^~](co) be a & x ^^measurable stochastic
process on (Ω, j ^ P) and D which is also a conditional expectation
of xn(t, •) given ^~ for each ί e D . Now for each teD,

E[x(t, •) I JΠ(α>)

%—>oo

for P-a.e. ωeΩ [2, p. 23]. Let z{t, ω) be defined on D x Ω by

(lim E[xn(t, •) I ̂ ~](ω) , when this limit exists ,

z(t, ω) = j -oo β

( 0 , otherwise .
Then 2(ί, a)) is a ^ x ^^measurable stochastic process on (Ω, S/, P)
and D, and, for each teD, z(t, ω) is a conditional expectation of
a?(ί, •) given ^ 7 Thus O G S .

(4) Let 9f = {FG ^ x j ^ ; χ^ e S}. From (1), it follows that ^
contains the measurable rectangles, in & x s$f, and (2) then implies
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that ^ contains the field generated by the measurable rectangles in
& x Ssf. From (3) it follows that ^ is a monotone class, and
consequently, by the monotone class lemma, ^ = & x s$f.

(5) Let x e L[(D x Ω). Then there exists a sequence of simple
functions {xn, n = 1, 2, •} c L[(D x β) such that α?ί(ί, ω) f a;+(£, <#)
a?;(ί, ω) t x~(t, ω), as w—• ̂ o, for all (ί, ft))eΰx β. From (2), (4) it
follows that {xn, n = 1, 2, } c S, and (3) then implies a eS, which
proves the lemma.

The next result is a Fubini-type theorem for conditional ex-
pectation.

LEMMA 2.3. Let J?~ (z Sxf be a sigma-field, let xe LL(DxΩ), and
let E[x(t, •) I ̂ \{ω) be a & x ^"-measurable conditional expecta-
tion of x(t, •) given j ^ ~ for m-a.e. teD. Then

(t, )m(dt)

/or P-α.e. α)efl.

Proof. Immediate consequence of Fubini's theorem.

LEMMA 2.4. Let D0(Z D be countable, and suppose that
o{\Jf<t^t'} for each teD\DQ. Then for each Aes^, there exists a
& x ^/-measurable conditional expectation of χΛ with respect to

Proof. Let S' c D be countable and dense in D and let S —
S ' U A U W . Then S c f l is also countable and dense in D. Let
S = {Si, s2, } be an arbitrary denumeration of S for which s± = α,
and for each t e D put s(t, n) = max {si e S; s* ̂  ί, ί = 1, 2, w},
^ = 1, 2, .

Let A e s^ and for each teD let u(t, ω) be a conditional ex-

pectation of χA given ^ 7 Then for each teD it is clear t h a t

I u(t, ω) I < 1 for P-a.e. ω e Ω.

Let wΛ(£, ω) — u{s{t, ri), ω), (t, ω) e D x Ω, n = l, 2, , and observe

that {un, n = 1, 2, } is a sequence of ^ x j^-measurable functions
on D x iλ Furthermore, for each w = 1, 2, , £e J9, %Λ(ί, •) is ̂ 7-
measurable since s(ί, n) ̂  ί.

Now if te S, then s(ί, n) — t for w sufficiently large, and hence
limπ_co un(t, ω) = u(t, ω) for all ω e Ω. On the other hand, if ί e D\S,
then s(t, n) \ t as n —> ©o, and thus

U ^7,,,., = U



38 R. A. BROOKS

Therefore, by hypothesis,

Λ = l

and consequently, [2, Theorem 4.3, p. 331],

u(t, ω) = lim un(t, ω)
n—»oo

for P-a.e. ω e Ω. Hence for each t e D

( 2 ) u(t, ω) = lim un(t, ω)

for P-a.e. ωe Ω.
By the Bounded Convergence theorem, it follows that for each

teD

lim ί I u(t, ω) - un(t, ω) \ P(dω) = 0 ,

and hence

lim ί I uk(t, ω) - un(t, ω) \ P(dω) = 0 .
k,n-*ooj Ω

For each t e Z>, n = 1, 2, , let

= sup 1 I wΛ(ί, ω) - wΛ(ί, ω) [ P(dω) .
k^n JΩ

Then {vn, n — 1, 2, } is a sequence of ^-measurable functions on
D, and \vn{t)\ <£ 2, ί e D, w = 1, 2, ••• Thus, applying the Bounded
Convergence theorem once more, it follows that

lim \ vn(t)m(dt) = 0 ,

and consequently,

( 3) lim \ I uk(t, ω) — un(t, ω) \ (m x P)(d(t, ω)) = 0 .
k,n->oo J Z>Xί?

Now let ^ = { J P G ^ x J ^ ; Ft.e^, teD}, where JFV =
{co G β; (ί, ω) G ί7}, ί e i ) . It is readily verified that y is a sigma-
field, and it is also clear that {un9 n = 1, 2, •••} is a sequence of
^-measurable functions on D x Ω. Thus, by the Riesz-Fischer
theorem, it follows from (3) that there exists a ^-measurable func-
tion w G L^D x Ω) such that

lim [ I w(t, ω) - ujt9 ω) \ (m x P)(d(t, ω)) = 0 ,
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and hence there exists a subsequence {nk} c {n} such that

w(t, ω) = Km u {t, ω)

for m x P-a.e. (ί, ω) e D x Ω. Therefore, for m-a.e. t e D,

w(t, ω) = Km unk(t, ω)

for P-a.e. ωe Ω, and from (2) it follows that, for m-a.e. teD,
w(t, ω) = u(t, ω) for P-a e. ω e Ω. The ̂ -measurability of w implies
w{t, •) is ^7-measurable for each teD, and consequently w is a
^ x jy-measurable conditional expectation of χA with respect to

3* Main results* Let y(t, ω) be a stochastic process on
(β, jzf, P) and i2, let

Γ(ί, ω) = [|/(r, ω), τ < ί], (t, ω) e Λ x Ω ,

and for each te R, let

^ - σ{Y(t, •)}

LEMMA 3.1. %/t = σ{\Jt,<t %/t,}, teR.

Proof. Since ^/t is a sigma-field and (Uί<ί &t) c: J^, it follows
that o {(Jί'<ί ^V}c ^ for each teR.

Let ί e J? be fixed. Then for each τ < £, the random variable
2/(r, •) is measurable with respect to ^/t, for each V > r, and hence
?/(r, •) is measurable with respect to 0"{Uί'<« ίfi*}. Thus

^ = σ{[y(τ9 •), K ί ] } c

and this proves the lemma.

THEOREM 3.2. Let xeL^D x Ω). Then there exists a & x
measurable conditional expectation of x with respect to {J^, teD}.

Proof. From Lemmas 2.4 and 3.1, it follows that the theorem
holds for x = χA9 Ae s/. By an argument which parallels the proof
of Lemma 2.2, it can be shown that the theorem holds for all
xeh^Ό x Ω).

Now let ^ c ^ x J / be the sigma-field defined by
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^ f = { 6 e ^ χ j / ; G t . 6 ^ for all teD} ,

and observe that Theorem 3.2 implies that for each x e LX(D x Ω)
there exists an ^C-measurable conditional expectation of x with
respect to {?/u t e D). Let H be the Hubert space of m x P-
equivalence classes in L2(D x Ω), with innerproduct denoted by
<•,•>, let S c f f be the collection of m x P-equivalence classes
generated by the ^C-measurable elements in L2(D x Ω), and let Ps

be the projection of H onto S.

THEOREM 3.3. Let xeL2(D x Ω) and let E[x(t, •) | ^ ] ( ω ) δβ αw
^//f-measurable conditional expectation of x with respect to {^/u te D}.
Then

(Psx)(t, ω) = E[x(t, -)\&t](ω)

for m x P-a.e. (t, ω) e D x Ω.

Proof. The existence of an ^/C-measurable conditional expecta-
tion of x with respect to {^/t, teD} follows from Theorem 3.2, since
L2(D x Ω) c Lt(D x Ω).

Let Mz^ and observe that

[(Psα?)(ί, ω) - E[x(t, •) I &t](ω)](m x

- <Psx, Xχ> - \ ί E[x(t, •) I 2/t](ω)P(dω)m(dt)

= <»ι Zjf> - \ \ ^(^ o))P{dω)m{dt)

= ί a?(ί, ft>)(m x P)(d(ί, ft>)) - f a?(ί, ω)(m x P)(d(t, ω))

= 0 .

From the arbitrariness of Me^, it follows that

(Psx)(t, ω) - JS?[a;(ί, •) I &t](ω)

for m x P-a.e. (t, ω) e D x Ω.

4. Extensions* The theorem which follows extends some of
the results obtained in §§ 2, 3, and it has application in the study
of the class of stochastic optimization problems defined in § 1.

THEOREM 4.1. Let (D\ &') he a copy of (D, &), let m' be an
arbitrary finite measure on (£)', &')9 and let xeLJ^D' x D x Ω).
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Then there exists a &' x & x ^/-measurable real-valued function
defined on Π x D x Ω, denoted by E[x(s, t, )\ %/t](ω), which for
m-a.e.teD, is a conditional expectation of x(s, t, •) given %st for
every seD' such that x(s, t, •JeL^fl). Furthermore, for every teD,
E[x(s, t, •) I j^](ω) is &' x ^-measurable on Dr x Ω, and, for
m-a e. t e D,

X{S, t, -)m'{ds)\%/λ(ω) = [ E[x(s, t, .) | %/t]{ώ)mf{ds)

for P-a.e. ωeΩ.

Proof. The existence of E[x(s, t, •) | cjyt](ω) with the stated
conditional expectation and measurability properties is established
by an extension of the proof of Lemma 2.2, and the validity of
interchanging conditional expectation and integration is guaranteed
by Lemma 2.3.
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