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FILTRATIONS AND VALUATIONS ON RINGS

HeELEN E. ADAMS

The concept of a multiplicative filtration on a ring is
generalized so as to include among filtered rings, rings with
valuation, pseudovaluation and semivaluation. The general-
ized filtration induces a topology on the ring, and it is shown
that the Hausdorff completion of the resulting topeological
ring can be described by an inverse limit. The paper finishes
with an example illustrating the theory.

1. Definitions and immediate consequences. In this section
we define a generalized filtration and generalized pseudovaluation on
a ring and show that a pseudovaluation induces a filtration on a ring.

If A and B are subsets of a ring we shall write AB to mean the
set {xy: xe A, ye B}. By an ordered semigroup we mean a semigroup
which is partially ordered as a set such that the ordering relation is
compatible with the semigroup operation. A directed semigroup is an
ordered semigroup which is directed above as an ordered set; and a
quasi-residuated semigroup (Blyth and Janowitz [2]) is an ordered
semigroup 7T with the property: given any s, t€ T, there exists ue T
such that ut = s and tu = s.

Let R be a ring and let S be a directed semigroup with the property:

(1.1) given any se€ S, there exists ¢ €S such that #* = s.
A filtration on R over S is a set of additive subgroups {P.},.s of R,
indexed by S, with the following properties:

(1.2) if s, te S such that s = ¢, then P, & P,;

(1.3) for any s,te S, P.P, & P,;

(1.4) given z€ R, se S, there exists te S such that 2P, & P, and
Pax < P,.

Note that )..sP, is a two-sided ideal of R. For a treatment of
the classical multiplicative filtration on a ring, see Atiyah and

Macdonald [1] and Northcott [6].

The following lemma gives a less general form of a filtration
which will be shown to arise from a pseudovaluation on a ring. The
proof of the lemma is straightforward.

LeMMA 1.1. Let S be a quasi-residuated, directed semigroup. Let
{P}ses be a set of additive subgroups of a ring R such that (1.2),
(1.3) hold, and 1.4)U,.sP. = R.

Then {P},.s is a filtration on R.
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The following definition of a pseudovaluation on a ring allows us
to treat at the same time Manis [5] valuations and pseudovaluations
(Mahler [4]) on commutative rings, and semivaluations (Zelinsky [7])
on fields.

Let S be a quasi-residuated, directed semigroup, and let S, be
the disjoint union of S and a zero element O; with the properties:
0,05 = Og; and, for any se S, O5; > s and sO5 = Oy = Ogs. A pseudo-
valuation on a ring R into S, is a map ® of R into S, such that: for
all a, be R,

(1.5)  @lab) = P(a)p(b);

(1.6) if se S such that s < @(a), P(b), then ¢(a — b) = s;

(1.7 2(0) = Og;

(1.8) the set (R)\{Os} is nonempty.

Let @: R— S, be a pseudovaluation on a ring R. Define, for
any seS,

1.9 P,={x:zeR, p(x) = s}.

Then, from Lemma 1.1:

ProrosiTION 1.1. The family of subsets {P},.s of R, defined in
(1.9), s a filtration on R.

2. The completion of a ring with respect to a filtration.
Throughout this section, R is a ring with filtration {P},.s. It will
be shown that the filtration {P,},.s induces a topology .7~ on R com-
patible with the ring structure of R, and the completion of (R, 9)
will be explicitly defined both algebraically and topologically.

From Bourbaki [3, IIT §1.2, example], the set {P,},.s is the funda-
mental system of neighbourhoods of the zero for a uniquely determined
topology &~ on R, addition in (R, .7) is continuous, and 7 is
Hausdorff if and only if ),.sP, = {0}. Further, multiplication in (R,
.77) is continuous by the definition of a filtration and [3, III §6.3,
(AVy) and (AVy)]. Hence (R, 77) is a topological ring and, as such,
admits a Hausdorff completion.

Now the Hausdorff completion of a topological ring is just the
Hausdorff completion of the ring considered as an additive topological
group [3, III §6.5]. Multiplication is then defined on the completion
by a continuous extension of multiplication on the associated Hausdorff
ring, in this case the factor ring R/(Nses Ps-

But in this case we already have, from [3, III §7.3, Proposition
2, Corollary 2], that the Hausdorff completion of the additive topological
group (R, .7") is isomorphic, both algebraically and topologically, to the
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Hausdorff group (R, 7 ) where B = 11{11 R/P,and . is the usual topology

induced on R by the topology . on R. Hence the Hausdorff com-
pletion of the topological ring (R, 77) is isomorphic to the Hausdorff
ring (B, 7, x) where x denotes the multiplication constructed on
R by means of a continuous extension of multiplication in R/,.s P,.
The main aim of this section is to define explicitly the multiplication
X . This is not a straightforward task since each factor group R/P,,
s€ S, in the direct product [[,.s R/P,, is not a ring.

For reference we define the topological group (R, 7)) explicitly
[3, III §7]. Now R = {{&}.cs € IIses R/P,: for all s, teS such that
s=t &= &) That is, the elements of R are sets of subsets of R,
indexed by S, and written {&,},.s where: for each s€ S, & € R/P,; and,
for any s,teS such that s < ¢, & S &. Note that, for each z€eR,
{X + P},.s€ R. Equality and addition in R are defined as follows: Let
(E)ees, (Mses€ R. Then {&},cs = }ses if and only if, for each se S,
& =7y and {&}ies + Mlses = {6 + N}ses. When there is no risk of
ambiguity, {&},.s will be written as {&,}.

The topology & 1is defined on R by inducing the usual quotient
topology on each R/P,, s< S, then inducing the usual product topology
on [[..s R/P,, and finally restricting this topology to R, considered
as a subspace of [[,.s R/P,.

Let te S and let f,: B — R/P, be the canonical projection defined
thus: For any {£},.s€ R, fi({&.)ses) = &. Since R/P, is discrete [3,
III §7.3], the set P, = fiY(P,) = {{&},cs € B: & = P} is an open set in
(B, .97), containing the zero {P,},.s of E.

Further, it is easily checked that, for each t € S, P, is a subgroup
of R. Hence the set of subgroups {P},.s of R forms a fundamental
system of neighbourhoods of the zero of (B, ") and thus, by [3, I
§2.3, Example 3], defines the topology .~ on .

Next we define a multiplication “+” in R, and show that * is in
fact the required multiplication x. When there is no risk of ambiguity,
we shall omit the multiplication sign x. Note that if each of the
subgroups P,, s€ S, were a two-sided ideal of R, then multiplication
in B would be as simple to define as addition: but this is not the
case.

Let {Es}seSy {vs}seSeR‘ Let {Es}seS*{‘}?s}seS = {Qs}ses Where {‘Qs}SES iS
defined as follows: Let seS. Then by (1.1) there exists t€S such
that £ >s. Choose z, €&, y,€%,. From (1.4) there exist u, v e S such
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that 2P, & P,, P,y, < P,. Let weS be such that w = ¢, u, v. Define
2, =2y + P, where z€¢,,yen,. The following two lemmas show
that Q, is well-defined and independent of the particular choice of w.

LeEMMA 2.1. With w chosen, the coset 2, does not depend upon
the choice of x and y.

Proof. Let x,2'cé,; v, ¥ en,. Now

vy — 2y = (@ — 2y, + 2(y — ¥)

(2.2) + (@ — )Ny —y) + (@ — )y —¥).

It is easily checked that each of the summands of (2.2) belongs to
P,. Hence zy — 2’y € P, and the lemma follows.

LeEMMA 2.2, Let the notation be as above. Let f, g € S such that,
Sor all o,a"€& and for all ¥,b'en, a'b —a'b'eP,. Then
Q, =ab + P, for any acés, be,.

Proof. Let acé&; ben,. Let heS such that » = w, f, g. Let
ceéy, den,. Then, by Lemma 2.1, 2, = ¢d + P, since ccé,,de7,.
But ab — cd € P, since a,ce&; and b, den,. Hence 2, = ab + P,.

COROLLARY. The definition of 2, is independent of the particular
choice of w.

Proof. Let w’' €8S be another possible choice for w (with possibly
different ¢, w, v, 2, y;). Then, by Lemma 2.1, Lemma 2.2 holds for
f =g =w, and the corollary follows.

LEMMA 2.3. In the above motation, {2),.s€ F.

Proof. By the definition, for each se S, 2, R/P,. Let A, e S
such that X = ¢#. Then, by Lemma 2.1, there exist m, n € S such that
2,=a"y' + P, for any 2’ €é,, ¥y’ €9,; and 2, =a"y" + P, for any 2" €é,,
y'en, Let qeS such that ¢ = m,n; and let z€¢, yen,. Then
2, =uxy —|—~PZ and 2, =2y + P,.. Hence 2, 2, since P, & P,. Therefore
{25 € R.

PROPOSITION 2.1. With the multiplication defined above, R is a
ring which is commutative [if R is commutative and has identity
{1 4+ P},es of R has identity 1.

Proof. We already have that B is an additive Abelian group.
(i) Using the definition of multiplication in B and the directed
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property of S, it is a straightforward task to show that multiplication
in R is associative and that both distributive laws hold. Hence R
is a ring which, by the definition of multiplication, is commutative if
R is commutative.

(ii) Let R have identity 1. As noted before, {1 4+ P,},.sc R.
Again, using the directed property of S and the fact that, for each
seS,1el + P, it is a straightforward task to show that {1 + P,},.s
is the identity of R.

Next we show that {P,},.s, the fundamental system of neighbour-
hoods of the zero of (R, 77), is in fact a filtration on (R, ») which
defines the topology .7 as at the beginning of §2; and hence the
multiplication » is continuous in (B, 9, %). We need the following
preliminary result.

LEMMA 2.4. Let xeR,t€S. Then there ewists ueS such that
{v + Plies* P, & Py and P« {x + Ples & P

Proof. By (1.4) there exists ve S such that 2P, & P,; and by
(1.1) there exists we S such that w® = t. Let weS such that u =
v, w. Let {7},.se P,; thatis, 7, = P,. Letx,ex + P,, y,€ P,. Then
x,y, € P, since P, < P,N P,, and so «P, < P,, P,P, = P,. Therefore,
for all 2/, ”"ex+ P, and for all ¥, 4" en, o'y — 2"y e€P,.
Hence, by Lemma 2.2, with f=g=u,s=¢ta=2 and b=y,
{x + P} {0} = {Q,) where Q, = P,: that is, {x + P} {n,} e P,. Similarly
Pfc + P} P,

PROPOSITION 2.2. {P.),.s is a filtration on B which defines the
topology &

Proof. (i) S is a directed semigroup with property (1.1) and, as
noted, each P, se S, is an additive subgroup of R.
(ii) Lett, we Ssuch that w>=t. Itis easily checked that P, < P
(iii) Let t,ueS. Again, it is easily checked that P,P, < Pm
(iv) Let {¢}eR, tcS. We must show that there exists reS
such that {,}P, < P, and P,{¢,} < P,. Let we S such that w* = ¢ and
let xe&,. Then {¢)—{x+ P)eP,. By Lemma 2.4 there exists ue S
such that {xv + P}P, < P,. Let re S such that » > u, w; and let
{{ye P, Now {£HL} = (&} — {v + PICY} + {o + PHE)E (&) — (v +
PH¢}yeP,P, < P, < P, by (i) and (iii); and {&+ P}{{,} e {v+P, \P, = P,

since 7 = u. Hence, by (i), {£}{{.) e P,. Similarly P.{t} < P,. This
completes the proof.
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THEOREM 2.1. The Housdorff completion of (R, 77) is isomorphic
to (B, 7, ).

Proof. By [3, III §7.3, Proposition 2], the mapping i: R— R
given by: for all xe R, i(x) = {x + P.},.s, has an image which is dense
in (B, 7). From [3, III §6.5 and III §7.3, Proposition 2, Corollary
1], the mapping it R— (R, x) is a ring homomorphism. Hence
i(wy) = x) X {y). But

tey) = {wy + Plies = {8 + Ploest{y + Ploes = i0)i(y)

Thus the multiplications = and x, which are continuous in 7, agree
on the dense subset i{R) of (B, .5). Therefore, by the principle of
extension of identities [3,1§8.1], » and < agree on K. Thus (R, T, %)
is the Hausdorff completion of (R, .77).

3. Example. In this section we illustrate our theory with a
semivaluation on the field @ of rational numbers (Zelinsky [7]).

We shall reserve the sign “ =7 for the usual ordering on @ and
shall denote the usual absclute value of the rational number z by
|z, Define S={x: xeQ, x> 0}. Order S as follows: Forall ¢, be S,
a>=b if and only if ab™'el (the set of natural numbers). Then
(S, =) is a quasi-residuated, directed semigroup under multiplication.
Define a mapping #: @ — S, as follows: For all ze Q\{0}, plx) = |z];
and @{0) = O;. Then it can easily be checked that ¢: @ — S, is a
pseudovaluation on Q. (In fact, » is a semivaluation on @, from
Zelinsky [7]).

ProOPOSITION 3.1.  The completion of @ with respect to P 1is iso-
morphic to the ring of formal series >3, il a;, where ;€ Q,0=Z 0, <
2, and, for each 1€ I\{1}, a;¢ {0, 1, ---, 1}.

Proof. We shall use the notation of §§1 and 2 throughout. Now,
for each se S,
P, ={x:2ecQ, () = s} = {ms: me 4} .
We shall use the fact that, for all p,gel, pl = p = »/qg and p! =
(p — 1)': that iS, for all {Es}sgseQ, Epz S ’Sp S Ep/q and Ep! & E(p—l)w

(1) Let {&).ese@.

Let x,¢£,. Then there exists a unique ¢,€¢ @ such that 0a, <2
and x, — a,¢ P,. Suppose that z/¢ &, and a, e @ such that 0 Z a] < 2
and 2] — a/e P,. Then
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a,—a =@ —a)— (@ —a)+ @ —x)ch,.

Hence a, = a], and so a, is independent of x,. Then &, = a, + P,.

Let x,¢&, — (@, + P;). Since &, <& and P, & P, we have
x,€ & — (a0, + P,) = P,. Hence 2,/2 is an integer. Let a,e {0, 1,2} such
that a, = 2,/2 mod 3. Then &, = a, + 2a, + Pi,.

Next, suppose k¢ I\{1, 2} such that &,, = a, + 3=} 4! a; + P,, where
a;€{0, 1, ---, ¢} for each 7€{2,3, .-+, k — 1}. As before, we can show
that there exists a, e {0, 1--+, k} such that &,.,,=a,+ 25,4 a;+Purye
Further, each a; is unique.

Let se S. Then there exist unique p, ¢ € I such that s = p/g and
(p,9) = 1. Now &, &¢&,,. Hence & = >/l a; + P,.

Suppose that {&,},.s and {7,},.s€ S define the same set of a;, 1€ I.
Then, for each s€ S, & = 7,. Hence {£,},.s defines a unique set of a;,
rel.

(ii) Let {a;}i.; be given such that a,€Q,0=<a, <2 and, for
each 1e¢I\{1}, a;€{0,1, ---, 7}. Let seS. Then, as before, there
exists a unique pel such that p =s. Define & = >,=t 4l a; + P..
It is a straightforward task to show that {&},.s€@.

Thus far we bave established a one-one correspondence between
the elements of @ and formal power series >.2, a; ?! where a,¢€ @,
0<a, <2 and, for each 7 I\{1}, ¢;€{0, 1, ---, }.

(i) Let {&.};cs:{Ns}ses € Q correspond to the series Seatlan, >, 1l b;
respectively. Now {&.},es + {N}ics = {& + Di}eese Hence we can define
addition of the series as would be hoped: 332,14 a; + >, %! b, =
>, 4l (a; + b;) where at the ith stage a; + b; is reduced modulo (7 +1)
and the integral part of (a; + b;)/(¢ + 1) carried on.

Let {2} = {&} {n.}. Let seS. Then there exists ¢e S such that,
for all xeé, yen, 2, = wy + P, = DF1il a; D4l b, + P, for some
kel. Hence we can define multiplication of the series in the usual
way, taking care to correct each term as described for the addition.
This proves the proposition.

REMARK. The above example illustrates that the definition of
multiplication * in B in §2 cannot be obviously simplified. For
example, if {&},c5 = {5 + Plics and {9,},cs = {8 + P,les, then {2,},.5 =
{53}855{7]8}863 = {15 + Ps}ssS' Now 52 =1 + Pz = Y bU-t -Q4 =3 + P4:
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that is, it would not have been sufficient to choose the w of §2 such
that w* = s.

I would like to thank my supervisor, Dr C. F. Moppert, for his
many valuable suggestions.
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