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NOTES ON RELATED STRUCTURES OF A UNIVERSAL

ALGEBRA

WILLIAM A. LAMPE

The related structures of a universal algebra % that are
studied here are the subalgebra lattice of % the congruence
lattice of %, the automorphism group of % and the endo-
morphism semigroup of 51. Characterizations of these struc-
tures known, and E. T. Schmidt proved the independence of the
automorphism group and the subalgebra lattice. It has been
conjectured that the first three of the structures listed above
are independent, i.e., that the congruence lattice, subalgebra
lattice, and automorphism group are independent. One result
in this paper is a proof of a special case of this conjecture.
Various observations concerning the relationship between the
endomorphism semigroup and the congruence lattice are also
in this paper. In the last section a problem of G. Gratzer
is solved, namely that of characterizing the endomorphism
semigroups of simple unary algebras. (An algebra is simple
when the only congruences are the trivial ones.)

The characterizations of the various related structures are as
follows: the congruence lattice is an arbitrary algebraic lattice
the subalgebra lattice is an arbitrary algebraic lattice; the auto-
morphism group is an arbitrary group; the endomorphism semigroup
is an arbitrary semigroup with identity. The "independence of
the automorphism group and the subalgebra lattice" is more
precisely phrased as: for each pair <©, 8>, where © is a group
and 8 is an algebraic lattice with more than one element, there is
an algebra 2t with © isomorphic to the automorphism group of 21
and with S isomorphic to the subalgebra lattice of the same algebra
St. All statements about the independence of related structures will
be phrased in this way.

Mentioned above was a proof of a special case of the independence
of the triple consisting of the automorphism group, the subalgebra
lattice, and the congruence lattice. As a corollary one gets a proof
of a special case of the independence of the pair consisting of the auto-
morphism group and the congruence lattice. E. T Schmidt published
what was supposed to be a proof of the independence of this pair of
structures. But, his proof [10] was incorrect. (See e.g. Exercise 31
of chapter 2 of [2]) The author has just completed a proof of the
independence of this pair [8].

The terminology essentially conforms to that in [2]. ω(oτ ωA)
will denote the equality relation on the set A, and φ r cA) will denote
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the total relation. Θ(a0, αj will represent the smallest congrucence
collapsing α0 and aλ. 2 = <L, Λ, V> will denote a lattice. (£(21) =
<^(2t); S> will denote the congruence lattice of 2t @(Sί) = <^(2t); e>
will denote the subalgebra lattice of St. ©(21) = <G(2t); °> will denote
the automorphism group of St. @(2t) = <152ί); o> will denote the endo-
morphism semigroup of 21.

An important algebra for dealing with endomorphism semigroup
and automorphism group problems is the algebra of left multiplications
S(@) of the semigroup @. The operations are all left multiplication
maps and the endomorphisms are all right multiplication maps. As
in Cayley's Theorem, the semigroup of right multiplications of @ is
isomorphic to @.

Many of the details of the proofs which are left out can be found
in the author's dissertation [6J. The various characterizations men-
tioned above can be found in [1], [2], [3]. E. T. Schmidt's result on
the independence of the automorphism group and subalgebra lattice
is found in [11].

1* The property restricting the representation of <©, 80, Sx> as
<©(St),

Let 21 = (A; F} be an algebra. The lattice 8 is assumed to be
an algebraic lattice. Let αeL, and let (x^iel) be a family of
elements of L.

Essentially the property mentioned in the heading is: there exist
α0, ax € A such that for any x Φ a0 and for any congruence β, if aQ =
x(θ)y then a = a^θ). We will give a generalization of this property
and a property of the congruence lattice equivalent to the more
general property. Also, the class of algebraic lattices having the
equivalent property will be discussed.

Let α0, ate A with a0 Φ αx.

(**) There exists a partition {Ao, AJ of A such that a^eA^ and
for any (x, y} e AoxAl9 θ(aθ9 a,) ^ θ(a?, y).

( * ) If α ^ V (χi\i e I)> then a <£ α?< for some i.

Notice that the originally stated condition is a special case of
(**) where AQ — {α0}. Obviously, if an element a of 8 has property
(*), then a is complete-join irreducible. Also, a has property (*) if
and only if α's dual ideal is completely prime.

PROPOSITION 1. // property (**) is satisfied for <α0, αx>,
β(α0, αx) satisfies property (*) m £Λβ congruence lattice of 2t.
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REMARK. This statement was first observed by G. Gratzer.

Proof. Suppose that (Φi\iel) is a family of congruences and

that θ(a0, di) £ V (Φ<|ί e i ) . There exists a sequence a0 — zQ, •••, znf

= aly with Zj e A such that zs = zj+ι{Φi3) for some iά e I. Since α0 e
Aoy αx e Au and {Ao, AJ is a partition of A, there is a k such that s* e
Ao and sA+1 G Alβ So <9(α0, α j £ θ(s t, zk+1) £ Φ4jfc.

PROPOSITION 2. // there is a congruence θ different from co having
property (*), then θ — θ(a0, α j for some a0, ax in A with a0 Φ at and
property (**) is satisfied for <α0, α^.

Proof. Always θ = \/(θ(x, y)\x = y(θ)). Since θ has property (*),
θ = θ(aj, y) for some x,yeA. Fix α0, αx such that θ = θ(α0, αj . Set

5 0 - : {x\Θ(x,a0) g

ft - {y\θ(y,ad g θ(α0, αx)

ft=
Set Ao = Bo and Λ = ft U ft. It follows that 4 0 Π 4 i = 0 . Clearly,
aQ e Ao and α: € A :. Also A = A1 U A2.

Let xoeAo and ^ e i j and consider θ(α?0, α^). First suppose that
α?! G ft. Thus, θ(ίc0, α0) ^ θ(α0, αj and Θfe, α:) g Θ(α0, α^. Now, since
θ(aQ, αx) £ θ(ί»o, α0) V θ(αj0, a?i) V <9(̂ i, αx) and since β(α0, αt) has (*), we
have that β(α0, αx) £ θ(aj0, »i) Now suppose that ajj e ft. So @(α0, αx) £
Θ(a0, xλ) £ <9(α0, x0) V ©(OJO, «I), and thus, Θ(a0, a,) £ ®(a?0, »i)

Combining these two propositions with the congruence lattice
characterization theorem, we get the following statement.

PROPOSITION 3. If 2 is an algebraic lattice, the following are
equivalent:

( i ) there exists a Φ 0, ae L, such that a has property (*);
(ii) there exists an algebra SI = {A; F} with (£(2t), the con-

gruence lattice of 91, isomorphic to S, and there are α0, aί e A, α0 Φ
alf such that (**) is satisfied for <α0, α : );

(iii) /or α^?/ algebra §1 — <A; ί 7 ) with (£(§I) isomorphic to S,
ί/̂ βrβ are a0, a ^ A , a0 =£ a^ ŝ c/̂  ί/̂ aί (**) is satisfied for <a0, ax>

Let SΓ be the class of algebraic lattices having an a Φ 0 with
property (*). Several simple observations can be made. The five
element modular non-distributive lattice is not in 3Γ since none of
the dual ideals generated by a nonzero element is prime. Every
distributive algebraic lattice with a complete-join irreducible element
is in 3ίΓ. If Si and S2 are algebraic lattices, then 21 + S2 e
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denotes ordinal sum). (The zero of S2 is a nonzero element in 8X +
82 having (*)). Every algebraic lattice 8 is both a complete sublattice
of and a homomorphic image of a member of J%Γ since K^Se3ίΓ m

(G£Λ denotes the ^-element chain.) Also, observe that for a family
(Si Ii 61) of algebraic lattices, 77(8;\ie I) e SΓ if and only if there
exists at least one j el with Sy 6 3ίΓ.

2. The construction for representing (©,80,8,) as <@(2ί),@(2I),@(2t)>.
First we need some notation. Let 21 = <A; F} be an algebra and
X £ A. Set F(% X) = {φ\φ is an endomorphism of 21, {x} — xφ~ι

for all xeX}, and set g(2I, X) = <F(2ί, X); o>. In other words, an
endomorphism φ is in JF(2I, X) if (A — X)φ g i - I and xφ = x for
x e X. Clearly, g(2t, X) is a nonempty semigroup with identity.

S*(yf) is the subalgebra system of 21. Recall that Θ(2I) is the
subalgebra lattice, that (£(21) is the congruence lattice, and that G?(2I)
is the endomorphism semigroup.

THEOREM 1. Suppose that 21 and 33 are algebras, that 21 is simple,
that there is a £7g A, \U\ — 2, IT'S D for every DeS^{%), and that
there is an <α0, αL) e B2 with aQ Φ a1 for which property (**) is satis-
fied. There exists an algebra 21' such that:

( i ) @(2Γ) is isomorphic to @(2I);
(ii) K(2ί') is isomorphic to (£(33);
(iii) @(2ί') is isomorphic to g(St, [7).

Proo/. Let 21 = <A; F> and 33 = <J5; (?> and U = {̂ 0, %J and let
<α0, a^eB2 have (**) and let α0 ^ αlβ Assume that A and 5 are
disjoint. For each x e B (J U define a nullary operation fx whose value
is x. Let {Ao, AJ be a partition of I? for satisfying (**). Define four
unary operations as follows:

uQ, x e A U A Q .

α1? otherwise

α0, a; G A .

αx, x e B

'x,xeA— U

uo,xeB{j {u^

aQ, x — u0

For xe A!, set x — x if xe B and set x = α0 if a?e A. Let a?t e A'.
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Extend the operations of F and G to A' as follows: For feG set
/(α0, , α%_J = /(d0, , α%_i). For feF, if all α* e A, then keep
the value of / in 21, and set f(a0, •• ,αΛ_1) = u0, otherwise. Set
F* = F(lGv{fm\xeB\jU}\J{gi\i=l,2,S,4}. Set W = <A'; F'>.

For each D e ^(21), set D = DUB. For each ^ G F(2t, J7), define
φ by letting xφ — xφ if ^ e i and cc<p = x if a e ΰ . For $ e ^(21)
define 6>* by letting 0* = α^, the equality relation on A, if Θ(a0, at) g= Θ
a n d θ* = cA\J {(x, b)\xeA,b = aQψ)} U{<&, ^>|a? € A , b = ao(Θ)} in c a s e
Θ(a0, α j g ^ . Now set Θ = Θ U $*• To complete the proof one shows
that D -+D,φ-^φ, and Θ —>Θ are isomorphisms. The lengthy, but
routine, calculations are left to the reader.

In the proof above the operation qΛ guarantees that an endomorphism
σ of 21' has the property that Aσ £ A. The operations gu g2, gs

guarantee that α0 = ax iff u0 Ξ ^ iff α0 == ax = u0 = ^ . That 21 is
simple guarantees that if x, ye A and x Φ y and x ^= y then a; Ξ % 0 =
%!• Finally #3 guarantees that if x e A and yeB and a; Ξ /̂ then

α0 =

3. Representing <®, 80, 2,} as <©(§!), @(§ί), (£(§!)>.

LEMMA 1. If %— {A; F} is an algebra, then there is an algebra
= {A; F) such that:

( i ) §Γ is simple)
(ii) D is a subalgebra of St iff D is a subalgebra of SI';
(iii) i7(2t) = {φ\ψ€ .27(21), <p is 1 — 1 or φ is constant}.

REMARKS. Roughly (iii) says JE^SΓ) is as big as is possible given
(i) and (ii).

Suppose @ is a semigroup in which every element is right cancella-
tive or a right zero. Every endomorphism of S(@) is 1 — 1 or constant.
By applying this lemma to S(@) we get an easier proof that (β; K2>
is representable. (See [3].)

Proof. Add an additional operation g defined as follows:

[u, if x Φ y
g(x, y, u, v) = ,

[v, if x = y .

Sμpgpse xΦy and Θ is any congruence of 21' with x = yψ). Let
u,veΆ. Thus, M = flr(a?, y, u, v) = 5f(?/, ?/, w, v) = v(β). So Θ — c9 and
(i) is established.

The rest is routine.
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The operation used in the above lemma was used in [5] in a
different context, but in each case the purpose of the operation is to
"fill out" subalgebras in a direct power. This 4-ary function is equi-
valent to the ternary discriminator function [12] [9] in that each can
be expressed as a polynomial in the other.

A modification of the above 4-ary function is used in Lemma 6.
It does not appear that the modified 4-ary function is equivlent to a
ternary function.

LEMMA 2. If 31 is any algebra, then there is an algebra 2t' —
<A'; F') and U S Af with \ U\ = 2 such that:

( i ) @(St) is isomorphic to
(ii) USD for all De
(iii) g(2t, U) is isomorphic to @(St).

Proof. Add two elements u0, ux. Let u0 and uγ each be the value
of a nullary operation. Extend every operation / of 3t by setting
f(x0, , a?Λ_1) = u0 if Xj e U. The rest is obvious.

The next lemma is a theorem due to E. T. Schmidt [11]. Recall
that @(2t) is the automorphism group of St.

LEMMA 3. // © is any group and 2 is any algebraic lattice with
L\ > 1, then there is an algebra % with © isomorphic to @(3t) and

2 isomorphic to @(St).

THEOREM 2. If © is any group, if So and 8X are algebraic lattices
such that \LQ\ > 1, and if there is an a Φ 0, ae Llf with property (*),
then there is an algebra St such that:

( i ) © is isomorphic to ©(§1);
(ii) 80 is isomorphic to @(St);
(iii) Sx is isomorphic to

REMARKS. A best possible representation theorem would, of course,
have the restriction that \Lλ\>l. Also, if |L o\ = 1, then it is necessary
that \G\ = 1. Of course any triple of the form <1, Ŝ , S> is represen-
table. (©! is the one element chain.)

Proof. Let S3 be the algebra given by Lemma 3 when applied
to © and So. Let S3' be the algebra given by Lemma 2 applied to S3.
Let 93" be the algebra given by Lemma 1. Let (£ be the algebra
constructed in the proof of the congruence lattice characterization
theorem [2], [4] or [7]. Let 2t be the algebra given by Theorem 1
when applied to S3" and ©. The rest is routine.
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COROLLARY 1. If ® is any group and 2 is any algebraic lattice
with a Φ 0, a e L, having property (*), then there is an algebra SI with
© isomorphic to ©(SI) and 2 isomorphic to (£(SI).

COROLLARY 2. If 80 is any algebraic lattice and 2ί is an algebraic
lattice with an a Φ 0(α e LJ such that a has property (*), then there is
an algebra SI with @(SI) isomorphic to 20 and &(5I) isomorphic to 8L.

4* Necessary conditions for <@, 8) to be representable as
<©(SI), (£(SI)>* Recall that if @ is a semigroup, S(@) is the algebra
of left multiplications of @. SI = <A; ί 7 ) is some universal algebra.
The basic thing established in this section is a relationship between
E(8(6c(2I))) and ©(SI). If ψ is an endomorphism, then set x = y{εψ)
iff xφ = ^ ε9 is a congruence.

Let @ = (S; ) be a semigroup with identity, and let x, se S.
The right multiplication map for s is defined by xps = α?s.

Thus, if <peE($ί), then we have the congruence eψ on SI and the
mapping ρφ on £7(SI). So we have the equivalence relation εPφ on i?(3I).
Observe that since ^^ is an endomorphism of 8(@(2l)), ε̂ ,̂  is a congruence
of 8(6(50).

The proof of the next lemma involves only routine calculations.

LEMMA 4. If eΨ = Π ( e ? i | i e Z ) , ίΛe^ ε ^ = f| ( ^ ^ K ^ I ) .

COROLLARY. eφ —̂  ε̂ ^ ΐs α mapping, and this mapping preserves
arbitrary existing meets. In particular, it is order preserving.

This mapping need not be 1 — 1.

LEMMA 5. If εPφ = c (φ is a right zero), then eψ C sψ for every
endomorphism ψ.

Proof. Trivial.

εPφ can be c and εφ need not be t. εPψ = c means φ is a right
zero in ©(SI), but φ need not be a constant map. But φ is a constant
map iff εψ = .̂ On the other hand, if εφ = :, then ε̂ , = c (i.e., if <p
is a constant map, then φ is a right zero). Also, there is a φ with
εφ = ω and ε^ = ω (the identity map).

To summarize we state the following theorem.

THEOREM 3. Suppose Θ = <S; ) is a semigroup with identity
and 2 = <L; V, Λ> is an algebraic lattice. Set Sf~ = {εPs\seS}. If
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<@, S) is representable, then there is a subset H of L and there are
two mappings a from S onto H and β from H onto ^Γ such that
the following hold:

( i ) (sά)β = ePs for all se S;
(ii) β preserves arbitrary existing meets)
(iii) if ePs = c, then sa is the maximum element of H and

i^"Ί - l;
(iv) OeH (and 0/3 = ω);
(v) if leH, then ce

COROLLARY. If (β, (£n> is representable and (£n is the n-element
chain, then JsΓ (J {ή is a chain of length ^ n.

5> Mote on the class of representable pairs* Throughout this
section, @ = <£; •) will be a semigroup with identity and 2 will be
an algebraic lattice. The ordinal sum of the lattices will be denoted
by + . Sn is the n element chain. % = {A; F} is an algebra.

In the preceding section, a necessary condition for <@, S) to be
representable as <@(2t), £(3I)> was given. Roughly the condition states
that @ gives a lower bound on the cardinality of L, namely, \Jf\9

and an upper bound on the meet struture of part of S. This suggests
that one could take a representable pair and expand the lattice and
expect the result to be a representable pair. A few such expansions
are given here.

Sort of a multiplication formula for members of the class of all
representable pairs is given.

One could question whether or not there exist a semigroup with
identity and an algebraic lattice which are in some vague sense com-
pletely "incompatible." Theorem 4 gives a negative answer.

First we will state the theorems, and then we will give sketches
of their proofs.

THEOREM 4. If @ is any semigroup with identity and S is any
algebraic lattice, then there is an algebra SI with @ isomorphic to @(Sί)
and S isomorphic to a sublattice of K(2ί).

This follows from Theorem 7.

THEOREM 5. If <@; S> is representable, then <@; S + G )̂ is
representable.

COROLLARY 1. If (β; (£fc> is representable, then (β; (£w> is repre-.,
sentable for any n^k.

COROLLARY 2. If every member of @ is right cancellative or is
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a right zero and n >̂ 2, then (β, K%> is representable.

See [3], or see the remarks after Lemma 1.

THEOREM 6. // <Θ0, So> is representable and Sx is any algebraic
lattice, then both <@0, So + 2L + ©i> ami <@0, Si + So + E^) are repre-
sentable.

THEOREM 7. // <@0, So> is representable and 2X is any algebraic
lattice, then <@0, (So x 81) + &i> is representable.

This is a special case of Theorem 8.

THEOREM 8. // <@0, So> ami <@1? S2> are representable, then
<@o x @i, (So x SO + @i> is representable.

Note that each of the " + SV's gives us a nonzero element in
the resulting lattice that has property (*). (See §1.)

In Theorem 6 one can easily do without the " + Ki" in the first
pair (i.e., one can show <@0, So + S:> is representable) in case 2t

already had a non-zero element satisfying property (*). A similar
comment can be made for the other pair in Theorem 6 in case So

already had a non-zero element satisfying (*). To do the same for
Theorem 7 or 8 would seem to require that both So and Sx have such
an element.

Proof of Theorem 5. Let 21 represent <@; S>. Let U = {u, v] be
a two element set disjoint from A. Set Ar = A (J U. Extend each
f eF to A! by setting f(xQ, •••, xn^) = u if there is an x,e U. Let
u, v each be the value of a nullary operation. Define a unary opera-
tion p and a binary operation g as follows:

p(x) =

, v) =

x, if x e A

v, if x = u

%, if x = v

'#, if a?, 1/ G A or if 2/ = u

y, iί x = u

v, if x oτ y = v .

Let 21' = <A'; F U {p, g, u, v}}. For each 9 e £7(21) define φ on A'
by xφ ~ xφ if a e i and xψ = x if x e U. For each Θ e ^(21) set

is an isomorphism from @(2t) onto @(2t') 0—>Θ is an
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embedding of <£(&) into <£(&'). £f(SΓ) = {Θ\Θ e ΐT(SI)} U {cΛ,}. The
details are almost identical to the details in [3].

Proof of Theorem 8. Let 2I0 = <A>; Fo} and SI, - <Λ; F,) be
algebras with @(St;) isomorphic to &{ and &(%) isomorphic to S4.
Assume Ao Π Aι = 0 . Let 4 2 = Λ U i i U {u, v) where u Φ V and u,
v $ Ao U Alβ Let a?0, , xn^ e A2, and let / e Fi. Extend / to
A2 by setting f(x0, , a?^) = tt if there exists x3- $ A{. Let α̂  e
A{ and define two unary operations g0 and gγ by ^(α0) = 0ro(%) = u
and ^o(̂ i) = 9o(v) = v and ^(α*) = α< and &(%) = v and ^(V) = w.
Define a binary g2 on A2 by setting ^2(x, v) = gz(v, x) = x and g2(x, y)
— u otherwise. Take each of u and v as the value of a nullary
operation. Let

2C2 = <A2; F o U F, LJ {̂ o, Λ, flr2, u, v}} = <A

For each ψ = (φ0, φ,} e £7(SX0) x E(%) define a mapping ψ on A2

by x^ = xψi if a; € il« and xψ — x if x = u or x = v. For each Φ =
<0O, »!> e ^(2t 0) x ^(SIO set Φ = »0 U ©i U ω σ . To complete the proof,
one would show that W(%) = {Φ\Φe^(%0) x ^(%)} U Ri2}, that Φ->
Φ is an embedding of S(Sto) x K(§Ii) into ©(St), and that ψ -^ f is an
isomorphism of @(SI0) x @(2ti) onto @(St2). A few of the details follow.

Let σ be an endomorphism of SI. Note that xσ — x for x = u or
# = v since u and v are the vaules of nullary operations. Let α̂  e Ait

Now go{aoσ) = go(ao)σ = uσ — t6. Thus, αoσ e Ao or αoσ = u. Suppose
aQσ — u. Then u = aQσ = g^a^σ — g^a^a) — g^n) — v. Since u Φ v,

it follows that aoσ e Ao. Similarly, a^eA^ Thus, σ = {o\Ao,σA^).
Suppose diβAi and a0 = a^Ψ) and suppose Ψ e^(^i2). Then u =

v(Ψ) since u = flro(αo), v = ^0(^i) and βfo(αo) Ξ gQ(a^)(Ψ). For ^ G i o u 4 i it
happens that a? Ξ u(α/r) iff x = v because gx(x) — x, g^u) = v and ^(t?) =
u. So if xeAQ U Ai and #€{u, v} and α? = y(Ψ), then 6̂ = v(W). If
^ Ξ v(?F), then Ψ — cA2 because for any x e A2, x = u(W). (This is
because u = g2(u, x) and x = gz(v, x) ) Ψ\A. e cέ?(%i). Thus, if Ψ Φ CAZ,
then Ψ = Φ for some Φ e ^(SI0) x ^"(SIO, namely, for Φ = (¥\Aύ, ¥\Al).

Proof (of Theorem 6). Let SI; = (A^ F^, for i = 0, 1, be algebras
with Ao Π -4χ = 0 . We shall prove the theorem by showing that
<®(Sto), e(3I0) + &(%) + (£,> and (©(SI,), ©(SI0) + £(SIX) + K^ are repre-
sentable. First we consider the case with @(SI0).

Let u Φ v and u,v&AQ{J A19 and let A2 = Ao (j At (j {u, v). For
f e Fi extend / to A2 as in Theorem 8. Define the unary operations
g0, gt as in the proof of Theorem 8. Define the binary operation g2

by setting g2(a0, v) — g2(v, α0) = aQ for α0 e AQ and g2(x, y) = u otherwise.
Let aQ 6 Ao and au bx e Ax. Define the binary operation g3 by g3(al9 δj =
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v, if αx Φ &!, and g3(x, y) = u otherwise. Define the binary operation
9A by g4(alf y) = y and g4(x, y) = u otherwise. Take each member of
Aι U {u, v} as the value of nullary operations. Set

St - <A2; Fo ύ F, ύ {#0, , &} U fa, v} LJ Λ > = <A2; F2> .

For each φ e £7(2t0) let cp be defined by xφ = xφ if a? e Ao and
xφ = x if x $ Ao. For each © e ^(U o ) + ^(Sti) define Θ by θ =
0 U ωAl u α>{u,,} if β e ^(Sί0) and 0 = 0 (j ôu{«, } if β^(Sti).

To complete the proof for this pair, one would show that φ—>φ
is an isomorphism of G?(3t<>) onto @{Sί2), that Θ-+Θ is an embedding
of e(Sto) + (£(310 into e(2t2), and that ^(2t 2) = {θ|0 e ^ ( S Q + i f M u
{^J. A few of the details follow.

As in the proof of Theorem 8, for σ e E(%2), AQσ £ Ao Clearly
xσ — x for # 6 A2 — Ao since every element is a nullary constant.

Let Θ e ^(2t 2 ) . For x e 4 2 , ^ % iff # = i; as in the proof of
Theorem 8. Let a^ δj e Aζ. If u = v(^), then ao = u because ^2(^> Λ0) = w
and ^2(v, α0) = α0. If αL ̂  &x and αx = δi(β), then u = v because g3(a19 δj = w
and gs(bl9 δx) = v. Let xeA2 — A1 and let 2 e A2. If αx Ξ α (Θ), then
z ΞΞ %($) because g4(al9 z) = z and g4(x, z) = u.

We now turn to considering the case for <G?(2ti), K(SX0) + K(SCi) +
©!>. We may ^ 0 ^ assume without loss of generality that @(2ί0) is
the one element group and that there are no nullary operations in
Sl0. That this assumption can be made is verified in [6] and [7].

Let w, r, s £ A2. Let Az = A2 U {w, r, s}. For / e Fo or F19 change
the value of f(xθ9 , xn-d to w where in the above case it was u9

i.e., in the case when there is an x{ not an element of the appropriate
At. Extend the gt in the following way: go(r) = go(s) = v; gQ(w) = w;

gi(w) = w; g^r) = r; gjβ) = s; still keep g4(al9 y) = y, but let g4(x9 y) =
w otherwise; keep gz(al9 δj = v for aγ Φ bι and gz{x9 y) = u otherwise
except let gB(w, w) = w; g2(w, q) = g2(v9 w) = g2(w, w) = w and g2(x9 y) =
u for any other new pair. Define three new operations as follows.
Let x9ye Ao, ze A0Ό{u9 v, w) and let at e Ax. Set gδ(w9 w) — w, gδ(w9 x) —
u, 9δ(y, «) = % gδ(zl9 z) = αx and gδ(z, a,) = 2. Set ge(r) = s, g6(s) = r
and βr6(̂ ) = x otherwise. For x9yeA3 set g7(r, x) — gΊ{x, r) = r and
g7(ίc, s) = £7(s, a?) = a?, if a? Φ r, and ^7(a;, y) = x otherwise. Take w, r, s
as values of nullary operations but don't take Aι U {11, v} as nullaries.
Set

aΐ3 = <A8; Fo U Fi U {flr0, , Q?} U {W, r, s}) .

For φ G E(%) define φ on A3 as follows; xφ = xφ if xeAl9xφ =
x iϊ x = w9r, or s, and for x e Ao U {%, v, ^} set a?^ = x if <?» is 1 — 1
and xφ = w if not. Let 6) e ^(SIo) + ^(SCJ. For Θ e <tf(%) set θ =
® U ̂ i U { u , , , w , r > s } , and for Θ e <Sf (210 set θ - 0 U ̂ oU{« f̂«} U ω { r, s }. The
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outline of the rest of the proof is clear. Some details follow, par-
ticularly concerning endomorphisms.

Let Θ G ̂ (2I 3). All the statements made about Θ in the previous
case still hold with one change. Here if α: e Ax and x e A3 — Ax and
x ΞΞ au then for all zeA3, z = w (instead of u). Some more should
now be said. If x e Ao and w = x(θ), then u = v because g6(w, x) ~
u and gδ(x, x) = v. If u = v(θ), then one gets w = u using g2. Similar
to the case with u and v, for any xeA^,x = r iff x = r = s(useg6).
Using g7 we have that if r Ξ S(Θ) and z e Az, then z = r(θ).

Note that there can be no constant endomorphisms because there
are three nullary operations with different values. Let σ e E($ί*).
Let x e Ao (J Aι (J {w}, and let y e Ao U A1 U {u, v, w}. Using gl9 xσ Φ u
or v, and using g6, yσ g {r, s). Thus, (Ao U Λ U {̂ })σ Q A0[jA1 U{ιv}.
Let α̂  G Ai. Now wσ = w. If axσ — w, then we would have σ is a
constant endomorphism because the congruence relation induced by
σ would be cAo. So aLσ e Ao (J A^ Now, as before, A ^ S Ax. Similarly,
one gets (Ao U {w})σ g Ao U {^}. Using the congruence struc-
ture and the fact that wσ = w, either Aoσ g AQ or (Ao U {̂ , v, w})σ —
{w}. Clearly, if Aoσ S L̂o, then aoσ = αo» When Ao^ £ -̂o> using the
congruence structure and #2, one gets uσ ~ u and vσ = v. Finally,
the congruence structure requires that if σ is not 1 — 1 on A19 then
σ must be constant on Ao U {v>, v, w). And if σ is constant on Ao U
{u, v, w}, then σ would have the value ID there.

6* Concerning <@, (£3>* From § 4 we know that a necessary
condition for the representability of <@, (£3> is that | {ε̂ s | s e S} U {ή \ ̂ 3 .

A stronger condition is proved to be sufficient. The represen-
tability of <@, &2> has been characterized [3] (or see the remarks
after Lemma 1), and <@, K2> is representable iff Ifε^JsGS} U {̂ }| S 2.

The method for proving the next lemma is very similar to that
in Lemma 1. Recall the definition of ε9.

LEMMA 6. Let 2ί = (A) F) = be an algebra, and let θ Φ ω, θ e
^r(Si). There is an algebra SΓ = (A) F") so that:

( i ) ^'(21) - ^(2Γ);
(ii) W ) = {ω, 0, *};
(iii) <p G S(St') iff φe E{%), ε9 = ω, θ, or c and following conditions

are satisfied:
(a) if sφ = θy then εψt = Θ or r,
(b) if εo — ω and ψ is any map ivith Sψ = θ, then εφoψ = θ.

REMARK. Obviously, one could not improve upon condition (a),
but perhaps a proof could be given with (b) changed to read" ,
then So0f — (β, θ or t." Notice that all automorphisms are kept.
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Proof. Add one 4-ary operation g defined as follows:

'u, if x Ξ£ y(Θ), u Ξ£ V(Θ) or

if x = y{Θ), u ΞΞ v(Θ) and
g(x, y,u,v) = \

x Φ y,u Φ v

\v, otherwise

Set SI' = (A; F U {#}>. Clearly, (i) holds.
Proving that Θ e ^(W) involves only routine calculation. So let

Φ e ^(§Γ) with ω Φ Φ. So there exist x, y with x Φ y and x = y(Φ).
Suppose x Ξ£ y(Θ). We will show that Φ = c. Let u Φ v. First
assume u φ. v(Θ). Then u = #(&, y, u, v) = #(?/, ?/, w, v) = ΊJ(Φ). Now
assume u = i>(0) Since α? ̂  2/(0) > there is a 2 e {a?, i/} with 2 Ξ£ w(@)
and z ^ v(θ) From above u = z{Φ) and v = z(Φ). Thus, % = v{Φ). So
Φ — i. Now suppose for every w, v, with u = v(Φ) that w Ξ V(®)
Thus, Φ S 0 (We are still assuming Φ Φ ω, that x Φ y9 and that
# ΞΞ i/(Φ) ) We will show that in this case Φ = Θ. Let % Ξ= v(β)
with UΦ v. Then t6 = r̂(a;, 7/, ̂ , v) = g(y, y, u, v) — v(Φ). So Θ £ Φ and
β = Φ. Thus <2f («') - {ω, 6>, ή and (ii) holds.

Obviously, if φeE(%'), then φeE{%) and ε^efφ, β, }̂ Suppose
ε̂  = Θ. Since φ^eE(VV)9 then ε^ = 6> or ί.

It is a routine calculation to show that if eφ — t and φeE(%),
then ?>e #(§Γ).

Let ψ G £7(2t) with εφ = Θ and with ε 2̂ = © or c. Consider g(x, y,
u, v). There are two possibly troublesome cases. One is if g(x, y, u, v)
= u and g(xφ, yφ, uφ, vφ) — vφ. The other is if g(x, y, u,v) = v
and g(xφ9 yφ, uφ, vφ) = uφ. The latter is the easiest to dispense
with. If g(xφ, yφ, uφ, vφ) = uφ and uφ Φ vφ, then xφ Φ yφ. Thus,
x Ξ£ 2/(®) and % =£ v(β). So g(x, y, u,v) — u and flr(a?, y, u, v)φ = ^ φ .
So now assume </(£<£>, ̂ , uφ, vφ) = vφ and g(x, y, u, v) = u. Thus,
either x^y(Θ) and u^v(Θ) or x = y(Θ) and u~v(Θ). Suppose x^y
and UΞ£V. Then #<£> 9̂  τ/<p and uφ Φ vφ. Now xφ == /̂<p(@) iff t6^ Ξ= vφ(θ).
Indeed, suppose that xφ = yφ(β). Then (a?9>)?> = (yφ)φ and εφ2 Φ Θ.
So by assumption ε^ = r. Thus, (uφ)φ — (vφ)φ, and uφ = vφ(Θ).
Similarly if uφ = vφ, then xφ Ξ= ^ . Thus, either ccφ ^ yφ(Θ), uφ φ
vφ(Θ) or #<p == yφ(Θ), uφ == vφ(Θ), xφ Φ yφ, uφ Φ vφ. In any case,
#(&<£>, j/9>, ̂ <ρ, v9?) = uφ Φ vφ. S O X Ξ y(Θ) and w Ξ= v(β). In this case
uφ = ^ . Therefore, (/(α;, ̂ /, -2̂ , v)φ = ^ ^ — vφ — g(xφ, yφ, uφ, vφ).
Thus, <?€#(§!').

Suppose ?> is 1 — 1 and φe E(W). Let ψ be any map wτith εψ =
©. Consider ε9 o^. Suppose ε^o^ = ω. Then, sψ Φ c. So there exist
x, y such that x -φ y(Θ). Since Θ Φ ω, there exist w, v with u Φ v
and w Ξ= v(#). Since u Φ v, it follows that (uφ)ψ Φ {vφ)ψ. Thus,
%<£> =έ vφ(Θ). Similarly, since x Φ y,xφ φ yφ{Θ). This implies that
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g(x, y, u, v)φ = vφ Φ uφ = g(xφ, yφ, uφ, vφ). But since φ is an
endomorphism, we have that εφoψ Φ a). Suppose εψoψ = c. By a similar
argument we would get that εψoψ Φ c unless Θ = c. So εψoψ = Θ.

Let <pe JE7(3ί) with εψ = ω. Let ψ be any map with εψ = Θ.
Suppose εφoψ = Θ. Routine computation shows that <peE(W).

The crucial point in these computations is that the assumption εφoψ =
Θ implies φ presves both Θ and not-®. Therefore (iii) holds.

Recall that if @ = (S; > is a semigroup with identity, then J%Γ —
{εp$ I e S}. S(@) is the algebra of left multiplications. £?(S(@)) =

THEOREM 9. Let @ = <S; •) be a semigroup with identity.
(A) If <@; E3> is representable, then \^Tϋ{ή\£ 3.
(B) If I JsΓ U {ή I ̂  3 and if for right cancellative r and for m

that is neither right cancellative nor a right zero r*m is also neither
right cancellative nor a right zero, then <@; (£3> is representable.

REMARK. If \ST \j {ή\ = 2, the rest of (B) holds trivially. So
the sufficient condition includes all those representable pairs derived
from Corollary 2 to Theorem 5.

Proof. For part (A) see the corollary to Theorem 3.

Suppose the hypotheses of (B) hold. If | ST U [ή \ = 2, then <@; (£2>
is representable. By Theorem 5, <@; (£3> is representable. Suppose
then that 3ίΓ U {ή = {<o, Θ, ή and that ω Φ Θ Φ c. Suppose εPm = Θ.
Since

it follows that

ε(pJ = Θ or c .

Let εPr = ω and εPm = Θ. Since r m is neither right cancellative nor
a right zero, it follows that

ePr°

Now apply Lemma 6 to Θ and S(@).

7 (β, K2> for unary algebras* In [3] G. Gratzer characterized
the endomorphism semigroups of simple algebras. He also showed
that not all such semigroups were isomorphic to endomorphism semi-
groups of simple unary algebras. Since previous representations
involving congruence lattices and endomorphism semigroups had needed
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only unary algebras, he raised the question, "What semigroups are
isomorphic to the endomorphism semigroups of simple unary algebras?"
The answer to that question is that there are hardly any such
semigroups.

Every endomorphism φ induces a congruence relation which we
have denoted by eφ. The difference with unary algebras is that every
endomorphism also induces another congruence. Throughout §1 = ζA;
F} will denote a unary algebra. For φ e E(%) and x,yeA set x =
y(Θφ) iff there exist natural numbers i, j such that xφi — yφj(xφ° =
x). Θφ is the "extra" congruence. To prove that the substitution
property holds for Θφ, one needs that each operation of 21 is unary
or nullary.

LEMMA 7. If φ is 1 — 1 and Θψ = ω or c, then φ is onto or A —
{aφn I n — 0,1 } for some ae A.

Proof, x = xφn(Θφ) for any natural number n (by using the
numbers n, 0). In particular x = xφ(θφ). Thus, if θφ — ω, then x =
xφ, and therefore, φ is the identity map. Therefore, we can assume
Θψ — c, and this implies x = y(Θφ) for any x,yeA. Thus, for some i,
j 9 xφ1 = yφ\ If % <ς j 9 then since φ is 1 — 1, we have that x = yφι~j.
If j <̂  i, then y = xφι~K Thus, x e {yφn\ n = 0,1, •} or y e {xφn| n =
0,1, . •}. Suppose φ is not onto. Then there is an a such that a Φ
xφ for all x e A(x Φ a). Thus, a $ {xφ | n = 0,1, } for any x e A(x Φ
a). Now since x e {aφn \ n = 0,1, } or a e {xφn \ n = 0,1, } for all
xeA, we have x e {aφn \ n = 0,1, } for all x e A.

LEMMA 8. If Θφ = ω or c and Θ is 1 — 1 but not onto, then 2t
is not simple.

Proof. By Lemma 7, A = {aφn\n = 0, l •} for some α e A . For
w > 1, aφ% — (aφn~ι)φ. Since φ is not onto aΦ xφ for any ί»Gi.
Suppose aφi — aφj and ί ^ i We may assume i < j . Since ^ is 1 —
1, a — aφj~\ Since j — i ^ 1, a = (aφj~ι~ι)φ. Thus, aφι Φ aφj if i Φ
j . Now set JE?= {aφn\n = 0,2,4, ...} and D = {aφn\n = 1,3,5, . . . } .
By the above, D Π E = 0 . Clearly, JD U J57 = A. Let Φ be the
equivalence relation whose only two classes are D and E. Φ is a
congruence. Since ω =£ Φ ̂  c, 21 is not simple.

For a simple algebra SI any right zero of @(St) is necessarily a
constant mapping (unless 6?(21) is the one element group). See §4.

COROLLARY. If 2t is a simple unary algebra, then .27(21) consists
of automorphisms and constant mappings.



204 WILLIAM A. LAMPE

G. Gratzer [3] characterized the automorphism group of a simple
unary algebra as a cyclic group of order p where p — 1 or p is a
prime number. He also showed that if p Φ 1, then A = {aa\ae (?($()}
for any aeA.

LEMMA 9 If 3ί is simple, \ G{%) \ Φl, and there exists a right
zero in @(3ί), then \A\ = 2 and @(3t) = {AA; o>.

Proof. Let {α} = Aφ. Let / be an operation. Then a = (f(a))<p =
f(a<p) = f(a). If xeA, then x = αα for some α; e G(3I). Thus, f(x) =
/(αα) =f(a)a = aa = x. Therefore, £7(31) = A4 and all equivalence rela-
tions are congruence relations. |G(SC)| ^ 2 implies \A\ ̂  2. If |A| >
2, then there are more than two equivalence relations on A. Thus

LEMMA 10. 1/ 31 is simple cwwZ | G(3I) | = 1, then \ E{%) | ^ 2.

Proof. Suppose there exist two constant endomorphisms <p0, φx.
Let {α0} = A^o and {αj = A^i As in the proof of Lemma 3, f(a0) =
a0 and f{aλ) = αx for any operation / . If |A | were two, then every
operation would be the identity function and | G{%) \ = 2. Thus, \A\>
2. Set x Ξ y(Φ) iff x = y or x, y e {α0, α j . Since every operation re-
stricted to {α0, α j is the identity function, Φ is a congruence. Since
\A\ > 2, Φ Φ ί. Since Φ Φ ω, 31 is not simple.

THEOREM 10. Let @ = <S; *) be a semigroup with identity. @
is isomorphic to the endomorphism semigroup of a simple unary
algebra (i.e., <@, (£2) is representable by a unary algebra) if and only
if @ is owe o/ the semigroups listed below:

( i ) the group of order p, p = 1 or p is a prime;
(ii) the two element semi-lattice;
(iii) a four element semigroup isomorphic to (AA; o) where \A\=2.

Moreover, if <@, (£2> is representable by a unary algebra and \S\Φ
1, ί&βw <@, (£2> is representable using a unary algebra with one
operation.

Proof. It follows from the corollary to Lemma 8 and Lemmas 9
and 10 that the endomorphism semigroup of a simple unary algebra
is one of those listed in (i) — (iii).

To complete the proof, we will represent <@, K2> for each @ listed
in (i) - (iii).

In case @ is the one element group, let A be a two element set.
Set 3ί = (A; AA). Clearly, 3ί has the required properties.

In case © is (AA; o> where | A\ = 2, Let 31 = {A; F} where / is
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the identity map. Obviously, 21 has the required properties.
In case @ is the two element semi-lattice, let A — {a, b) with a Φ

b. Set f(a) = f(b) = b, and set Si = (A; />. Since | A\ = 2, % is
simple. The endomorphisms are exactly the identity map σ and ψ
where ψ = f. Since σoψ = ψoσ = ψ = ψoψ, the endomorphism semi-
group is the two element semi-lattice.

In case @ is the group of order p where p is a prime, set A =
{0, , p - 1}. Let f(x) = x + l (mod p), and set §1 - (A; />. Since p
is a prime it is easy to check that §1 is simple. For x e A define the
mapping φx by yφx = y + x. Clearly, x —• φx is an isomorphism from
the cyclic group of order p onto ©(21).
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