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ON THE ABSOLUTE MATRIX SUMMABILITY
OF FOURIER SERIES

B. KϋTTNER AND B. N. SAHNEY

The paper investigates sufficient conditions under which
a sum inability method of a certain general type absolutely
sums the Fourier series of any function of bounded variation.
The main theorem includes a recent theorem of M. Izumi and
S. Izumi, who considered the problem for the special case of
Norlund summability.

The summability methods considered are those given by a series-
to-series transformation A = (<xn,k). That is to say, given any series

(1) ± a k ,

we describe (1) as summable A to s if

oo

K = Σ ocn,kak

is defined for all n, and if

(2) ± b n
71=0

converges to s. We describe (1) as absolutely summable \A\ if (2)
converges absolutely. Under certain quite weak restrictions on A,
necessary and sufficient conditions under which the Fourier series of
any function of bounded variation should be absolutely summable | A \
have been given by Tripathy [10, Lemma 2]; his result will be stated
later as Lemma 1. But the conditions obtained by Tripathy are of
such a nature that it is not usually easy in any given example to
determine whether they are satisfied or not. The object of the present
paper is to obtain sufficient conditions which, while less general, are
simpler than those of Tripathy. However, it does not seem possible
to obtain reasonably general sufficient condition in any very simple
form.

We will be concerned with the case in which A is absolutely
conservative, that is to say, it is such that, whenever (1) converges
absolutely, so does (2). It is known [4, 6] that in order that this
should hold it is necessary and sufficient that, for k ^ 0,

(3) ΣI«..*I =

407
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We remark that, in order that A should be absolutely regular, that
is to say, that in order that, whenever (1) converges absolutely then
(2) converges absolutely to the same sum, it is necessary and sufficient
that (3) should hold and that, further, for all k ^ 0,

(4) Σ«*,* = l.
Λ = 0

2* We now state our main result.

THEOREM. Let A = (anyk) be an absolutely conservative series-to-
series transformation, with an>k ^ 0 for all n, k. Suppose that either

(a) For each fixed n, there is a positive integer r(n) such that
anΛ is nondecreasing for 1 <: k <, r(ri), and nonincreasing for k ^
r(n), or

(b) For each fixed n, there is a positive integer s(n), such that
antk/k is nondecreasing for 1 ^ k ^ s(n), and nonincreasing for k ̂ >
s(n). Suppose also in case (a) that, for K ^ 1,

(5) Σ
and in case (b) that, for K ^ 1,

(6) Σ ^ - "

Then the Fourier series of any function of bounded variation is abso-
lutely summable \A\.

REMARK. It is clear that (5) is equivalent to

(5') Σ Σ
)K k-=r(n)—K

and it is sometimes more convenient to express (5) in this form. Since
there are 2K + 1 terms in the inner sum in (5), and since the middle
term is the greatest, a sufficient condition for (5) is that

(7) Σ ^ff=

However (7), while much simpler than (5) is less general, and, as will
be shown later, fails to be satisfied in some important cases. In a
similar way, (6) is equivalent to

(60 Σ S ( Σ A ^ = 0(1)
s(n)^2K k = s(n)—K ft

also, a sufficient condition for (6) is that



ON THE ABSOLUTE MATRIX SUMMABILITY OP FOURIER SERIES 409

(8) Σ %f* =
(n)

It is clear that either one of (a), (b) could be satisfied without
the other holding. If, however, they both hold, then (5) is a weaker
assumption than (6). Thus, in this case, the first form of the theorem
is preferable. To prove this assertion, we write θn, ψn for the inner
sums in (5'), (6') respectively, and shall first show that

(9) θn^2φn.

To this end, we first note that s(n) <* r(n). Consider first the case
in which r(n) — s(n) ^ K. Since antk/k is nonincreasing for k ^ s(n),
we have1, for μ = 0, 1, , K - 1,

a(n, r(n) + K - 2μ) . a(n, r(ri) + K — 2μ - 1)
r{n) + K - 2μ r{n) + K - 2μ - 1

^ 2a(n, s(n) + K - μ) ^
~ s{n) + K — μ

Also,

a(n, r(n) — K) ^ a(n, s(n))
*^ ————————— ,

r(n) — K ~ s(n)

whence

where the dash indicates the term k = s(n), is multiplied by 1/2. If
r(n) - s(n) = t(n) < K, then (10) still holds for μ ^ t(n) - 1. Hence

(li) <>.. < * " Σ " 1 a(n's(n) + κ ~ μ) + Σ a{n' r(n) + K ~ v)

μ-=o s(n) + K — μ u=2t(n) r(n) + K — v

where the first sum on the right is taken as 0 if t(n) = 0. Since the
second sum on the right of (11) can be written

2Kψn) a(n, s(ri) + K - μ)
μ=t(n) s(n) + K — μ

we again deduce (9).
It now follows from (9) that

n^2 Σ
)^2

However, since s(n) ^ r(ri), there may be values of n for which r(n) ^
2K, but s(n) < 2K; these values will occur in the sum (5'), but not

1 To avoid complicated suffixes, we write a(n, k) for an,k whenever n, Jc are replaced
by more complicated expressions
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in (6'). If we show that, in any case, the contribution of these terms
to the sum (5') is bounded, the conclusion will now follow. If r(n) ;>
2K but s(n) <; K, then, since anjk is nonincreasing for k^> K we
deduce that

a ^ (2K + l)a%,κ

K

If r(n) ^ 2K and K < s(n) < 2K, then antk is nondecreasing for k
2K. Hence, for all k :> 1

Jc ~ s(n) K

so that

β (2K + l)anttκ

Thus the sum of the terms in question does not exceed

(2K + 1) £ {(Xκ + a κ )

K =̂o

by (3).

3* We now state the lemma of Tripathy already mentioned.

LEMMA 1. Let A — (an,k) be a series-to-series transformation such
that

(12) ΣK,o!< -

and such that, for every fixed n,

(13) Ln(t) = Σ «..* S ^
k k

converges boundedly in t. Then in order that the Fourier series of
any function of bounded variation should be absolutely summable \A\,
it is sufficient that

(14) Σ \Ln(t)\ = 0(1) ,

and necessary that the sum (14) should be essentially bounded.

It may be remarked that the result is not quite correctly stated
in [10], where it is asserted that the essential boundedness of (14)
is necessary and sufficient. But on examining the proof of sufficiency
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in [10], we find that it requires the boundedness, and not just the
essential boundedness, of (14). The point is not of great importance,
since if we assume that, for every fixed n,

oo

Σ \an,k - <*«,*+!I < °°
fc = l

in other words, that bn is defined whenever (1) converges, it is easy
to prove that the essential boundedness of (14) is equivalent to its
boundedness. This result is not, however, required for our present
purposes.

In what follows, we will suppose throughout that 0 < t ^π. We
will apply the hypothesis (5) or (6) with K = [π/t]; thus, in any equations
involving both K and t, it will be assumed that this relation holds.

We require two further lemmas.

LEMMA 2. Let A = (an,k) be an absolutely conservative series-to-
series transformation. If, for every fixed n, an>k/k is ultimately
nonnegative nonincreasing (and thus, in particular, if the hypotheses
of the theorem are satisfied) then the hypotheses of Lemma 1 are
satisfied.

Equation (12) follows at once as a special case of (3). Thus,
taking n as fixed, we have only to verify that (13) converges boundedly.
Suppose that an>k/k is nonnegative nonincreasing for k :> M. Then
we have, uniformly in klf k2 for K, M ^ kt <J k2,

(15)
sin kt

(2sin—

But (3) implies that a(n, k) is bounded; hence the expression on the
right of (15) is 0(1) uniformly in the range considered, and, for fixed
t, tends to 0 (uniformly in k2) as /^ —• oo. Since M is a constant,

M—l

Σ

is bounded; also, if K ^ M,

sin kt

sin kt

k

K

Σ
k=M

k

(by the boundedness of anfk and the definition of K). Hence the result.

LEMMA 3. Suppose that θk ^ 0. Suppose that θk is nondecreasing
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for 1 ^ k <; 8, and nonίncreasing for k^> s. Then, for any positive
integers a, b, and any t with 0 < t ^ π,

(16) Z-i uk 9

fe = max(l, s—K)

where A is an absolute constant.
That portion (if any) of the sum on the left for which s — K ^

k ^ 8 + K clearly satisfies the required inequality. Also, by partial
summation, that portion (if any) for which k > s + K does not, in
modulus, exceed

's+K ^
|1 _ eu\ " ~ |1 - eu\(K+ 1) i

2ί βΐfΛ

That portion of the sum (if any) for which k < s — K may be dealt
with in a similar way, and the conclusion follows.

This lemma is a slight generalisation of a lemma due to McFadden
[5] which has been much used in investigations on the Norlund
summability of Fourier series.

4* We now come to the proof of the theorem. It follows from
Lemmas 1 and 2 that it is enough to show that the hypotheses of
the theorem imply (14). Consider first those values of n (if any) for
which r(n) < 2K in case (a), and for which s(n) < 2K in case (b). In
case (b), we are given that anjk is nonincreasing for k ^ 2K; in case
(a), we are given that an>k is nonincreasing for k ^ 2K; hence, a
fortiori, so is an>k/k. Thus, in either case, since the partial sums of

X sin Art are O(l/ί), we have

by definition of K. For those terms in the sum (13) for which k <̂
2K, we use | sin kt \ ̂  kt; and it follows that

\Ln(t)\ = OJίg^n,*} + O(an,2K) .

Hence the contribution to the sum (14) of those values of n now
under consideration is

{
2K — 1 oo ϊ f o o Λ

* Σ Σ «..* [ + O\ Σ ocn,2K \ = 0(1)
by (3) and the definition of K.

We now investigate the remaining values of n. Consider first
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case (b). For any fixed n, we apply Lemma 3 with θk = an>k/k, and
take the imaginary part of (16) It follows at once that

{ s(n)+K w Λ

k = s(n)-K fC )

and (14) therefore follows from (6') and (17).
Now consider case (a). Since an,k is nonincreasing for k ^ τ(n)

so is an>k/k; thus the part of the sum (13) for which k > r(n) — K
may be dealt with as in case (b). The part for which k < K may
be dealt with by using | sin feί | ^ kt, as in the proof of (17). Thus,
writing

it remains

(18)

only to

L

show

;.(«) -

that

Σ 1

r{n)—K Ά\l\ kt
X 1 (Ji/fi> k

k=K ft

Rn(t) 1 = 0(1) .

Now,

>s (k - —V - cos (k + —VI
\ 2 / \ 2) J2 s i n i ί

2

2 sin —t

c o s η
- K + 1 V w 2

Since

A/ / A/1Λ/ ~Γ~ X/ /V ~|~ JL

it follows that

t L *=jc fe(A; + 1) h=κ k +

+ 11]
1 J/KK r(n) - K +

Λ!,(ί) + Λl(ί) + Λl(ί) + #.(«)},

say. Now, since anΛ is nondecreasing in the relevant range
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t k=K

t K tt h=κ k(k+ϊ) t K t r{n) - K + 1

= Rι

n(t) - R\{t) + Ri(t) ,

so that

Rn(t) = 0{Rl(t)

Next,

Σ Ri(t) ^ ^ Σ T7ΓTΣ «-,* = 0(1)

by (3) and the definition of K. Finally, if r(n) ̂  2K,

J
r(n)

= o\^±^ Σ .

so that

V R\(t) = 0(1) ,Σ
)by (5). The proof of the theorem is thus completed.

5* We now consider an application of our general theorem to
the special case of Norlund summability. We recall that, given a
sequence p = {pn}, Norlund summability (N, p) is defined as given by
the sequence-to-sequence transformation

(19) tn = 4 - Σ P.-Λ i

where we write

Pn = Pθ + Pl+ *-Pn',

it is assumed that p is such that, for all n, Pn Φ 0. If we write

ί» = δ0 + δi + bn; sk = α0 + αt + ak

we see that (19) can be expressed as the series-to-series transformation

b0 = α0
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where we adopt the convention that P_t = 0. Thus we have, with the
notation of our main theorem, an,k = 0 for k > n, while, for 1 ^ k ^ n

OCn>k ~ - p - —p

(20) F% n~ι

Now consider the case in which {pn} is nonnegative nonincreasing.
We remark that, since Po Φ 0, we then have p0 > 0. Further (since
pn ^ 0) {Pn} is nondecreasing; thus it follows from (20) that anΛ ^ 0.
Thus we may omit the modulus signs in (3); and it is now easy to
see that (4), and hence (3), holds. Thus, in the case now considered,
(N, p) is absolutely regular. Further, for fixed n, pn_k is nondecreasing
and Pw_fc nonincreasing as k increases from 1 to n. Since an>k — 0 for
k > n, it follows that condition (a) is satisfied, with r(n) = n. Also
equation (5) becomes

(21) Σ * Σ (PnV^k ~ P«-kPn) = 0(1) .
n=2K nPnPn^ k=n-K

The inner sum in (21) does not exceed

Σ
k=n—K

and thus a sufficient condition for (21) to hold is that

(22) Σ
2

However, since the hypotheses on p imply that Pn_x ~ Pn, and that

KP ^ P2K <̂  2PK, it is easily seen that (22) is equivalent to the slightly
simpler condition

(23) Σ -V = °(-5-)
n=κ nPn \PKJ

Thus our theorem includes the following result;

THEOREM A. Suppose that {pn} is nonnegative nonincreasing,
and that (23) holds. Then the Fourier series of any function of
bounded variation is absolutely summable \N,p\.

The assumption that {pn} is nonnegative nonincreasing is not,
without some further condition, sufficient for the conclusion, for it
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has been shown by Pati [8] that, when pn — l/(n + 1), it is not
true that the Fourier series of any function of bounded variation is
absolutely summable \N,p\. This example also shows that, in our
main theorem, the assumptions that A is absolutely conservative and
that (a) holds would not alone suffice for the conclusion.

Theorem A is included in a recent, slightly more general, theorem
of M Izumi and S. Izumi [3] It includes earlier theorems of H. P.
Dikshit [2, Theorem 2] and T. Singh [9]; the result of Singh itself
generalises a theorem of Pati [7]. The theorems of Dikshit and of
Singh are respectively as follows.

THEOREM B. Suppose that pn > 0, and that pn+jpn is non decreas-
ing, and less than or equal to 1 for all n. Suppose that (23) holds.
Then the Fourier series of any function of bounded variation is
absolutely summable \N,p\.

THEOREM C. Suppose that, for all n, pn ^ pn+1 > 0, and that
Pn — Pn+i is nonincreasing. Suppose also that

(24) Σ — ^ T = O(PK) .
n=o n + 1

Then the fourier series of any function of bounded variation is abso-
lutely summable \N,p\.

It is immediately evident that Theorem A includes Theorem B.
The result that Theorem A includes Theorem C follows from the
following lemma, which shows that, in Theorem C, we may replace
(24) by (23).

LEMMA 4. Suppose that p0 > 0, pn ^ 0. Then (23), (24) are equi-
valent. In fact, either is equivalent to the assertion

(c) There is a constant integer r > 1, and a constant λ > 1 such
that, for all sufficiently large n,

(25) Prn ^ XPn .

We first prove that (23) implies (c). Suppose, then, that (23) holds.
Thus there is a constant M such that, for all sufficiently large K,

Since Pn is nondecreasing,

M
p "

n ~ κ '('•in

this gives

rK 1

M
PK

1

PrK

rK

Σ
n=K

1
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But

Σ
K

as K—+ °°, and (c) therefore follows if r has been chosen so that

(26) log r > M .

If (24) holds, we have, for all sufficiently large K,

Σ — ^ T ^ MPK .

Thus, replacing K by

n=κ n + 1 n=κn + 1

and we again deduce (c) if r has been chosen so that (26) holds.
We now consider the converse implications. Suppose, then, that

(25) holds for n J> n0. Then, for v ^ n0

Hence,

(27)

for n0 and 8 5

nP%

= 1,

1

nP

rvP
>, i i / ± rv

. < •*- ryι

X n = rs~1K

vλP,

1
/yj P

By successive applications of (27), we deduce that for s ^ 0,

rβ + iϋΓ-l 1 I rJΓ-1 1 1 rK-1 1 / 1 \

Σ < 1 y -1- < -1 v _L = Q(
 ι )

n = r*K nPn ~ XS n^K nPn ~ \SPK ^k U V \ S P κ ) '

SPκ

Hence

which gives (23). To prove (24), we have, for v ^ noy

Hence, for s Ξ> 1,

so that, for 0 ^ s ^ ί — 1,
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r
s
 + l«

0
-l p I r*»

0
-l p

(28)

Now take any ϋΓ Ξ> n0. Choose t so that r'n0 <L K <. rt+1n0. Then,
by (28),

K p ^O"1 P ί-1 1 Λ 0 -

_ Σ _
(29) » S ° W + 1 —0 n+1 - 0 λC * n=rt~ln0 U

+ Σ -^-r>

where the second term on the right is omitted when t = 0. The first
term on the right of (29) is a constant, and is thus certainly O(PK),
since Pκ ^ p0 > 0. Also

rtnΰ~l p rtn0—

Σ - ^ - ^ P * ΣΣ
K

Σ U

(since ϋΓ<r ί + 1^ 0). Thus (24) follows.
The conditions (7), (8) have been mentioned as giving simple

sufficient conditions. But, while simpler than (5) or (6), they appear
to be insufficiently general to be of great use. Consider, for example,
the case of Cesaro summability (C, δ). This is a Norlund method with

If 0 < δ <ΞJ 1, then the conditions of Theorem A are satisfied. Thus
that theorem includes the result that the Fourier series of any function
of bounded variation is absolutely summable \C, δ\; this result was
long ago proved by Bosanquet [1]. Now, in this case, an>k = 0 for
k > n, while, for 1 ^ k ^ n,

(n-k + δ-V

— A \ n — k
n In + δ

\ n

Thus (a), (b) are both satisfied, with r(n) = s(n) = n. But either (7)
or (8) reduces to

n\
n

and this is satisfied only if δ = 1.
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6* As another application of our main theorem, we let {k(n)} be
an increasing sequence of nonnegative integers, with k(0) = 0, and
define

1 (k(n) ̂ k<k(n + l);

0 otherwise.

Thus absolute summability \A\ of a given series reduces to the absolute
convergence of the series formed from it by bracketing together, for
every n, those terms whose suffixes k satisfy k(n) ^ k < k(n + 1). It
is clear that (a), (b) are both satisfied, with τ(n) = s(n) = k(ri) (except
when n = 0). In this case, the weaker conditions (7), (8) still give a
significant result. Either of these conditions is equivalent to

(30) Σ
 T K =

k ) k ( )
We note that (30) is satisfied, in particular, if

(31) l iminf*( w + 1 > > l .
*-«» k(n)

Thus our theorem includes the following result. Suppose that (31)
holds. Let us bracket together, in the way indicated, the terms of the
Fourier series of any function of bounded variation. Then the result-
ing series is absolutely convergent.
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