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SEQUENCES OF QUASI-SUBORDINATE FUNCTIONS
JAMES MILLER

In this paper a theorem is proved which connects bound-
ed analytic functions in the unit disk and sequences of quasi-
subordinate functions. As an application a necessary and
sufficient condition for certain sequences of quasi-subordinate
functions to converge is found.

Let f and F be analytic functions in |2z]| < R. If there exist
two functions ¢ and @ which are analytic in |z| < B and satisfy
w(0) =0, [¢() | =1, |0R)| <R, and f(z) = ¢()F(w(z)) for [z| < R,
then we say that f is quasi-subordinate to F' in |2z | < R and write
f<,F. Without loss of generality we may assume that R = 1.
This class was introduced by Robertson [2, 3].

We note that there are two special cases of quasi-subordination
which are of interest: If ¢ is the constant function one, then f is
subordinate to F, and on the other hand, if ® is the identity func-
tion, then f is majorized by F.

Let B denote the class of functions 6 which are analytic in
|z] <1 and satisfy [6(z)| <1 for |[z| < 1. Then the functions ¢
and @ which are defined above are elements of B. In this paper we
prove a theorem which connects functions in B and sequences of
quasi-subordinate functions. As an application we find necessary and
sufficient conditions for certain sequences of quasi-subordinate func-
tions to converge. This is a generalization of Pommerenke’s results
[1] on sequences of subordinate functions.

Let {f.}, n=1,2 ---, be a sequence of functions which are
analytic in |z]| < 1 such that f, <,f,., for each n or f,., <,f, for
each n. When considering the convergence of such sequences we
need to require that either the sequence {f,(0)} converges or the func-
tions agree at a single point. In this paper we shall assume that
the functions agree at a single point. Further we may assume that
the point is 2z = 0 for if the functions f, agree at the point a = 0
then we could consider the functions ¢,(?) = f.(z—a)/1—az)). We
will use f,(0) = 0 for all n, otherwise the function ¢ would be identi-
cally one. The proof for the case where {f,(0)} is convergent is
similar.

THEOREM 1. Let {f,} be a sequence of functions which are ana-
lytic in (2| <1 and satisfy f.(0) =0, a, = f1(0) £ 0, and f.(2) <, wis
and let ¢piy, W, € B and @,.,(0) = 0 be such that
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fn(z) = ¢n+1(z)fn+1(wn+l(z))
for [z < 1. If 3=, arg ¢,(0) converges and lim, .a, = a,|a|< c,
then [ln-. ¢.(0) converges.

Proof. We observe that if m < n, then we have f, <,f,. Thus
for m < n there are functions ¢,,, ®..€ B where ®,,(0) =0 such
that

Su(2) = mu(2) fo(@na(2))

for |z| < 1. Let ¢, ,..(23) = ¢,..(3). We now observe that
S(0) = 6,a(0)@7.(0).12(0)

or

(1) U = Pna(0)@0.(0)ets

Since 0 < |a,| = |a,| for m < n and a, — «, there exists an
integer K such that if » > m > K, then

(2) [Z:—1'<e.

From (1) and (2) we see that

Xy

1—-¢e< = | Pa(0)@5n(0) | = | $ma(0) [ = 1.

n

We now observe that
k=m+1
Thus we have
1—e<| Il a0 =1
k=m+1

for n>m > K. Since 3.7, arg 4,(0) converges this says that []r_. 4,(0)
converges. Further we have that ®,(0) —1 and ®,,(0) = 1.

In applying Theorem 1 to sequences of quasi-subordinate functions
we will also need two lemmas for functions in B. The proofs of the
lemmas are essentially in [1].

LEMMA 1. Let ¢ B, $(0) = 0, and satisfy |$(0)| =0 >0. Then
the mapping w = (&) maps the disk
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[}

<=V

univalently onto a region that contains |w| < p%

LEMMA 2. For ¢>0 and 0 < r <1, there exists an 7 >0 (4, 1))
such that if ¢ € B satisfies ¢(2) = Dimeo Bu2™ and | B, — 1| = 7, then

lg(z) — 2| <e, for |z, <r.

THEOREM 2. Let {f,} be a sequence of analytic functions in
[2] <1 such that f.(0) =0, f. <y uwr and a, = fi(0) %0, and let
Bn1, Wnye € Band @,,,(0) = 0 be such that f,(2) = ¢,+.(R) frs1(®,4.(2)) for
|z] <land 3, arg ¢,(0) converges. Then the sequence {f,} converges
uniformly in |z| < r for every 0 < r <1 of and only if

lime, = «, la| < oo .

Proor. If {f,} converges uniformly in |z | < » for every 0 <r <1
then «, = f.(0) converges. Further since |a,| = |, ], fu(0) =0,
and a, + 0 we see that lim, .a, = a0 and |a| < .

Let w,,,, ¢,..,€ B, and ®,.,(0) =0 be as defined in Theorem 2.
Further for m < n, let ¢,,, ®,.,€ B with @,,(0) = 0 be such that

(3) Su(2) = Gun(2) fu(@na(2)) -

Suppose that «, —a, || < . Then by Theorem 1 the product
II7-. $:(0) converges. We will first show that {f,} is a normal family
injz|<1.

Let 7, 0 < r < 1, be fixed and ¢ determined by

vr=_——9__ .
" 1+Vv1-¢6®

Since ¢ < 1 and «a, — «a % 0, there exists an integer N, such that

>0, for n > m > N, .

’am

n

Further, since | 4,.(2) | <1, we have | 4,,(0)|"*=1. For n>m > N,
we have @),.(0) = a,/(@,$..(0)) or

1 le'
$ma(0) a,

Thus by Lemma 1 the mapping { = @,.() for » < m < N, maps
|2|<V 7 univalently onto a domain that contains |{| < ». Let +,,
be the inverse of { = ®,,(2) in |{]| < », then

>0

(4) | (@) | = |



440 JAMES MILLER

| ¥ma@) | =V

From (3) we may write

n T s owwdm mn ’ f .
FaQ) = ¢m(«1rm(C))f (Yma(©)) or [{| <
For |{| < r we have
Sn(2) 1
74015 x| £ | < gy e -0

From Lemma 2 with k& = 0, given ¢ > 0, there exists an 7 such that
if |Bp—1|<7n then |¢(z) —1|<e for |z]<r. Since []7r.¢:(0)
converges by Theorem 1 and ¢,.,(0) = [I5cms: 6:(0), there exists an
integer N, such that if » > m > N, then |¢,,(0) — 1| <7n. Let N=
max(N,, N;,). Thus, by Lemma 2 we have that | 4,.(2) — 1| < e for
|z| <7 and n > m > N or

min | ¢,,(2)| =1 —e¢.

lzl=7

Hence, for n > N and |{| < r we have
£0] £ —— max_ |fu(d) .
1—¢crsvs

Thus there exists M(r) such that

(5) [fa(®) | = M(7)
for all n, that is, {f,} is locally uniformly bounded. Therefore {f,}
is normal.

Let {f.,} be a subsequence of {f,} which is uniformly convergent
in |z| =7, for every r, < 1. Let f be the limit function of {f, }.
Let ¢ > 0 and » < 1. Then choose v, such that

[ fa, () — ()| < ¢/3

for y=y, and |z]| <r. From inequality (5) we have that the se-
quence {f,} is bounded in |z| < and thus equicontinuous in [z| = 7.
Therefore there exists a 6 > 0 such that

for |2, — 2| <9, |2, | Zr+ 0, || =r+0d, and for all x.

Using (4), the convergence of >, arg ¢,(0), and applying Lemma 2
we have that there exists an integer M, such that if » = m = M,, then

lmmn(z)_zl<3) for[z‘g’l'
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where M, is chosen so that | ;,.(0) — 1| <% for a suitable ». Again
making use of Lemma 2 we have that there exists an integer M,
such that if n > m > M, then

| fmn(2) — 1] < ¢/8M(r), for |z|<r.
Let M = max {M,, M;, n,}. If M <k <mn, and |2| < r then

| fu(2) — f(2) | = [fu(®) — fa, () | + |0, (2) — F(2) |
< &f3 + [ fu,(2) = Bra, (&) 0, (Wi, (2)) |
=¢e8+ [fa, () — 1 (@14, (2)) |
+ [ fo (@1, (2)) [1 — Brn,(2)] |
< e/ +¢/3+ Mr)e/BM(r) =¢

for |[z] <» and k£ > M. This completes the proof of Theorem 2.

THEOREM 3. Let {f.} be a sequence of functions analytic in
2] <1 such that f,(0) =0, a, =f10) %0, and f,u, <,fu and let
But1, Wui € B and ®,,,(0) = 0 be such that

fn+1(z) = ¢'n+1(z)fn(wn+1(z))

Sfor |z| <1 and >33_,arg ¢,(0) converges. Then the sequence {f,} con-
verges uniformly in |z| < r for every r <1 if the sequence {a,} con-
verges. The limit function is comstant if and only if

lima, =0.

n—roo

The proof of this theorem is similar to that of Theorem 2 and
Pommerenke’s Theorem 2 [1].
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