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QUASI PROJECTIVES IN ABELIAN
AND
MODULE CATEGORIES

K. M. RANGASWAMY AND N. VANAJA

If R is a ring without zero divisors then it is shown
that any torsion-free quasi-projective left R-module A is
projective provided A is finitely generated or A is “big”. It
is proved that the universal existence of quasi-projective
covers in an abelian category with enough projectives always
implies that of the projective covers. Quasi-projective
modules over Dedekind domains are described and as a
biproduct we obtain an infinite family of quasi-projective
modules @ such that no direct sum of infinite number of
carbon copies of Q is quasi projective. Perfect rings are
characterised by means of quasi-projectives. Finally the
notion of weak quasi-projectives is introduced and weak
quasi-projective modules over a Dedekind domain are investi-
gated.

1. Introduction. An object A in a category .o is called quasi-

projective [14] if given an epimorphism A—J—:B and a morphism
g: A— B, there is h: A - A making the following diagram

A
/ ]
o,
/S 1
./ P
4—7L B

commutative. This paper starts with the investigation of the quasi-
projectives in an abelian category. Utilising a few basic lemmas, it
is shown that the universal existence of the quasi-projective covers
in an abelian category .%” implies that of the projective covers,
provided .o~ possesses enough projectives and this answers affirma-
tively a question of Faith [4] in a general form. Next we consider
quasi-projectives in the category of modules. It turns out that “big”
torsion-free quasi-projectives over rings without zero divisors are
always projective. Artin semi-simple rings are characterised as those
rings over which quasi-projectives and projectives coincide. In §5,
quasi-projectives over a Dedekind domain R are investigated: A quasi-
projective R-module is either torsion or torsion-free. A torsion R-
module is quasi-projective if and only if it is quasi-injective but not
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injective. If R is a complete discrete valuation ring, then the torsion-
free quasi-projective R-modules are just the free R-modules and the
torsion-free modules of finite rank. Suppose R is a Dedekind domain
which is not a complete discrete valuation ring and ¢ is the number
of distinct prime ideals of R. If o < 2%, then all the torsion-free
R-quasi-projectives are projective. If o > 2%, then a torsion-free
quasi-projective R-module A is projective if either (i) rank 4 <¥, or
(ii) rank A > 0. In the case when W, < rank 4 < o, A is torsion-
less, W.-projective and contains a free summand F having the same
rank as A. As a biproduct we at once get an infinite family of
quasi-projective modules A such that no direct sum of infinite num-
ber of copies of A is quasi-projective. In §6, Perfect rings are
characterised as those rings R such that R-quasi-projectivity survives
under direct limits. A weakened form of quasi-projectivity — called
weak quasi-projectivity — is considered in the last section and weak
quasi-projectives over a Dedekind domain are completely characterised.

2. Preliminaries. All the rings that we consider are associative
and are assumed to possess an identity and all the modules unitary
left modules. A sub-module S of an R-module M is called fully in-
variant if S is stable under every R-endomorphism of M. S is called
a small submodule, if S+ T = M implies T'= M for any submodule
T of M. A projective module P is called a projective cover of M if
there is an epimorphism P— M whose kernel is small. A module
M over an integral domain is called reduced if 0 is the only divisible
submodule of M. By the rank of a torsion-free module M over a
Dedekind domain KB we shall mean the cardinality of a maximal R-
independent subset of M. An R-module M is called quasi-injective

if for any exact sequence O—»S—LM, the induced sequence
Homu(M, M) —— Hom (S, M) — 0

is exact, where *(f) = i o f for all f in Hom,(M, M). For the basic
results in category theory, modules and abelian groups, the reader
is referred to [5], [6], [10] and [11].

3. Quasi-projectivity in abelian categories. In this section,
we examine the properties of quasi-projective objects in an abelian
category. The main result shows that the universal existence of
quasi-projective covers in an abelian category .o implies that of
projective covers, provided .o possesses enough projectives.

NoTe. In conformity with our notation in the subsequent sec-
tions, a composite fo g of two morphisms is obtained by applying f
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Jirst and then g.

LemMMA 3.1 [14]. In an abelian category, any retract of a quasi-
projective 1s quasi-projective.

The following lemma gives a condition under which an object
becomes projective.

LEMMA 3.2. An object A in an abelian category is projective if
and only if there exists an epimorphism P> A with P projective
and A @ P is quasi-projective.

Proof. We prove only the “if” part. Let f: P— A be the given

epimorphism, 45 AEBP——» =1, and P—»A QBP——» =1,. By
the quasi- prOJectmty of AP P, there ex1sts g AQP—A@DP such

that A@PL A=A PL A@PL PL A, Then
ly=dj=1i(geoj of)=(Gcgei)f.

Thus A is a retract of P and hence projective.
Dualizing 3.2, we obtain

LEMMA 8.2'. Am object A is an abelian category 1is injective if
and only if there is a monomorphism A— I with I injective and
A DI is quasi-injective.

Next we examine the universal existence of quasi-projective covers.

DEFINITION 3.3. (i) An epimorphism f in a category is called
a mintmal epimorphism if, whenever g o f is an epimorphism, ¢ it-
self is an epimorphism.

(ii) A— X is called a projective (quasi-projective) cover in a
category, if A is projective (quasi-projective) and f is a minimal
epimorphism.

(iii) A category .o is called perfect (quasi-perfect) if every ob-
ject in &7 possesses a projective (quasi-projective) cover.

(iv) A category is said to possess enough projectives, if, to
every object A, there is an epimorphism P-— A with P projective.

REMARK. (i) For an axiomatic treatment of minimal epimor-
phisms see [1]. Observe that in the category of R-modules, an
epimorphism f: A— B is minimal if and only if Ker f is small in
A.
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(ii) The notion of a perfect category has been considered in [2],
[3].

(iii) Our definition of a quasi-projective cover is slightly different
from the one defined in [14] for modules. However, it is easy to see
that for the category of modules over a ring R, the universal exist-
ence of quasi-projective covers according to the new definition is
equivalent to the universal existence of quasi-projective covers ac-
cording to the definition given in [14].

It is clear that a perfect abelian category is quasi-perfect.
Conversely, is a quasi-perfect abelian category perfect? This is the
category-theoretical formulation of a question raised by C. Faith [4]".
The following theorem answers this:

THEOREM 3.4. Amn abelian category .7 is perfect if and only if
it s quasi-perfect and possesses enough projectives.

Proof. IF part: Let Aec.or and PL A an epimorphism with
P projective. Let ¢g: Q — AP P be a quasi-projective cover of
A @ P. Consider the following commutative diagram

7:”

Q"
| !
Eg’ ‘g
|
0 A—' sAapP—3 . p 0

where the square is a pull-back and

A aegpisa-1, P apPripP=1,.

By Lemma 2.61 of [5],

,il/

0 0 Q-2 . p 0

is an exact sequence which splits since P is projective. Let f: P— Q'
be such that fogoj’ = 1,. Since ¢ is epic and the square is a pull-
back, ¢’ is also epic. We claim ¢’ is minimal. Let A': C— @ be
such that A'og’ is epic. Let h = (B'-7”) @ f. Consider the following
commutative diagram

1 While this paper was being written we found out that this question has been

recently answered independently by A. Koehler [12], K. R. Fuller, D. A. Hill and J. Golan
for the category of R-modules.
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0 c coP P 0
| |
)4 h 1p
| l
0 Q Q P 0
| |
g g 1p
R
0 A—" sapP—1 .p » 0

where the top row is split exact with the obvious maps. By the 5-
lemma, %o g is epic and since g is minimal, % is epic. Since

C—CehP—P—0

is exact, again by Lemma 2.61 of [5], the left top square is a pull-
back. Since % is epic, 2’ is also epic. Thus ¢ is minimal epiec.
Since P is projective and u: P-— A, there exists v: P— @ such that
vog = u. By the minimality of ¢’, v is an epimorphism. Then the
quasi-projectivity of @ @ P and the Lemma 3.2 imply that @ is pro-
jective. Thus ¢': @ — A is a projective cover of A and we conclude
that the category is perfect.

REMARK 1. Theorem 3.4 is best possible in the sense that it
fails to be true if .o~ is not an abelian category. To see this, let
.57 be the category of all the abelian groups and .%7 the full sub-
category of .7 consisting of all the cyclic groups. Then .o is not
abelian. .97 has enough projectives and is clearly quasi-perfect (every
object in .97 is quasi-projective). But .o~ is not perfect since the
prime cyclic group Z(p) possesses no projective cover in .97

REMARK 2. A quasi-perfect abelian category need not possess
enough projectives. The category .5, of all finite abelian p-groups
is one such. The quasi-projectives in .&, are the direct sums of
isomorphic eyclic p-groups [7]. &, is abelian and is readily seen to
be quasi-perfect. But it possesses no non-trivial projectives.

4. Quasi-projectives in the category of modules. In this sec-
tion we indicate some of the simple properties of quasi-projective
modules over a ring. We also investigate when a quasi-projective
module over a ring R without zero-divisors becomes projective. It
turns out in a surprisingly simple way that the “big” torsion-free
quasi-projectives over such R are projective. Some of the preliminary
lemmas in this section hold in any abelian category but, for the sake
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of convenience, we will consider only the module case. Lemmas 4.3
and 4.4 occur in [7], but are proved here for the same of completeness.

LEMMA 4.1. [14]. If A is a quasi-projective R-module and S 1is
Sully invariant in A, then A/S is quasi-projective.

COROLLARY. Let I be a two sided ideal of a ring R. Then R]I
18 quasi-projective as an R-module.

The converse of Lemma 4.1 is not always true. It holds, however,
under some restriction on S, as indicated below.

LEMMA 4.2. Let S be a small submodule of a quasi-projective
module A. Then A/S 1is quasi-projective if and only if S s fully in-
variant in A.

To prove this, replace the word, “projective” in the proof of
proposition 2.2 of [14] by “quasi-projective”.

The following lemma gives a condition when a submodule of a
quasi-projective module becomes a summand.

LEMMA 4.3. Let S be a submodule of a quasi-projective module
A. Then S is a summand if and only if A/S is isomorphic to a
summand of A.

Proof. Let A= B®C and f: B— A/S be an isomorphism.
Define g: A— A/S by g| B=f and ¢g|C =0”. By the quasi-projectivity
of A, g lifts to an endomorphism % of A such that 2 o p = g, where
p: A— A/S is the natural map. Set p’ = f~'oh. Since p'op = 1,
the sequence 0 — S — A — A/S — 0 splits and thus S is a summand

of A.
Dualising 4.3, we obtain a corresponding statement for quasi-

injectives.

LEmMA 4.3. Let S be a submodule of a quasi-injective module A.
Then S will be a summand if and only if S 1s isomorphic to a
summand of A.

REMARK. Lemma 3.2 and 3.2’ can also be easily deduced from
4.3 and 4.3’ respectively.

LEMMA 4.4. Let A be a quasi-projective module. Then the exact

2) g | B denotes the restriction of the map g to B.
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sequence 0 — T — S EA A — 0 splits, whenever S is a submodule of A.

Proof. Let g: A— A/T be an epimorphism such that ¢g|S = f.
Let h: A— A/T be monic with Im A = S/T. Then there exists an
endomorphism %’ of A satisfying A’og = h. Since Im A =S, it is

readily seen that 2’ is a split map of the sequence 0— T ——»S—J:A—»O.
Hence the Lemma.
Dualising 3.4, we obtain an analogous property of quasi-injectives.

LEmmaA 4.4'. If A is quasi-injective, thenm the exact sequence
0-A5X—>Y—0 splits whenever X is a quotient of A.

As an easy application of Lemma 4.4 we show that big torison-
free quasi-projectives over an integral domain are projective.

THEOREM 4.5. Let R be a ring without zero divisors. Then any
torsion-free quasi-projective R-module containing an R-independent
subset of cardinality exceeding the cardinality of R is projective.

We may assume, without loss in generality, that R is infinite
(since otherwise R becomes a field). Let A be a quasi-projective
torsion-free R-module and S a maximal R-independent subset with
|S|=|R|. Let F be the (free) submodule generated by S. Then
|A|=1]S|-|R|=|S| and so A can be obtained as an epimorphic
image of F. Since F is free, A is projective by Lemma 4.4.

REMARK. (i) From the proof of 4.5 it is clear that, if R has
no zero divisors, then a torsion-free quasi-projective R-module 4 is
projective exactly when @, A is quasi-projective for every cardinal
M.

(ii) K. H. Fuller and D. A. Hill (Notices, Amer. Math. Soc., 16
(1969) 961) show that if A is finitely generated quasi-projective, then
.. A is quasi-projective for any m. An immediate deduction from
(i) above: If R has no zero divisors, then a finitely generated torsion-
free quast-projective R-module is projective.

COROLLARY 4.6. A quasi-projective module over a ring without
zero divisors is projective if and only if it is torsion-free and possesses
a projective cover.

We need only to prove the “if” part. Let A be torsion-free
quasi-projective and A = P/S, P projective and S small. By Lemma
4.2, S is fully invariant in P. If m denotes the cardinality of R,
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then @,. 4 = (B.. P)/(@.. S) is quasi-projective, since @, S is fully
invariant in @,, P. The projectivity of 4 then follows from Thorem
4.5.

REMARK. One can deduce that over a ring without zero divisors
a quasi-projective module with a projective cover is either torsion or
torsion-free. For, suppose A, P and S are as in the preceeding proof
and A contains a torsion-free element a = 0. If m > W,-|R|-| 4],
then @, A is quasi-projective, has cardinality m and contains a free
submodule F' of rank m. By Lemma 4.4, @, A and hence A is pro-
jective (and torsion-free).

The following theorem characterises Artin Semisimple rings by
means of quasi-projectives.

THEOREM 4.7. The following properties are equivalent for any
ring R:

(i) R is Artin Semi-simple.

(ii) The R-modules with a projective cover are precisely the
quasi-projectives.

(iii) Ewvery quasi-projective R-module is projective.

Proof. Trivially (i) implies (ii).

Assume (ii). Let @ be quasi-projective. By assumption @ pos-
sesses a projective cover P. Then P@ Q will have a projective
cover and hence is quasi-projective by hypothesis. Lemma 3.2 then
implies that @ is projective.

Assume (iii). Since any simple R-module is quasi-projective, it
becomes projective by assumption. Then all the maximal left ideals
of R are direct summands of the left R-module R and since R has
1, we conclude that R is Artinian Semi-simple. This completes the
proof.

REMARK 1. Observe that if every R-module is quasi-projective
then, by Lemma 3.2, R satisfies the condition (iii) above and hence
R is Artinian Semi-simple.

REMARK 2. Johnson and Wong [9] showed that the quasi-injective
modules over any ring R are exactly the fully invariant submodules
of injective R-modules. A natural question is whether this can be
dualised to quasi-projectives. Precisely, must every quasi-projective
R-module A be of the form P/S with P projective and S fully in-
variant in P? Jans and Wu [14] answered this in the affirmative under
the assumption that A has a projective cover. In the general case,
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the answer turns out to be in the negative. To see this, consider
M = @ (Z|pZ), where Z is the ring of integers, P is a Z-module
direct sum and p runs over the set of all primes in Z. Clearly M
is a quasi-projective Z-module [7]. But M cannot be written as P/S,
where P is a projective (hence free) abelian group and S fully in-
variant in P, since the only fully invariant subgroups of a free
abelian group F' are of the form nF,n =1,2, ---.

REMARK 3. In the statement of the Theorem 4.7 (ii), if we
replace “precisely” by “necessarily”, we obtain a characterisation of
Jacobson semi-simple rings: A ring R is Jacobson semi-simple if and
only if the R-modules possessing projective covers are mnecessarily
quast-projective. To see this, assume the “if” part. Then, by
Lemma 4.2, the small submodules of any projective R-module P are
fully invariant in P. In particular, let P= R @ R, with R, =R
and let J, = J, the Jacobson radical of R, for 7+ =1,2. Now J,
is small in R, and hence in P. But then J, would be fully in-
variant in P, an impossibility since J, can be mapped onto J, by an
endomorphism of P. Thus J, =0 and R is Jacobson Semi-simple.
The converse follows on noting that if R is Jacobson Semi-simple,
then 0 is the only small submodule of any projective R-module.

5. Quasi-projectives over Dedekind domains. In this section
we propose to describe the quasi-projective modules over an arbitrary
Dedekind domain R. First, observe that if A is any quasi-projective

R-module, then any exact sequence 0-— S LAl A/S — 0 yields the
following two exact sequences.

0 —— Hom (4, S) —— Hom, (4, A) - Hom, (4, A/S) — 0
0 —— Exth (4, S) —— Ext!, (4, 4) 1 Ext, (4, A/S) — 0 .

We first consider the torsion free quasi-projective modules. To
avoid the trivial situations, the integral domains that we consider are
not fields, unless explicitly stated.

Lemma 5.1. Let R be a Dedekind domain. Then the quotient
field K of R is a quasi-projective R-module if and only if R is a
complete discrete valuation ring.

Proof. Suppose K is quasi-projective. Given any fe Hom,(K/R,
K/R), there exists a f’eHom,(K, K) such that f'oj = jof where j
is the natural map from K onto K/R. Let f” = f’|R. Since Rf’' =
R, f” is given by a multiplication by an element of R. It is readily
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seen that the association fr f” gives an isomorphism of Hom,(K/R,
K/R) onto R. Now the exact sequence 0 — R — K — K/R — 0 yields
an exact sequence

Hom,(K/R, K) = 0 — Homz(K/R, K/R) — Ext%.(K/R, R)
— ExtL(K/R, K) =0

(the first term is zero since K/R is torsion and K is torsion-free).
Thus R = Homz(K/R, K/R) = ExtL(K/R, R) and the Corollary 7.9 of
[13] implies that R is a complete discrete valuation ring.

Conversely, suppose R is a complete discrete valuation ring.
Then any R-submodule S of K is isomorphic to R or K and hence,
by Theorem 7.9 of [13], Exti(K,S) = 0. K is then clearly quasi-
projective.

We shall first describe the torsion-free quasi-projectives over
Dedekind domains which are not complete discrete valuation rings.

LEMMA 5.2. Suppose R is a Dedekind domain which is mot a
complete discrete wvaluation ring. Then any torsion-free quasi-
projective R-module A 1s torsionless.

Proof. Let 0#2cA and S the pure submodule generated by
x. Since R is not a complete discrete valuation ring, A (and there-
fore S) is reduced, by Lemma 3.1. Thus S PS for some prime
ideal P of R. Then S/PS, being bounded and pure, is a summand
of A/PS (Theorem 5 [11]). A nonzero cyclic summand of S/PS will
be isomorphic to R/P and can be written as Ry/Py, for some y€S.
Let g¢g: S/PS— Ry/Py be a nonzero map. Consider the following
diagram

A
,/
1
//,
/
A—T L aPpy—— 0

fleg

where f’: A— S/PS is obtained via the projection A/PS — S/PS and
f is the natural map. By the quasi-projectivity of A, there exists
h: A— A making the diagram commutative. Now A(khof)=A(f'o9) &
Ry/Py, so that Ah = Ry. Thus h: A— Ry = R and 2k # 0 since &
does not vanish on the rank 1 submodule S. It follows that A is
torsionless.
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COROLLARY 5.3. Let R be a Dedekind domain which is not a
complete discrete valuation ring. Then any torsion-free R-module A
1s W,-projective. Hence any torsion-free R-module of atmost countable
rank is projective.

Proof. Let S be a submodule of A of rank1l. By Lemma 5.2,
A is torsionless so that for each a # 0 in S, there exists f: A— R
such that af = 0. Since S has rank 1 and im f is torsion-free, f|S
is mono. As R is hereditary, S is projective. By finite induction,
it is clear that any submodule of A of finite rank is projective. Then
a well-known step-wise argument (see for example Lemma 8.3.1 [13])
yields that any submodule of countable rank of A is projective.

In the following o denotes cardinality of the set of all distinct
prime ideals of R.

PROPOSITION 5.4. Let R be a Dedekind domain. Then any
torsion-free quasi-projective of rank m = o\, is projective.

Proof. Let A be a torsion-free R-module of rank m = o, and
K be the quotient field of R. It is easy to see that R(P~) is count-
ably generated. Now K/R is @, R(P~), where P runs over the set
of distinet non-zero prime ideals of R and hence K has a generating
set of cardinality ¢¥,. If D is an injective hull of A4, then D=, K
has a generating set of cardinality m. It is then readily seen that
A itself is generated by m elements. Let F be a free submodule
of A of rank m (for example F' may be the submodule generated by
a maximal R-independent subset of A). A can be got as an epi-
morphic image of F' and hence by Lemma 4.4, A is a direct summand
of F' and hence projective.

Combining 5.3 and 5.4, we get the following.

THEOREM 5.5. Let R be a Dedekind domain which is not a com-
plete discrete valuation ring and o = W,. Then a torsion-free R-
module is quasi-projective if and only if it is projective.

REMARK. If we assume the continuum hypothesis and use 5.3
and 5.4, then we can sharpen 5.5 to the following: Let R be a
Dedekind domain wich is mot a complete discrete valuation ring and
0 < 2%, Then any torsion-free quasi-projective R-module is projective.

Next we consider the case when o > 2%,

PROPOSITION 5.6. Let R be a Dedekind domain and A be a
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torsion-free quasi-projective R-module of infinite rank m. Then A
contains a free summand of rank m.

Proof. Let P be any non-zero prime ideal of R. R(P~) is a
countably generated injective R-module. If Q = @, R(P~), then, as
R is Noetherian, @ is an injective R-module. Clearly Q has a gener-
ating set. of cardinality m. Let F' be the free-submodule generated by
a maximal R-independent subset of A. Then @ can be obtained as
a quotient of F, Q = F/S for some submodule S. Consider the fol-
lowing diagram,

A

1y d lf
Y4 AlS
L

A—T L a8=FiS® TS

where g: A/S— F/S is a projection of A/S onto the injective summand
F/S and f is the natural map. By the quasi-projectivity of A, there
exists h: A— A such that hof = fog. It is clear that A & F and
since R is hereditary Ah is projective. As F/S is a direct sum of
m copies of R(P<), it is clear that the rank of Ah = m. Thus 4 =
F’' P K, where K is the kernel of z and F’ is a projective module of
infinite rank m and hence is free [11].

Combining 5.3, 5.4 and 5.6 we get,

THEOREM 5.7. Let R be a Dedekind domain with o > 2%. Then
any torsion-free quasi-projective R-module A 1is projective if either
(i) rank A<, or (ii) rank A=o0. In the case when W, < rank A< o,
A is torsionless, W,-projective and contains a free summand F having
the same rank as A.

The following theorem characterises torsion-free quasi-projectives
over a complete discrete valuation ring.

THEOREM 5.8. Suppose R is a complete discrete valuation ring.
Then the torsion-free quasi-projective R-modules are just the free R-
modules and the torsion-free R-modules of finite rank.

Proof. By Kaplansky [10], any torsion-free E-module of finite
rank is of the form (@~, K, @ (Br., R;,) where each R;= R and
each K, = K, the quotient field of R. Thus if A is any finite rank
torsion-free R-module and S is any submodule, then both are direct
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sums of finite number of copies of K and R, so that
Exti(4, S) = @, Exti(X, R),
where r is finite. By Lemma 5.1, K is quasi-projective so that
Exty(K,R) =0.

Thus Ext%(A, S) =0, whence Hom (4, A) 7 Homz(A, A/S)— 0 is exact
for every submodule S of A, where f’ is induced by the natural
map f: A— A/S. The quasi-projectivity of A then follows. On the
other hand if A is a torsion-free quasi-projective R-module of infinite
rank, then by Proposition 5.4, A is projective and hence free.

COROLLARY 5.9. If A 1is quasi-projective, then a direct sum @ A
of copies of A need mot be quasi-projective.

ExAMPLE. Suppose A is any torsion-free module of finite rank
over a complete discrete valuation ring R such that A is not pro-
jective (for example A = K, the quotient field of R). Then any finite
direct sum of copies A is quasi-projective but, by 5.8, no direct sum
of infinite number of copies of A can be quasi-projective.

We shall now describe the torsion quasi-projectives over R.

THEOREM 5.10. A torsion module A over a Dedekind domain R
is quast-projective if and only if each P-primary component Ap is a
direct sum copies of the same cyclic module R/P* for some fixed
positive integer k depending on P.

Proof. Since a P-primary module over R can be viewed as a
module over the principal ideal domain R,, and quasi-projectivity sur-
vives under this transition, we may assume that R itself is a principal
ideal domain. Our proof would be sketchy since it is similar to
the one given in [7]. Now R(P<) is not quasi-projective since
otherwise, by Lemma 4.3, every submodule of R(P*) would be a sum-
mand. Thus a torsion quasi-projective R-module A is necessarily
reduced. Again, by Lemma 4.3, A cannct contain a summand of the
form (R/P*®) @ (R/(P*)) with k, > k,, since there is an epimorphism
R/(P*) — R/(P*) whose kernel is not a summand. Thus the basic
submodules B, (see [6]) of each P-primary component A, are
bounded and since the A, are reduced, each A, coincides with B,
which is clearly a direct sum of isomorphic cyclic modules. The
“only if” part follows.

Conversely, if A is a direct sum @,, R/(P*) of isomorphic cyclic
modules, then A = F/P*F, where F is free, say, F = @,, B. Since
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P*F is fully invariant in F, A is quasi-projective, by 4.1.

COROLLARY 5.11. A torsion module A over a Dedekind domain
R is quasi-projective if and only if A is quasi-injective but not in-
Jective.

Proof. By Johnson and Wong [9], the quasi-injectives are pre-
cisely the fully invariant submodules of injective modules. The corol-
lary then follows on noting that P-primary injective R-modules are
direct sums of copies of R(P=) and their proper fully invariant sub-
modules are direct sums of isomorphic cyclic P-primary modules.

The following theorem concludes our investigation of quasi-pro-
jectives over Dedekind domains.

THEOREM 5.12. A quasi-projective module over a Dedekind domain
18 evther torsion or torsion-free.

Proof. Suppose A is a quasi-projective R-module with its
maximal torsion submodule A, # 0. Since R(P~) is not quasi-pro-
jective for any prime ideal P, A, is reduced and thus A has torsion
cyclic summands [11]. Let A = (R/P*)@ B. Now if R is not a
complete discrete valuation ring, B/B, is torsion-free quasi-projective
and hence is torsionless (5.2) so that B has a projective summand I
of rank 1. If R is a complete discrete valuation ring, then as in the
proof of 5.10, one can then show that B, = B, is a bounded direct sum
of isomorphic cyclic modules, where P is the unique nonzero prime
ideal of R. Hence B = B, @ B/B;, so B/B; is a torsion-free quasi-pro-
jective R-module and hence contains a summand isomorphic to R or
K, the quotient field of R (5.8). Thus, in either case, 4 has a sum-
mand of the form (R/P*) P C, where C = K, the quotient field of R
or C=1, an ideal of B. Choose a submodule S of C such that S= R
or S = IP* according as C = K or C = I. Then there exists a non-
zero morphism g¢: R/P*— C/S. Consider the following diagram.

(R/P)DC

L
|

(R/P" @ C —L— (RIP*) & (C/S)

where [’ = (é 90>, f being the natural map and ¢ = (8 %),

where g is any nonzero homomorphism R/P*— C/S. This ¢’ cannot be
lifted to an endomorphism % of (R/P*) @ C satisfying ho f =¢', a
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contradiction. We thus conclude that A is either torsion or torsion-
free.

6. Perfect rings. In this section perfect rings are characterised
by means of quasi-projective R-modules.

THEOREM 6.1. Let R be any ring. Then the following properties
are equivalent.

(i) R s left perfect.

(i) A direct limit of quasi-projective left R-modules is quasi-
projective.

(iil) A direct limit of finitely generated quasi-projectives over R
1s quasi-projective.

(iv) Any flat left R-module is quasi-projective.’

Proof. Let Q@ =1lim Q,, 1€ I where I is a directed set and the Q,’s
are quasi-projective R-modules. Toeach 7 € I, there exists, by hypothesis,
an exact sequence 0 — K; = P, ¥, Q;— 0 where P; is projective and
K, is small in P,. Now {P;};.; and {K;};.; can be made into directed
systems in a natural way so that we get a directed system of exact
sequences. Let K =lim K; and P = lim P,. Suppose for each 1¢1

o —>

a;: P;— P and B K;— K are the natural maps associated with
the direct limits. Since the direct limit commutes with exact se-

quences, 0 — kLtpl @ — 0 is exact. We have the following com-
mutative diagram:

Ui Vi

0 K, P, Q: 0
| |
Be! s
l v l
0 K" .p__" ,q 0.

We claim that Ku is fully invariant in P. Let fe End,(P) and ke K.
As R is perfect, P is a direct sum of cyclic projective R-modules
[12]. Let P’ be a finitely generated summand of P containg (k)u

and let P2 P’ be the natural projection. As (P’)f is finitely gener-
ated, we can choose a jelI and a k;c K; such that (Py)a; D (P)f
and (k;)B; = k. Consider the following diagram:

3 In a private communication Dr. J. Golan has indicated that he has also proved
the equivalence of (iv) and (i).
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P.
e
h @oqge
Y J,gf
7
P; ——— (Pja;

©,

where % exists by the projectivity of P,. As (K))u; is fully invariant
in P; (by 4.2), (k)u;hec (K;)u;. Now

(Byuof = (kyucgof(as g | P’ = 1p) = (k) Bioucgef = (kjujo;ogof
= (kjujohoa; € (Kjuoa; = (Kj)Biou & (K)u .

Thus (K)u is fully invariant in P whence Q@ = P/(K)u is quasi-pro-
jective.

Clearly (ii) = (iii) and, since a flat module is a direct limit of
finitely generated projectives, (iii) implies (iv).

Assume (iv). Let A be flat and P projective such that A = P/S.
Since AP P is flat, it is quasi-projective, by hypothesis. Then
Lemma 3.2 implies that A is projective. Thus a direct limit of pro-
jective left R-modules is projective and so R is left perfect, by
theorem P of [2]. This proves (i).

REMARK. If R is left perfect and A is a quasi-projective lelf R-
module, then a direct sum of any number of carbon copies of A4 is
again quasi-projective. This property, however, does not characterize
the perfect rings. Indeed, the investigations made in § 5 show that
if R is a countable Dedekind domain which is not a complete discrete
valuation ring and A is a quasi-projective R-module, then €, 4 is
quasi-projective for any cardinal number m.

7. Generalization. In this section, we consider a weakened
form of quasi-projectivity called w.quasi-projectives. The w. quasi-
projective abelian groups were considered in [8]. We give a descrip-
tion of w. quasi-projectives over a Dedekind domain. It is also
shown that w. quasi-perfect abelian categories with enough pro-
jectives are perfect.

DEFINITION. An object A in a category .o is called weak quasi-
projective (for short, w. quasi-projective) if for any epimorphism
f: A— B and any g: A/B— A/B, there is a ¢’: A— A making the
following diagram
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a—7L B
g'l jg
Aa— L aB

commutative.

It is clear that any quasi-projective is weak quasi-projective.
But the converse is not true. The abelian group Z(P>) is w. quasi-
projective, eventhough it is not a quasi-projective Z-module.

We start with the following lemma which gives a criterion for
quasi-projectivity. The proof is straight forward and hence is omit-
ted.

LEMMA T7.1. An R-module A is quasi-projective if and only if
A DA is weak quasi-projective.

REMARK. It is clear from 7.1 that, unlike the quasi-projective
case, if A is w.quasi-projective then 4 @ A need not be w.quasi-
projective.

The next lemma can be obtained by modifying the arguments
of 3.2.

LEMMA 7.2. [8]. If A@ B is w.quasi-projective and there is
an epimorphism f: A — B, then B will be isomorphic to a summand
of A.

One can define a weak quasi-perfect category in the obvious
manner. Using Lemma 7.1 and proceeding exactly as in the proof of
Theorem 3.4, we obtain.

THEOREM 7.3. A weak quasi-perfect abelian category with enough
projectives 1s perfect.

If we suitably modify the preceding investigation of the quasi-
projectives over a Dedekind domain and make use of Lemma 7.2 we
can obtain the following theorem whose proof is omitted.

THEOREM 7.4. Let R be a Dedekind domain.
(i) A torsion R-module A is weak quasi-projetive if and only if
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each P-primary component A, 1is either quasi-projective or Ap = R(P™).

(ii) If the number o of prime ideals of R is < 2% then the
torston-free weak quasi-projectives are just the (torsion-free) quasi-
projectives. If d > 2%, then a torsionfree weak quasi-projective R-
module A is projective if either A has rank < W, or (i) rank A>o.
If Yo <rank A <o, A s W,-projective and contains a free summand
F whose rank is equal to rank A.

(iii) A properly mized R-module A ts weak quasi-projective if
and only if A= B@C where B is reduced torsion-free quasi-projective
of finite rank and C is an injective submodule of K/R, where K is
the quotient field of R.

The authors are indebted to the referee for pointing out a few
inaccuracies and for offering many suggestions for improvement.
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