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ZEROS OF SUMS OF SERIES WITH HADAMARD GAPS

L. R. SONS

If / is a function of the complex variable z in the unit
disc and the power series expansion for / about zero can be
expressed as a finite sum of series with Hadamard gaps, then
f(z) assumes every finite value infinitely often provided the
coefficients in the power series expansion of / do not tend to
zero and the average value of (log+l/\f(reiθ) \)p does not grow
too rapidly as r -»1~ for some p > 1.

1* Introduction and statement of results* Let / be a function
analytic in \z\ < 1 for which

(1) f(z) = c0 + Σ Wnk

where {nk} is a sequence of positive integers for which

(2)
nk

The series in (1) is said to have Hadamard gaps.

If q is greater than about 100, G. and M. Weiss [9] proved f(z)

assumes every finite value infinitely often provided

ό ) 2J I ck I = oo .
k=0

If q > 1, W. H. J. Fuchs [2] showed f(z) assumes every finite value
infinitely often provided

(4) lim sup \ck\ > 0 .

In [3] Fuchs has extended his result to show that / assumes every
finite value infinitely often in each sector

S= {z\a< avgz < β and \z\ < 1}

where a and β are fixed real numbers.
The original result of Fuchs may also be extended as follows:

TEOREM 1. Let {nk} be a sequence of positive integers for which
(2) holds. Let I be a fixed positive integer, and let n^ for i = l, 2, , I
be integers for which

nk^ < nk

l) < rik

ι~ι) < < ni1} < nk .
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Suppose f is a function analytic in \ z \ < 1 for which

f(z) = a0 + Σ (α*£Z)sΛ* * + ana-DZn^ι) + . . . + a^uz*™ + ankz
%k) ,

( 5 ) „ ^

= Σ c^ .
fc=o

Suppose (4) ΛoWs αwd /or some p > 1 ί/^re exists a constant C with
0 < C < + °

(6 ) Λ_P(log+l/| /(«") I)W ^ c(-L\2\\ogn/\ f(reiθ) \)dθ)'
2τrJo \2τrJo /

for a sequence of values of r approaching one. Then f(z) assumes
every finite value infinitely often in \z\ < 1.

Two immediate corollaries of Theorem 1 are:

COROLLARY 1. Assume the hypothesis of Theorem 1 with n{

k

a} =
nk — a for k = 1, 2, 3, and 0 < a ^ I. Then f(z) assumes every
finite value infinitely often in \z\ < 1.

COROLLARY 2. Let f be a function analytic in \ z \ < 1 for which

f(z) = Σ ckz* = fo(z) + f(z) + + ft(z)

where for each i, fi(z) has a power series expansion about zero with
Hadamard gaps. If (4) holds and for some p > 1 there exists a con-
stant C with 0 < C < + oo such that (6) holds for a sequence of values
of r approaching one, then f(z) assumes every finite value infinitely
often in \z\ < 1.

Corollary 1 is a special case of Theorem 1 and extends a result
of C. Pommerenke [6] who showed that functions of the type of
Corollary 1 without the assumption (6) must assume every value at
least once- (G. Schmeisser [7] has recently extended the method in
[6] to show the Pommerenke-type series assume every value infinitely
often). Corollary 2 follows from Theorem 1 by noticing that f(z) can
be rewritten, if necessary, to be in the form (5).

For functions of the form (5) for which

limsup }OgM^ > 2(2 + 0
r->i~ — log (1 — r)

where M(r) denotes the maximum modulus of f(z) on \z\ = r, we

remark in [8] t h a t

— log (1 — r)
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where n(r) denotes the number of zeros of / in | z \ ̂  r. It seems
probable that functions of the type of Theorem 1 also assume every
finite value infinitely often in each sector

{z I a < arg z < β and | z | < 1}

where a and β are fixed real numbers. It has been shown by P.
Erdos and A. Renyi [1] that if {nk} is an increasing sequence of natural
numbers satisfying

lim inf (nk - %)1/(*""'} = 1 ,

then, for any sequence {ωk} of natural numbers for which

lim ωk = + oo

there exists a sequence {mk} of natural numbers such that

0 <̂  mk — nk < ωk

and a function g, analytic in | z | < 1 with the power series expansion

fc=o

where the bk are positive, such that g(z) is unbounded in \z\ < 1, but
bounded in the domain \z\ < 1, |arg#| > ε, for any ε > 0.

If / is an analytic function in | z \ < 1, D. Gaier and W Meyer-Konig
[5] have defined the radius Rψ defined by z ~ reiψ, 0 ^ r < 1, singular
for / if f(z) is unbounded in any sector \z\ < 1, ψ — e < argz < φ + ε
with ε > 0. They showed that if / is unbounded in \z\ < 1 and the
power series expansion for / about zero has Hadamard gaps, then
every radius is singular for /• We have

THEOREM 2. Suppose f is a function which is analytic in | z \ < 1
and has the power series expansion (5). Suppose

lim sup {max |cΛ |r f c} = co .
r->l*~

Then each radius Rφ(0 <£ ψ < 2π) is singular for f.

In section two the necessary lemmas are stated and the theorems
are proved, while section three contains the proof of the essential
lemma which enables us to use the idea of G. H. Hardy and J. E.
Littlewood of accentuating the dominance of the largest term in the
series (5) by repeated differentiation (c.f. Fuchs [2]).

2* Proofs of the Theorems* We need three lemmas:
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LEMMA 1 (Fuchs [2]). Let g be a function analytic in \z\ < R.
If for some positive integer p

M (\z\<R),

and

then g(z) assumes in \z\ < R every value w lying in the disc

I w - g(0) I < KRpAp+ιM~p

where K is a positive number depending only on p.

LEMMA 2 (Gaier [4]). Let E be a closed subset of {z\\z\ = 1} and
assume that E has measure 2πy where 0 < 7 < 1. If p is a polynomial
with N terms, then

max I p{z) | ^ CN{i)-max |p(z) \
| z | = l zeE

where

( 7) log CN(i) = (r2—^ - 7-^—W 3 .
\1 _ 7 1—7/

LEMMA 3 Assume the hypothesis of Theorem 1. Let p, v, and
a be positive integers where 0 <; a ^ I. For k = 1, 2, 3, - ϊβί n(

k

0) —
nA. Define

So = exp{ — p/nla)} , Si = exp \ —:

and

where SQ < S < Sx; 0 ^ /3 ̂  ϊ; α^d fc = 1, 2, 3 . T/^e^ /o?* a fixed
7 Ί{n£/& 0 < 7 < 1 there exists an integer p0 depending on q and I
such that for p > p0 and v > vo(p)

Z-i \Wk,(D + yVkAi—i) + . . + Wk,{o)) <C ——(G3Z+3(7)) H/j,,(α) ,

where C3Z+3(7) is defined by (7).

Proof of Theorem 1. We note that it suffices to show /(z) assumes
zero infinitely often in \z\ < 1. So suppose /(z) is zero only a finite
number of times in \z\ < 1 and denote these zeros by zl9 z2, * ,Zj.
Then N(r, 1/f) = 0(1), and it follows from the first fundamental theo-
rem of Nevanlinna theory that
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(8) m(r, f) = m(r, 1/f) + 0(1) .

For 0 < r < 1,

ΣK|
\fc=O

on a set of θ of measure not less than μq > 0 [10, p. 2161], so

(9 ) m(r, f) —> co

as r approaches one by condition (4)

For a value r' for which (6) holds, let g*(r') denote the set of θ
in [0, 2π] at which

(10) log+ - > —m(r', 1/f) .

Denote the measure of ί?(r') by | ^ ( r ' ) | . Then using Holder's in-
equality and (6)

πm(r', 1/f) £ \ log+ ^

\Jsf(r')\ | / ( r Ό

eft?

Thus,

(TΓ^TΓC)1^)^

Define 7 by

2ττ7 = (7r/(2τrC)1/ί3)g *

Let p = m a x ^ ^ i | ^ | , and let

U = l im s u p \ck\ .

If ?7 < oo, let N be the least integer such that

k,|<|ί/

for k > N. If U= *o, let N= 0.
Define

μ(r) = sup I ck \ rk , (0 ^ r < 1)
Je>N

Let F = F(r) be the largest integer such that
1 Theorem 8.20 on page 215 easily extends to finite sums of series with Hadamard

gaps, and so Theorem 8.25 on page 216 does also.
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If u — oo, we see

\cv\rv > 1 , (r>r0),

and also V(r) —> co as r —> 1~. If U < oo, we see

and again F(r) —* oo as r —• 1"" since there are infinitely many integers
k with

Using the notation of Lemmas 1 and 3, we choose p >̂ max (iSΓ, j>0)
and choose r so close to one that

where n[a) = V(r), n^ > 2p, and v > vQ(p). We may assume
is a value r' for which (6) holds. Let

T(z) = j k Σ _ i ( o , « ) « i > + ••• + α . 4 « *) .

By Lemma 3

Σ ( Σ I α.«> I r *' TΓM<)) ^ ^(r) Σ (Wt.a) + + Wk,m) ,

^ 21 o. («) I r<α) \ (C^iy))^ Wv, (a) .
4

Hence,

f[p){rSeiθ) = T{p){rSeiθ) + E{rSeiθ)

where

Consequently,

and using Lemma 2 on the polynomial T{p)(rSeiθ) where r S i s a value
r' for which (6) is valid we find
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for values of θ in
Therefore if r' = riSoS^112 is a value for which (6) holds, then we

may apply Lemma 1 to

g(ζ) =

with

where p and v satisfy the hypotheses of Lemma 3. Then

R*A*"M-* > C.(p, q, I, 7) I <*.(-> I (rS^iSo/Sd9*™ >

> CA(p, q, I, i)μ(r) ,

>Cδ(p,q,l,y,U).

Thus /(z) takes every value w in the disc

\w - f{r{SΆ)ll2eίθ)\ < Q(p, q, I, 7, U) .

But by (10) we note that

' 2 O | < exp ( - -ί mMSoSO171), 1//)) ,

and because of (8) and (9) we conclude that when r is near enough
to one

\MSoSduteiβ)\<Cδ(p,q,l,yf U) .

Thus f(z) will assume the value zero at points arbitrarily near | z —
1 which contradicts our earlier assumption and proves the theorem.

Proof of Theorem 2. Suppose there is some radius Rφ which is
not singular for /, and so there exists an ε > 0 such that \f(z) \ is
bounded in the sector Sf = {z\φ — ε < arg^; < φ + ε, \z\ < 1}. Then
for each complex number α, f(z) — a is also bounded in S^ Thus
taking 2πy — 2ε, the argument of Theorem 1 shows / assumes a
infinitely often in SK Since a is arbitrary, | / | is unbounded in £f,
and therefore Rψ is singular for /.

3* Proof of Lemma 3* If nψ < p, then WkΛβ) = 0. Turning to
P ^ nψ < n[a), we first observe that for fixed β with 0 ^ β ^ I,

ί > l , (ft = 1,2,3,. . .) .

Assume Wk+2Aβ) Φ 0 and n{£l2 ^ ^iα ). Then
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a

< sup exp {p(l — t + log t)}
0<ί<l/g

^ exp {p(l - q) - log q) .

Hence the right-hand side of (11) is less than A-1 =
provided

v> log q — 1 + q '

Proceeding in a similar manner, we may also show

WVy{a) A WvΛa) A

when p > pt. Consequently for WkΛβ) Φ 0 where k <̂  v — 3 and kΛ-2n
v — 1, we see

(12) WkΛβ) . FPfc+2,(j) TΓ,,g>(/ί) ^-3,^) < / J ^ y fO < θ < ί)

and for WkΛβ) Φ 0 where k <£ v — 2 and fc + 2π = i; we see

wk+2Λβ) wMt{β) w^Λβ) w»tW ~
Using (12) and (13) provided p > #„ we get

Σ (wkΛl) + ̂ ,α_υ + ... + wkfW) <
k<l

^,α_υ + + wkfW) <
A

( U ) ^-2(1 +

N o w for & Ξ> i; > y o(p) a n d x a n y i n t e g e r w i t h 0 < ^ ^ p — 1, w e
h a v e s i m u l t a n e o u s l y

X ^ oi/» I ^k+2\ Ή'vΛ t X ^

) •/ViKP) n* \ MKP) I rvι\<X) n*
lvk »V \ ίθk ' IVV tΛ/

and

/γ% \β) /γ / ryi (p)

Then when nf ^ n[a),

Vτk+2,(β)

WkΛβ)

\(ί-D
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where t = rik%/rik

β) ^ q. For t ^ q, θ{t) ^ θ(q), so

(15) Jg±ω£L <; 2 e x p \ - \ p ( q - 1 - logq)\ ,

when nψ ^ n[a). Hence the right-hand side of (15) is less Ithan I/A
provided

q — 1 —

Proceeding in a similar manner we may also show

when p > p2. Consequently for k >̂ v + 2 ^ yo(p) + 2 and k = v +
we see

κ } wk-2Λβ) wk^Λβ) w,+2Λβ) w,Λa) ~ \A) ' K ~ μ -

and for k ;> v + 3 > vo(p) + 3 and k = v + 2n + 1, we see

Π 7 ) ^fe,(^) rVk-2,(β) Vrv + 5,(β) Wu+z,(β) ^ / J-^A (0 < β <

wk^Λβ) wk-iΛβ) w,+t,(β) wVtW

 = \ A I ' = p =

Using (16) and (17) provided p > p2, we get

Σ {WkΛl) + wk,a-» + ... + wk,w) < 2

fc> + l

Combining (14) and (18) we now have the lemma provided p0 is the
maximum of px and p2 (and remembering that A = 1 + 16(ί + 1)C3|+S(7)).

The authoress is grateful to the referee for his helpfulness.

REFERENCES

1. P. Erdδs and A. Renyi, On singular radii of power series, Publications Math. Inst.
Hungarian Acad. Sciences, 3 (1959), 159-169.
2. W. H. J. Fuchs, On the zeros of power series with Hadamard gaps, Nagoya Math.
J., 29 (1967), 167-174.
3. 1 Topics in Nevanlinna theory, Proceedings of the NRL conference on classi-
cal function theory, (1970), 1-32.



524 L. R. SONS

4. D. Gaier, Bemerkungen zum Turάnschen Lemma, Abh. Math. Sem. Univ. Hamburg,
35 (1970), 1-7.
5. D. Gaier and W. Meyer-Kδnig, Singulare Radien bei Potenzreihen, Jahresbericht
Deutschen Math. Ver., 59 (1956), 36-48.
6. C. Pommerenke, Lacunary power series and univalent functions, Michigan Math.
J., 11 (1964), 219-233.
7. G. Schmeisser, Zur Theorie der Potenzreihen mit Liicken, Math. Z., 126 (1972),
40-46.
8. L. R. Sons, Zeros of power series with large gaps, Indiana Univ. Math. J., 22(1972),
199-205.
9. G. Weiss and M. Weiss, On the Picard property of lacunary power series, Studia
Math., 22 (1963), 221-245.
10. A. Zygmund, Trigonometic Series, Vol. 1, Cambridge University Press.

Received September 2, 1970 and in revised form August 4, 1972. Research supported
by NSF grant GP-16548.

IMPERIAL COLLEGE OF SCIENCE AND TECHNOLOGY

AND

NORTHERN ILLINOIS UNIVERSITY




