MULTIPLIERS OF TYPE (p, p)

KELLY MCKENNON

It will be shown in this paper that the Banach algebra of all continuous multipliers on $L_p(G)$ (G a locally compact group, $p \in [0, \infty[)$ may be viewed as the set of all multipliers on a natural Banach algebra with minimal approximate left identity.

Let G be an arbitrary locally compact group, λ its left Haar measure, and p a number in [1, ∞]. Write \mathfrak{B}_p for the Banach algebra of all bounded linear operators on L_p and write \mathfrak{M}_p for the subset of \mathfrak{B}_n consisting of those operators which commute with all left translation operators; elements of \mathfrak{M}_p are called *multipliers of type* (p, p). If A is a Banach algebra, then a bounded linear operator T on A such that $T(a \cdot b) = T(a) \cdot b$ for all $a, b \in A$ is called a *multiplier* on A; write $\mathfrak{m}(A)$ for the set of all such. By C_{00} will be meant the set of all continuous complex-valued functions on G which have compact support. A function f in L_p such that for each g in L_p , the function g*f(x) = $\int g(t)f(t^{-1}x)d\lambda(t)$ exists λ -almost everywhere, g*f is in L_p , and $||g*f||_p \leq 1$ $\|g\|_{v} \cdot k$ where k is a positive number independent of g, is said to be *p-tempered*; write L_p^t for the set of all such. Evidently L_p^t is closed under convolution and C_{00} is a subset of L_p^t . Thus, for each f in L_p^t and h in C_{00} , there is precisely one operator W in \mathfrak{B}_p such that W(g) = g * f * h for all g in L_p ; write \mathfrak{A}_p for the norm closure in \mathfrak{B}_p of the linear span of all such W. The principal result of this paper is that \mathfrak{A}_2 is a Banach algebra with minimal approximate left identity and that $\mathfrak{m}(\mathfrak{A}_p)$ and \mathfrak{M}_p are isomorphic isometric Banach algebras.

THEOREM 1. Let f be a function in L_p and k a positive number such that $||g*f||_p \leq ||g||_p \cdot k$ for all g in C_{00} . Then f is in L_p^t .

Proof. First of all, suppose that h is a function in $L_1 \cap L_p$. As is well known, h*f is in L_p and $||h*f||_p \leq ||h||_1 \cdot ||f||_p$. Let $\{h_n\}$ be a sequence in C_{00} which converges to h in the L_p and L_1 norms both. It follows from the above that $\{h_n*f\}$ converges to h*f in L_p . This fact and the hypothesis for f imply

$$||h*f||_p = \lim_n ||h_n*f||_p \leq \overline{\lim_n} ||h_n||_p \cdot k = ||h||_p \cdot k$$
.

Let h be now an arbitrary function from L_p . We may assume that h vanishes off some σ -finite set A. Let $\{A_n\}$ be an increasing nest of λ -finite and λ -measurable subsets of G such that their union is A. Let for each $n \in N$, h_n be the product of h with the characteristic function of A_n . Let π_j (j = 0, 1, 2, 3) be the minimal non-negative functions on the complex field K such that $z = \sum_{j=0}^{3} i^j \pi_j(z)$ for each $z \in K$.

Fix j in $\{0, 1, 2, 3\}$. For each $x \in G$, define the measurable function w^x in $[0, \infty]^G$ by letting $w^x(t) = \pi_j[h(t) \cdot f(t^{-1}x)]$ for all $t \in G$. For each $x \in G$ and $n \in N$, define the measurable function w^x_n in $[0, \infty]^G$ by letting $w^x_n(t) = \pi_j[h_n(t) \cdot f(t^{-1}x)]$ for all $t \in G$. Since the sequence $\{w^x_n\}$ converges upwards to w^x for each $x \in G$, it follows from the monotone convergence theorem that $\lim_n \int w^x_n d\lambda = \int w^x d\lambda$. Define the function F in $[0, \infty]^G$ by letting $F(x) = \int w^x d\lambda$ for all $x \in G$. For each $n \in N$, define the function F_n in $[0, \infty]^G$ by letting $F_n(x) = \int w^x_n d\lambda$ for all $x \in G$.

For each $n \in N$, h_n is in $L_1 \cap L_p$; it follows that $\pi_j[h_n*f]$ is in L_p , and so equals F_n almost everywhere. Hence, each F_n is measurable whence F is measurable. Further, by the monotone convergence theorem and the inequality which concludes the initial paragraph of this proof,

$$egin{aligned} ||\,F\,||_p &= \lim_n ||\,F_n\,||_p \ &= \lim_n ||\,\pi_j[h_n*f]\,||_p \leq \overline{\lim_n}\,||\,h_n*f||_p \leq \overline{\lim_n}\,||\,h_n\,||_p\!\cdot\!k = ||\,h\,||_p\!\cdot\!k \;. \end{aligned}$$

Recalling that $F(x) = \int \pi_j [h(t) \cdot f(t^{-1}x)] dt$ almost everywhere and j was arbitrary, we see that h*f exists almost everywhere, is in L_p and $||h*f||_p \leq ||h||_p \cdot 4k$. This proves that f is p-tempered.

The condition given in Theorem 1 for a function in L_p to be in L_p^t is clearly necessary as well as sufficient. Another such condition was proved in [4], Theorem 1.3:

THEOREM 2. Let f be a function in L_p such that g*f is defined and in L_p for all g in L_p . Then f is in L_p^t .

For each $f\in L_p^t$, there is precisely one operator $W_f\in\mathfrak{B}_p$ such that (1) $W_f(g)=g*f$

for all $g \in L_p$. For $f \in C_{00}$, we have as well (see [1] 20.13)

$$(2) \qquad \qquad ||W_f|| \leq \int \mathcal{A}^{-(p-1)/p} |f| d\lambda .$$

It is easy to check that

$$(3) W_{f^*h} = W_h \circ W_h$$

for all f and h in L_p^t .

THEOREM 3. The set \mathfrak{A}_p is a complete subalgebra of \mathfrak{M}_p and it possesses a minimal left approximate identity (i.e., a net $\{T_{\alpha}\}$ such that $\overline{\lim}_{\alpha} || T_{\alpha} || \leq 1$ and $\lim || T_{\alpha} \circ T - T || = 0$ for all $T \in \mathfrak{A}_p$).

Proof. A simple calculation shows that, when f is in L_p^t , then W_f is in \mathfrak{M}_p . Evidently, \mathfrak{M}_p is a Banach algebra; hence, \mathfrak{A}_p is a subset of \mathfrak{M}_p . That \mathfrak{A}_p is a Banach space is an elementary consequence of its definition. That \mathfrak{A}_p is a Banach algebra is a consequence of the fact that $L_p^t * C_{00}$ is closed under convolution.

For each compact neighborhood E of the identity of G, let f_E be a nonnegative function in C_{∞} which vanishes outside E and such that $\int f_E d\lambda = 1$. Directing the family of compact neighborhoods of the identity by letting E > F when $E \subset F$, we obtain a net $\{f_E\}$ which is a minimal approximate identity for L_1 . If $\{h_{\gamma}\}$ denotes the product net of $\{f_E\}$ with itself, then $\{h_{\gamma}\}$ is again a minimal approximate identity for L_1 and the net $\{W_{h_{\gamma}}\}$ is in \mathfrak{A}_p . Since \varDelta is unity and continuous at the identity of G, we have by (2),

$$\overline{\lim_{\gamma}} || W_{h_{\gamma}} || \leq \overline{\lim_{\gamma}} \int \varDelta^{-(p-1)/p} h_{\gamma} d\lambda \leq 1$$
 .

For $f \in L_p^t$ and $g \in C_{00}$, (3) and (2) imply

$$\begin{split} \overline{\lim_{\gamma}} & || W_{h_{\gamma}} \circ W_{f*g} - W_{f*g} || = \overline{\lim_{\gamma}} || (W_{g*h_{\gamma}} - W_g) \circ W_f || \\ & \leq \overline{\lim_{\gamma}} || W_{g*h_{\gamma}} - W_g || \cdot || W_f || \leq \left(\overline{\lim_{\gamma}} \int |g*h_{\gamma} - g| \cdot \varDelta^{-(p-1)/p} d\lambda\right) \cdot || W_f || \\ & \leq \overline{\lim_{\gamma}} || g*h_{\gamma} - g ||_1 \cdot \sup \left\{ \varDelta^{-(p-1)/p} (x) \colon g*h_{\gamma} (x) \neq g(x) \right\} \cdot || W_f || = 0 \end{split}$$

since $\overline{\lim_{\tau}} ||g * h_{\tau} - g||_{\iota} = 0$ and since the net of sets $\{x \in G : g * h_{\tau}(x) \neq g(x)\}$ is eventually contained in some fixed compact set. Since $L_{p}^{t} * C_{00}$ generates a dense subset of \mathfrak{A}_{p} , we have $\lim_{\tau} ||W_{h_{\tau}} \circ T - T|| = 0$ for all $T \in \mathfrak{A}_{p}$. Thus, $\{W_{h_{\tau}}\}$ is a minimal left approximate identity for \mathfrak{A}_{p} .

We now turn to \mathfrak{M}_p . We shall need a theorem proved in [3] 4.2.

THEOREM 4. Let μ and the elements of a net $\{\mu_{\alpha}\}$ be bounded, complex, regular Borel measures on G such that

(a)
$$\lim_{\alpha} || \mu_{\alpha} || = || \mu ||$$

and

(b)
$$\lim_{\alpha} \int f d\mu_{\alpha} = \int f d\mu \quad for \ each \quad f \in C_{00}$$

Then, for each $g \in L_p$ $(p \in [1, \infty[), \lim_{\alpha} || \mu_{\alpha} * g - \mu^* g ||_p = 0.$

COROLLARY. For each multiplier T in \mathfrak{M}_p and each bounded, complex, regular Borel measure μ , we have

(i) $T(\mu * g) = \mu * T(g)$ for all $g \in L_p$. In particular, for $f \in L_1$, we have (ii) T(f*g) = f*T(g).

Proof. Since T commutes with left translation operators, it is evident that (i) holds when μ is a linear combination of Dirac measures. Now let μ be arbitrary. Since the extreme points of the unit ball of the conjugate space C_{00}^* (where C_{00} bears the uniform or supremum norm) are Dirac measures, and since Alaoglu's Theorem implies that the unit ball of C_{00}^* is $\sigma(C_{00}^*, C_{00})$ -compact, it follows by the Krein-Milman Theorem that there exists a net $\{\mu_{\alpha}\}$ consisting of linear combinations of Dirac measures such that the hypotheses (a) and (b) of Theorem 4 are satisfied. By Theorem 4, we have $\lim_{\alpha} || \mu_{\alpha} * g - \mu * g ||_p = 0$ for all $g \in L_p$. This implies that $\lim_{\alpha} || T(\mu_{\alpha} * g) - T(\mu * g) ||_p = 0$ for all $g \in L_p$. Consequently,

$$egin{aligned} &\| T(\mu st g) - \mu st T(g) \|_p \leq \overline{\lim_lpha} \, \| T(\mu st g) - T(\mu_lpha st g) \|_p \ &+ \overline{\lim_lpha} \, \| T(\mu_lpha st g) - \mu st T(g) \|_p = 0 + \overline{\lim_lpha} \, \| \mu_lpha st T(g) - \mu st T(g) \|_p = 0 \, . \end{aligned}$$

This proves part (i). Part (ii) is a special case of (i).

THEOREM 5. For each multiplier T in \mathfrak{M}_p and each function f in C_{00} , the function T(f) is in L_p^t and $W_{T(f)} = T \circ W_f$.

Proof. Because f is in L_p , it follows from the corollary to Theorem 4 and (1) that $g * T(f) = T(g * f) = T \circ W_f(g)$ for all $g \in C_{00}$. This implies that $||g * T(f)||_p \leq ||T|| \cdot ||W_f|| \cdot ||g||_p$ for all $g \in C_{00}$. Thus, by Theorem 1, T(f) is in L_p^t . Since C_{00} is dense in L_p , we have that $W_{T(f)} = T \circ W_f$.

We purpose to identify the multipliers on \mathfrak{A}_p . To accomplish this, we shall set down a general multiplier identification theorem.

Let *B* be a normed algebra with identity and let *A* be any subalgebra of *B* which is $|| ||_{B}$ -complete and which has a minimal left approximate identity. Define $\Re(B, A)$ to be the coarsest topology with respect to which each of the seminorms ${}^{a}|| || (a \in A)$ is continuous where ${}^{a}|| b || = || b \cdot a ||_{B}$ for all $b \in B$. It is known (see [3] 1.4. (ii)) that

432

(4) the map $(a, b) \longrightarrow a \cdot b$ is $\Re(B, A)$ -continuous

when a and b run through any $|| ||_{B}$ -bounded subset of B.

THEOREM 6. Let A and B be as above and suppose that the following hold:

(i) the unit ball A_1 of A is $\Re(B, A)$ -dense in the unit ball B_1 of B;

(ii) $|| b ||_{B} = \sup \{ || b \cdot a ||_{B} : a \in A_{1} \}$ for each $b \in B_{1}$;

(iii) B_1 is $\Re(B, A)$ -complete.

Then $\mathfrak{m}(A)$ is isomorphic to B.

Proof. By [3] 1.8. (iv), A is a left ideal in B. Define the map $T | \to m(A)$ by letting $T_b(a) = b \cdot a$ for all $b \in B$ and $a \in A$. That T is an algebra homomorphism of B into m(A) is easy to check. That T is an isometry follows from (ii). That T is onto is a consequence of [3] 1.12.

LEMMA 1. The unit ball of \mathfrak{A}_p is $\mathfrak{K}(\mathfrak{M}_p, \mathfrak{A}_p)$ -dense in the unit ball of \mathfrak{M}_p .

Proof. Let T be any operator in the unit ball of \mathfrak{M}_p . Let $\{W_{h_r}\}$ be the minimal left approximate identity for \mathfrak{A}_p chosen in Theorem 3. For each index γ , we know from Theorem 5 and (3) that $T(h_{\gamma})$ is in L_p^t and $W_{h_{\gamma}} \circ T \circ W_{h_{\gamma}} = W_{h_{\gamma}} \circ W_{T(h_{\gamma})} = W_{T(h_{\gamma})*h_{\gamma}}$. From (4), we see that $\{W_{h_{\gamma}} \circ T \circ W_{h_{\gamma}}\}$ converges to $I \circ T \circ I = T$ in $\mathfrak{K}(\mathfrak{M}_p, \mathfrak{A}_p)$: in other words, $\lim W_{T(h_{\gamma})*h_{\gamma}} = T$ in $\mathfrak{K}(\mathfrak{M}_p, \mathfrak{A}_p)$.

Thus, we must have $\underline{\lim}_{r} || W_{T(h_{\gamma}) \cdot h_{\gamma}} || \geq || T ||$, as is easily seen. But $\overline{\lim}_{r} || W_{T(h_{\gamma}) \cdot h_{\gamma}} || = \overline{\lim}_{r} || W_{h_{\gamma}} \circ T \circ W_{h_{\gamma}} || \leq \overline{\lim}_{r} || W_{h_{\gamma}} ||^{2} \cdot || T || \leq || T ||$. Thus, we have $\lim_{r} || W_{T(h_{\gamma}) \cdot h_{\gamma}} || = || T ||$. It follows that $\lim_{r} || W_{T(h_{\gamma}) \cdot h_{\gamma}} ||^{-1} \cdot W_{T(h_{\gamma}) \cdot h_{\gamma}} = T$ in $\Re(\mathfrak{M}_{p}, \mathfrak{A}_{p})$. We have shown that T is the $\Re(\mathfrak{M}_{p}, \mathfrak{A}_{p})$ -limit of operators in the unit ball of \mathfrak{A}_{p} .

LEMMA 2. Let $\{T_{\alpha}\}$ be any $\mathfrak{R}(\mathfrak{B}_{p}, \mathfrak{A}_{p})$ -Cauchy net in \mathfrak{B}_{p} such that $\sup_{\alpha} || T_{\alpha} || < \infty$. Then there is an operator T in \mathfrak{B}_{p} such that $\lim_{\alpha} T_{\alpha} = T$ in both the strong operator topology and the topology $\mathfrak{R}(\mathfrak{B}_{p}, \mathfrak{A}_{p})$.

Proof. Let S be the subspace of L_p spanned by the set $L_p * L_p^t * C_{00}$. If g is in L_p and $\{h_i\}$ is the net in $L_p^t * C_{\infty}$ constructed in the proof of Theorem 3, then $\lim_{\gamma} ||g * h_i - g||_p = 0$ (see [1] 20.15. ii). It follows that S is dense in L_p .

Let $\sum_{j=1}^{m} f_j * h_j * g_j$ be a typical element of S where $f_j \in L_p$, $h_j \in L_p^t$, and $g_j \in C_{00}$ $(j = 1, 2, \dots, m)$. Then $W_{h_j * g_j}$ is in \mathfrak{A}_p $(j = 1, 2, \dots, m)$ so that, by hypothesis, the net $\{T_{\alpha} \circ W_{h_j * g_j}\}$ is || ||-Cauchy in \mathfrak{B}_p . Since $T_{\alpha}(f_j*h_j*g_j) = T_{\alpha} \circ W_{k_j*g_j}(f_j)$ for each $j = 1, 2, \dots, m$ and each index α , it follows that the net $\{T_{\alpha}(f_j*h_j*g_j)\}$ is $|| ||_p$ -Cauchy for each $j = 1, 2, \dots, m$. Thus, $\{T_{\alpha}(\sum_{j=1}^m f_j*h_j*g_j)\}$ is $|| ||_p$ -Cauchy and so has some limit in L_p which we shall write as $T_0(\sum_{j=1}^m f_j*h_j*g_j)$. The operator $T_0 | S \to L_p$ thus defined is clearly linear and, by the hypothesis $\sup_{\alpha} || T_{\alpha} || < \infty$, is also bounded. Since S is dense in L_p , T_0 is the restriction to S of a unique operator T in \mathfrak{B}_p . Since the net $\{T_{\alpha}\}$ converges to T on the dense subspace S of L_p , and since $\sup_{\alpha} || T_{\alpha} || < \infty$, it follows that $\lim_{\alpha} T_{\alpha} = T$ in the strong operator topology.

Let f be any function in $L_p^t * C_{00}$. By hypothesis, the net $\{T_{\alpha} \circ W_f\}$ is || ||-Cauchy and so has some || ||-limit V in \mathfrak{B}_p . For each $g \in L_1 \cap L_p$, we have

$$V(g) = \lim_{lpha} \ T_{lpha} \circ W_f(g) = \lim_{lpha} \ T_{lpha}(g*f) = \ T(g*f) = \ T \circ W_f(g)$$
 .

Since $L_1 \cap L_p$ is dense in L_p , it follows that $V = T \circ W_f$. Thus, $\lim_{\alpha} || (T_{\alpha} - T) \circ W_f || = 0$. Since $\{W_f : f \in L_p^t * C_{00}\}$ spans a dense subset of \mathfrak{A}_p and since $\sup_{\alpha} || T_{\alpha} || < \infty$, it follows that $\lim_{\alpha} T_{\alpha} = T$ in $\mathfrak{R}(\mathfrak{B}_p, \mathfrak{A}_p)$.

THEOREM 7. Let $\pi \mid \mathfrak{M}_p \to \mathfrak{B}_p^{\mathfrak{M}_p}$ be defined by, for each $T \in \mathfrak{M}_p$, letting the function $\pi_T \mid \mathfrak{A}_p \to \mathfrak{B}_p$ be given by $\pi_T(W) = T \circ W$ for all $W \in \mathfrak{A}_p$. Then π is an isometric algebra isomorphism \mathfrak{M}_p onto $\mathfrak{m}(\mathfrak{A}_p)$.

Proof. We shall apply Theorem 6 for $B = \mathfrak{M}_p$ and $A = \mathfrak{A}_p$. That \mathfrak{A}_p has a minimal left approximate identity follows from Theorem 3. That condition (i) of Theorem 6 is satisfied follows from Lemma 1. That condition (iii) of Theorem 6 is satisfied follows from Lemma 2. To invoke Theorem 6 and so prove Theorem 7, it will suffice to show that $||T|| = \sup \{||T \circ W||: W \in \mathfrak{A}_p, ||W|| = 1\}$ for each $T \in \mathfrak{M}_p$.

Let then T be any multiplier in \mathfrak{M}_p . That $||T|| \ge \sup\{||T \circ W||: W \in \mathfrak{A}_p, ||W|| = 1\}$ is obvious. Let ε be any positive number. Choose $f \in L_p$ such that $||f||_p \le 1$ and $||T(f)||_p > ||T|| - \varepsilon/2$. Let $\{W_{\gamma}\}$ be a minimal left approximate identity for \mathfrak{A}_p . Then $\lim_{\gamma} W_{\gamma} = I$ in $\mathfrak{R}(\mathfrak{M}_p, \mathfrak{A}_p)$ where I is the identity operator on L_p . By (4) we have $\lim_{\gamma} T \circ W_{\gamma} = T \circ I = T$ in $\mathfrak{R}(\mathfrak{M}_p, \mathfrak{A}_p)$. By Lemma 2 we know that $\lim_{\tau} T \circ W_{\gamma} = T$ in the strong operator topology. In particular, there exists some index γ such that $||T \circ W_{\gamma}(f) - T(f)|| < \varepsilon/2$. It follows that

$$egin{aligned} &\|T\circ W_{7}(f)\,\|_{p} \geq \|\,T(f)\,\|_{p} - \|\,T(f) - \,T\circ W_{7}(f)\,\|_{p} \ &\geq \|\,T\,\| - \,arepsilon/2 - \,arepsilon/2 = \|\,T\,\| - arepsilon\,; \end{aligned}$$

but $|| T \circ W_{\tau}(f) ||_{p} \leq || T \circ W_{\tau} || \cdot || f ||_{p} \leq || T \circ W_{\tau} ||$, so that $|| T \circ W_{\tau} || \geq || T || - \varepsilon$. Since ε was arbitrary and $|| W_{\tau} || \leq 1$, we have shown that

$$|| T || = \sup \{ || T \circ W || : W \in A, || W || \le 1 \}.$$

We shall identify L_p^t and \mathfrak{A}_p for several particular cases.

Case I. p = 1. Since L_1 is a Banach algebra with 2-sided minimal approximate identity, it follows that $L_1^t = L_1$ and $||W_f|| = ||f||_1$ for all $f \in L_1$. Because $L_1 * C_{00}$ is dense in L_1 , it follows that \mathfrak{A}_p is isomorphic to L_1 as a Banach algebra. Thus, in this case, Theorem 7 is the well-known fact that a bounded linear operator on L_1 commutes with all left translation operators if and only if it commutes with all left multiplication by elements of L_1 .

Case II. G is Abelian and p = 2. Let X be the character group of G and θ the Haar measure on X such that $||\hat{f}||_2 = ||f||_2$ for all $f \in L_2$. In this case there is an isometric isomorphism $\widehat{} | M_2 \to L_{\infty}(X)$ which is onto $L_{\infty}(X)$ and such that $\widehat{T(f)} = \widehat{T} \cdot \widehat{f}$ for all $g \in L_2$. Evidently, L_2^t is just $\{f \in L_2; \widehat{f} \in L_{\infty}(X)\}$. It is known that there is a net $\{g_{\alpha}\}$ in the set $\{\widehat{f}: f \in C_{00}(G)\}$ such that $||g_{\alpha}||_{\infty} = 1$ for each index α and $\lim g_{\alpha}(\chi) = 1$ uniformly on compact subsets of X. Consequently, the set $\{\widehat{h*f}: h \in L_2^t, f \in C_{00}\}$ is dense in the set $\{g \in L_2(X) \cap L_{\infty}(X): g$ vanishes at ∞ }. It follows that \mathfrak{A}_2 is isomorphic in this case to $\{f \in L_{\infty}(x): f$ vanishes at ∞ }.

Case III. G is compact and $p \neq 1$. In this case L_p is a convolution algebra ([2] 28.64). Thus, $L_p^t = L_p$ and W may be viewed as a non norm-increasing linear operator from L_p into \mathfrak{A}_p . Since $C_{00} \subset L_p \cap L_1$, it is not difficult to show that W is an isomorphism into \mathfrak{A}_p .

Let $f \in L_p$ and choose a minimal approximate identity $\{f_\alpha\}$ for L_1 out of C_{00} . Then $\{f*f_\alpha\}$ converges to f in L_p . Consequently, $\{W_{f*f_\alpha}\}$ converges to W_f in \mathfrak{A}_p . All this shows that, in this case, \mathfrak{A}_p is the closure in \mathfrak{B}_p of the set $\{W_f: f \in L_p\}$.

Suppose now that G is also infinite. Then L_p has no minimal 1-sided identity (see [2] 34.40. b); since \mathfrak{A}_p does have one, it follows that W is not a homeomorphism. Since W is a continuous isomorphism, the open mapping theorem implies that $W | L_p \to \mathfrak{A}_p$ is not onto \mathfrak{A}_p .

Case IV. G is compact and p = 2. Let Σ be the dual object of G as in [2]. For the spaces $\mathfrak{G}_0(\Sigma)$, $\mathfrak{G}_{\infty}(\Sigma)$, and $\mathfrak{G}_2(\Sigma)$ and the norms $|| ||_{\infty}$ and $|| ||_2$ on these spaces, see [2] 28.34. It is an easy consequence of [2] D. 54 that

$$(5) || E ||_{\infty} = \sup \{ || A \circ E ||_{2} : A \in \mathfrak{G}_{2}(\Sigma), || A ||_{2} \leq 1 \}$$

for all $E \in \mathfrak{G}_{\infty}(\Sigma)$. For the definition of the Fourier-Stieltjes transform \hat{f} of a function $f \in L_2$, see [2] 28.34. By [2] 28.43, the mapping $\hat{f} = L_2 \rightarrow \mathfrak{G}_2(\Sigma)$ is a surjective linear isometry and, by [2] 28.40, $\widehat{f*g} = \widehat{f} \circ \widehat{g}$ for all $f, g \in L_2$. Consequently, by (5),

$$|| W_f || = || \widehat{f} ||_{\infty} \quad \text{for all} \quad f \in L_2 .$$

Since $C_{00} \subset L_2$, it follows from [2] 28.39, 28.27, and 28,40 that the set $\{\hat{f}: f \in L_2\}$ is a dense subspace of $\mathfrak{G}_0(\Sigma)$. Since \mathfrak{A}_p is just the closure in \mathfrak{B}_p of the set $\{W_f: f \in L_2\}$, it follows from (6) that \mathfrak{A}_p is isomorphic to $\mathfrak{G}_0(\Sigma)$ as a Banach algebra.

References

- 1. Edwin Hewitt, and Kenneth A. Ross, *Abstract Harmonic Analysis*, Vol. I. Berlin: Springer Verlag. 1963.
- 2. ____, Abstract Harmonic Analysis, Vol. II. Berlin: Springer Verlag. 1970.
- 3. Kelly McKennon, Multipliers, Positive Functionals, Positive-Definite Functions, and Fourier-Stieltjes Transforms, Memoirs of the Amer. Math. Soc., **111**, (1971).
- 4. M. Rajagopalan, L^p-Conjecture for Lacally Compact Groups, I, Trans. Amer. Math. Soc., **125**, (1966), 216-222.

Received May 25, 1971.

WASHINGTON STATE UNIVERSITY