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ON SOLUTIONS IN THE REGRESSIVE ISOLS

JOSEPH BARBACK

Let f(x) be a recursive function and let Df(X) denote
the Nerode canonical extension of / t o the isols. Let A and
Y be particular isols such that Df(A) = Y. The main results
in the paper deal with the following problem: if one of the
isols A and Y is regressive, what regressive property if any
will the other isol have. It is shown that if A is a regressive
isol then Y will be also. Also, it is possible for Y to be a
regressive isol while A is not. In this event there exist re-
gressive isols B with Df(B) = Y and B ^ΛA. Extensions of
these results for recursive functions of more than one variable
are discussed in the last section of the paper.

1* Introduction* We will assume that the reader is familiar

with the primary definitions and results of the papers listed as re-
ferences. We will cite some particular definitions and results that
have a special role in the paper. E will denote the set of nonnegative
integers, Λ the collection of isols, Λ* the collection of isolic integers,
and ΛR the collection of regressive isols. If / is a partial function
from a subset of E into E then δf will denote its domain. If / : En —>
E is a recursive function then Df will denote the canonical extension
of / to the isols. Two sets a and β will be separated, written a | β,
if there exist disjoint r.e. supersets of a and β. j(x, y) will denote
the familiar recursive pairing function defined by,

j(x, y) = x + 1/20 + y)(x + y + 1) ,

and k and I the associated functions with the property j(k(x), l(x)) =
x. [px] will be the canonical enumeration for the collection of all
finite subsets of E, [6]. Associated with this enumeration is the
recursive function r(x) having the property r(x) = card px. We will
use a X to stand for union among sets (and also α + for a union of
two sets).

2«. Recursive functions of one variable* Let / : E—>E be a
recursive function. If / is a combinatorial function then its extension
Df will map Λ into Λ, and if / is an increasing function then Df

will map ΛR into ΛR. Each combinatorial function of one variable
will be increasing, but not conversely. The condition needed for Df

to map ΛR into ΛR is that / be an eventually increasing function, [1].

THEOREM 1. Let f:E—>Ebea recursive function and A and Y be
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isols such that Df{A) = Y. If A is a regressive ίsol then Y will be
regressive also.

Proof. Assume A is a regressive isol. Let

9(0) = 0 ,

g(n + 1) = f(n) + g(n) .

Then g will be an increasing and recursive function. Hence its can-
onical extension Dg will map AR into ΛR. Since

g(n + 1) = f(n) + g(n) ,

it follows from the Nerode metatheorem for such identities (combining
[12, Theorem 10.1] and the representation of the canonical extension
of a recursive function [11, 4]), that

(1) D9(A + 1) = Df(A) +D9(A).

Because A is a regressive isol and g is increasing and recursive, each
of the isols A + 1, Dg{A + 1) and Dg(A) will also be regressive. In
addition, Y = Df(A) is an isol and from (1) it then follows

(2) Y^Dg(A + 1) and Dg(A + l)eΛR.

In view of a result due to Dekker [4, P8 (a)], (2) implies that Y will
be a regressive isol.

REMARK. If / is a recursive function of one variable then although
its canonical extension may not map every isol onto an isol, its value
may be an isol for some. In addition, it may also occur that the
value of Df(A) will be a regressive isol for an isol A which is non-
regressive. An example of such a recursive function will be given
in the following section. We want to show next that if this possibility
does occur, then there will be a regressive isol B such that Df(B) =
Df(A). The following lemma essentially gives this result, once the
connection is made between the canonical extensions of recursive
functions and recursive combinatorial functions.

LEMMA. Let f,g:E—>Ebe recursive combinatorial functions and
A and Y be isols which satisfy the identity,

(1) Df(A) = Y+Dg(A) .

If Y is a regressive isol, then there will also exist a regressive isol B
with,

(2) Df(B) = Y+Dg(B).
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Proof. Assume that F i s a regressive isol, and consider separately
the following three cases.

Case 1. A is finite. Then A will be regressive and we may set
B = A.

Case 2. A is infinite and Y is finite. Let Y = p e E. Set

h(x) = p + #(#), for x e E .

Then h will be a recursive combinatorial function, since the function
g is recursive and combinatorial. By a theorem of Myhill and Nerode
[11, Theorem 7], we also obtain,

(3) Dh(A)= Y+Dg{A) .

Combining (1) and (3) implies

( 4 ) Df(A) = Dh(A) ,

and since A is an infinite isol, it follows from (4) and a theorem due to
Myhill [8], that there will be infinitely many numbers n that satisfy

(5) f(n) = h(n).

Let m be the smallest number that satisfies (5), and let B = m. Then
B will be a regressive solution to (2), since

Df{m) - f(m)

= h(m)

= Dh{m)

= F + Z>,(m) .

Case 3. Both A and Y are infinite isols. Let φf and ^ be the
normal combinatorial operators, and let fo] and [di] be the sequences
of combinatorial coefficients that are associated with the functions /
and g respectively. Let aeA and rj e Y. Then a and η will each
be infinite and isolated sets, and also η will be regressive. We will
assume that

(6) η\a and η\φg(a) ,

for otherwise an easy modification may be made in the proof. Based
on their respective definitions, each of the functions ĉ  and di will be
recursive, and also
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Ψλoί) = (j(x, y) \px S a and y < cr[x)) ,

Φg{<*) = (J(x> y)\pxSa and y < dr{x)) .

From (1) and (6) it follows also,

(7) φf(a) = η + φg(a) .

Let ί) be a partial recursive function that establishes (7), i.e., p will
be defined on φf{a), will be one-to-one, and will map

( 8 ) p:<Pf(a)-+ V + <Pβ(<*) ,

one-to-one and onto.
Let yx be a regressive function that ranges over the set y]9

Our first aim is to define two particular sequences of subsets of
a and of η respectively, whose corresponding terms will share the
property appearing in (8). With each number n we will associate two
sets an a subset of a, and ηn a subset of rj. These sets are meant
to be the collections of those members of a and ΎJ respectively, that
we can effectively find if we start with the value of yn and use only
the regressive property of the function yx, the separability property
in (6), and the recursive and partial recursive properties that appear
in (8). Note that the inverse function p~ι of p will be well-defined
and partial recursive. The particular definition for these sets is as
follows; for ne E, the members of an and rjn are determined by re-
peated applications of the six rules below,

( i ) yn e ηn,

(i i) if yk e ηn then (y0, ., yk) £ ηn,

(iii) if yk e ηn and p~λ{yk) = j(x, u), then px £ an,

(iv) \ίau -- ,ake an, ρx = (al9 , αfc), y <ck, pj{x, y)eη and pj(x,

y) = ym, then ym e ηn,

( v ) if al9 , ak e an, px = (αx, , ak), y < ck and pj(x, y) = j(u,

v), then pu ξΞ:an,

(vi) if aly -",ake an9 ρx = (al9 , ak), y < dk and p~ιj{x, y) = j(u,

v), t h e n ρuξΞ=an.

Note that each of the sets Ύ)n will be non-empty, in view of (i). It
may occur that some of the sets an are empty, however this will be
true for at most only finitely many of the an. It is easy to see upon
a moments reflection that from the value of the number yn one can
effectively enumerate all of the members in each of the sets an and
ηn. It follows that each of the sets an and ηn (for any number n)
will be r.e. subsets of a and Ύ] respectively. Since a and η are each
isolated sets, we see that each of the sets an and ηn will be finite.
It will be useful to list some of these properties and also some that
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can be arrived at in an easy manner from the six rules above.

(9) (V»)[J?, Φ 0 ] and (Vn)(3k)[a,+k Φ 0] .

(10) (Vn)(3ί)[ί ^ n and η% = (y0, , yt)\ .

(11) tf0 £ #i S 2̂ S and Σ αn £ α .
0

(12) τj0 g ^ s % s and Σ % = 9
0

In addition, note that the six rules (i) — (vi) have been so defined so
have the following property; if one would simply know only the value
of yn, then the totality of those members of a and Ύ] that could be
found by using only the recursive and regressive features present in
(8) would be the two sets an and ηn respectively. It follows from this
property that, for ne E

(13) p: <Pf(an) —>rjn + <pg(an), one-to-one and onto.

For each number n e E, let the

torre number of ηn = the largest number t with ηt = ηn .

In view of (i) and the fact that each of the sets ηn is finite, it
follows that there will be infinitely many torre numbers. In addition
it is easy to see that if t is the torre number of ηn, then t ^ n and
rjt — rjn— (yOf . . . ? yt). Let tx denote the strictly increasing function
that ranges over the set of all torre numbers. Then

(14) η t χ = (y0, - - - , y t χ ) ,

(15) Vt0 £ Vh £ Vh S ,

(16) tx<k^ tx+ι = > ηh = ytχ+1, and

(17) v = %v*%-

In addition, by combining the remark prior to (13) with (16) and
the fact that yn is a regressive function, we can also see that ytχ

will be a regressive function (of x). This turns out to be a very
useful property. Another fact that is important to note here is pro-
perty A given below; it follows from (13), (16), the definitions of rjn

and its torre number, and the regressive property of ytχ.

Property A. If we are given the value of yk then we can effec-
tively determine whether k ^t0 or there is a number x such that tx <
k ^ tx+1. In the former event we could also find the value of ytQ,
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and in the latter event both of the numbers ytχ and ytχ+1 could be
found.

Combining (11), (13) and (15) gives,

(18) atQ SahSat2S > and

(19) p: φf{at) > ηtχ + φg{atχ) ,

one-to-one and onto, for each number x. Since φf and φg are combi-
natorial operaors, the inclusions appearing in (18) also imply that

Φf{atχ) S <PA<xtχ+1) ,

and

<Pg(atχ) S <PM*,+)

Therefore, in view of (15) and (19), we obtain for each number x e E,

(20) P' ( ? / K J
> (7*,fl - Vθ + (9>,(α«β+1) - ( ^ K ) ) >

one-to-one and onto.

We now begin to design a regressive set β whose recursive equi-
valence type will have the desired properties of the lemma. First
with each number ytχ a particular finite set βx will be associated. Let
the functions wx and ex be defined by

wx — cardinality of atχ ,

e0 = w0 ,

en+1 = wn+1 - wn .

Since ytχ is a regressive function and since from the value of ytχ we
can determine the complete set atχ (refer to the remarks appearing
before (13)), we see that from the value of ytχ alone, each of the
numbers wx and ex can be computed. Hence each of the mappings
Vtn —* wn and yt% —• en will have a partial recursive extension; in the
notation of [4] these properties are denoted respectively by

(21) ytn ^ * wn and yf% ^* en .

We will assume here that e0 ^ 1 (otherwise the proof would need to
be slightly changed). Then, by (18), it will also follow that en ^ 1
for each number n. For ne E, let

(22) δ. = U(Vtn,r)\r = 0,1, •• , e . - l ] .

Then [δn] will be a sequence of mutually disjoint nonempty sets. From
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(21) and (22), we see that by knowing the value of ytn we can effec-
tively find all the members of the set δn; this property will be denoted
by writing

(23) ytn^sn.

For ne E set

(24) βn = δ0 + δ, + + δn .

Then, in view of (23) and the regressiveness of ytn, it is possible to
effectively find all the elements of βn from the value of yt%. We will
denote this property by

(25) Vtn^*β»-

In addition, note that

(26) /3oS/Si a A>^ ••-, and

(27) card βx = card atχ for every x e E .

Let

β = Σ βn = Σ K .
0 0

We will assume here that the sets ΎJ and φg{β) are separated (otherwise
an easy change in the proof would be made), i.e.,

(28) V\Φa{β)-

Let B — Req β. The remainder of the discussion now is toward showing
that B will satisfy the desired requirements of the lemma, i.e., that
B is a regressive isol and that B satisfies (2). Observe that by (28),

η + φg{β) e Y + D9(B) .

Hence in order to complete the proof, it suffices to show that

(29) β is a regressive and isolated set, and

(30) φf(β) = V + Ψg(β)

For (29): Note that β will be an infinite set, since en ^ 1 for
each number n. Also, it is easy to see that if β contains an infinite
r.e. subset, then the set (yt(i, ytl, •••) would also then include an
infinite r.e. subset. But then the set η would contain an infinite r.e.
subset, yet we know that this cannot be true since it is an isolated set.
And therefore we may conclude that β will be an isolated set. We
know that the function ytχ is regressive. If we combine this fact
with (23) and the definition of β, then it is easy to see that β will
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be a regressive set, and in particular that a regressive enumeration of
its members will be

O(Vto, 0), -,j(ytc, e0 - 1), j(yh, 0), , j(yh, e, - 1) , . . . .

For (30): Recall that

(31) β - Σ βn where βn = δ0 + . . . + δn .
0

Because φf and ^ are combinatorial operators, it follows from (26)
and (31) that,

(32) φf(β0) s φf{βλ) £ . and

(33) φg(/30) £ ψa(βd £ and 9>,(̂ ) = Σ ^ ( ^ J
0

and also, in view of (19) and (27), that for n e E,

(34) card φf(βn) = card ^ ίw + card φg(βn)

Combining (15), (32), (33) and (34) gives

(35) card <ρf(β0) = card rjtQ + card φg(β0), and

card (^/(/β,+1) ~ 9/(/9,)) - card (τ]tk+1 - ηtk)

+ card (φg(βk+1) -

Now we can define a partial function,

Q Ψλβ) > V + <Pg{β) >

based on the previous two equations. Let

V <Pλβo)—*-+ Vto + Ψg(βo) ,

Q (<PΛβk+i) - φf{βk)) —*— (Vtk+1 ~ Vtk) + K ( A + 1 ) - φa(βk)) »

where we write — *—> to mean that the related mapping is to be
order preserving. From (35) and (36) it follows that the mapping q
is well-defined, and from (12), (32) and (33) that q will map φf{β)
onto η + φg{β) in a one-to-one manner. To verify (30), it suffices to
prove that q will have a one-to-one partial recursive extension. Be-
cause the sets φf(β) and η + φg{β) are isolated, it follows from a
theorem due to Dekker [4, Proposition 9(6)], that q will have a one-
to-one partial recursive extension, if both q and q~ι have partial
recursive extensions. It suffices therefore to verify this latter property,
and this will be our approach here. We will consider first the mapp-
ing q.
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Let w e ψf{β). We now describe a procedure whereby, with the
possible exception of finitely many such w, one can effectively compute
the value of q(w). From w first find the particular numbers x and
u with

(37) w = j(x, u), ftSβandu< cr{x) .

Note that if px is nonempty then each of its members can also be
found. Moreover, since φf is a normal combinatorial operator, it
follows that for all but possibly finitely many w e φf(β) the corre-
sponding finite set px appearing in (37) will be nonempty. From now
on let us assume that ρx is nonempty. Members of px will be of
the form j(ytk, v), and for each such member we can find the corre-
sponding values of yt]c and v. In addition, the values of tk and ft
can also be determined, by using the regressive properties of yn and
ytn. Let ft* denote the largest value of ft such that j(ytk, v) e pxf for
some number v. Then, it is easy to show that

w e Φλβo) , if ft* = 0, and

w e φf{βk*) — Φf{βk*-ι)> if ft* ^ 1 .

We know, by (25), that from the value of yt]cM we can effectively find
all the members of the set βh*. In addition, note that if ft* ^ 1 then
also the members of the set β^^ can be found, for we may regress
down from yt]c^ to yt}c,_1 and apply (25). In a similar manner, in view
of (14), it follows that from the value of yt]^ we can find all the
members in the set

ηh , if ft* = 0, and

Vtk, ~ Vtk^ if ft* ^ 1

Finally, by combining these properties with the fact that the normal
operators φf and φg are each recursive, it can be seen that the
members in each of the sets below can be effectively determined,

φf(β0) and ηtQ + φg(β0), if ft* = 0 and ,

P/GS*) - Φλβv-i) and

(Vtk. ~ Vtk*J + (<PM - <Pa(βr-i))> if ft* ^ 1 .

It follows directly from this property and the definition of q, that
the value of q(w) can now be computed. Therefore, there will be a
procedure that is effective and which will enable one to compute q(w)
for all but a possible finite number of w e ψf{β). It is readily seen that
this feature implies that the mapping q will have a partial recursive
extension.
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An approach very similar to the previous one can be employed to
show that the mapping q"1 will also have a partial recursive. For
this reason we will omit the main details for doing this, and will
only mention the two essentially new observatians that we would
have been required to make. The first is that given any number
w e rj + φg(β) one can effectively determine whether w erj or we φg(β)
This property follows from the separability of the sets η and φg{β)
given in (28). The other observation is that if w eη, then one can
effectively find the particular numbers s9 k*, tk* and yt]^ that are related
to w in the following way, w — ys and

w e ηtk. , if A* = 0 ,

w G (Vtk* ~ Vt^)* if &* ^ 1 .

This particular property follows from (14), (16), Property A and the
regressive properties of the functions yn and yt%. The importance of
the second property lies in the fact that it means that from the value
of any w eη, one can effectively find yt^ and therefore also deter-
mine the appropriate sets,

β t Q a n d Ύ)H , if A* = 0 ,

βtk,, βtk^, Vtk* and ηtk^l9 if A* ^ 1 .

It is then with these two observations that a similar approach, as
with q, will lead to showing that q~ι will have a partial recursive
extension.

In view of the remarks made up to this point, we see that the
mapping

Q' Ψλβ) > V + <Pg(β)

will have a one-to-one partial recursive extension. This verifies (30)
and complets the proof of the lemma.

THEOREM 2. Let f:E—>E be a recursive function and A and
Y be isols such that

(1) Df(A) = Y .

If Y is a regressive isol, then there will also exist regressive isols B

such that,

D
f
(B)= Y.

Proof. Let us assume that Y is a regressive isol. Let / + and
/ " be the positive and negative recursive and combinatorial functions
that are associated with / (refer to [11]). Then for every number
x e E, f(x) = f+(x) - f~(x), and also
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Df(A) = Df+ (A) -Df- (A) .

Therefore, by (1), it also follows that

= Y+Df- (A) .

If we now apply the previous lemma to this equation, we see that
there will be a regressive isol B such that

Df + (B)=Y+Df- (B) ,

and from this identity it also follows that Df{B) — Y.

REMARK. Theorem 2 is our principal result and it is easy to
observe that it follows almost directly from the lemma. It turns out
that, as a consequence of the manner in which the lemma was proved,
a slightly stronger form of both the lemma and the theorem can be
established. We would like to state without a proof the particular
form that is related to the theorem. It involves the Nerode canonical
extension of the familiar binary relation ^ (among numbers) to the
isols. The extension procedure is introduced in [12], and for the
relation <J its extension will be denoted by ^Λ. It can be shown
that the regressive isol B constructed in the proof of the lemma (in
each of the cases considered there) is related to the isol A by B ^Λ

A. Based on this fact one can obtain the following result.

THEOREM A. Let f:E-^E be a recursive function and A and
Y be isols such that Df{A) = Y. If Y is a regressive isol, then there
will exist regressive isols B such that B ^ΛA and Df(B) = Y.

3* An example* It is possible that the canonical extension of a
recursive function may map an isol that is nonregressive onto an isol
that is infinite and regressive. We would like to give an example
of such a function. First some definitions are needed.

If a and β are two sets of numbers, then a ^ * β will mean that
either a is a finite set and card a ^ card β, or else both a and β
are infinite sets and there is a partial recursive function p such that,
a £ δp, p(a) = β and p is one-to-one on a. If A and B are two isols
then A ^ * B will mean that there are sets ae A and βeβ such that
oc ^ * β Let min (α, b) denote the familiar recursive function minimum
(α, 6), and let jDmin denote its canonical extension to Λ2. min (α, b) is
not an almost combinatorial function, and therefore its canonical
extension will not map Λ2 into Λ. On the otherhand, it is proved in
[3] that Dmin will map Λ% into ΛR. In addition, by combining results
in [3] and [4], one obtains for A,BeΛR,
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Dmln(A, B) = A — A ^ * 5 .

Concerning isols and regressive isols the following property due to
Dekker [4] is also needed; if S and T are any isols, then

(*) S ^ T and TeΛB=>SeΛR.

In the result below we will construct the kind of example that was
described earlier. We note that the functions j(x, y), k(x) and l(x) that
appear in its proof refer to those particular recursive functions in-
troduced in §1.

THEOREM 3. There is a recursive function h(x) and an isol C
such that Dh(C) e AR and yet C $ AR.

Proof. Define

h(x) = min (k(x), l(x)) .

T h e n h w i l l b e a r e c u r s i v e f u n c t i o n , a n d f o r a, b e E

hj(a, b) = min (α, b) .

Therefore also,

DhD5{U, V) = Dmin (U, V), torU,VeΛ.

Select A, B e ΛB such that

(1) A^*B and A

the existence of such a pair of regressive isols is proved in [2]. Then
it follows

DMA, B) = Dmin (A, B) = A,

and in addition, if we let C = Dό{Ay B), then also

(2) Dh(C) = AeΛB.

The function j(x, y) is recursive and combinatorial, and therefore its
canonical extension will map Λ2 into A. In particular, we see that

(3) C = DS(A, B)eA.

Let us now verify

(4) C = Dά{A,B)eAR=> A + BeAR.

First consider the implications,
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Dj(A, B)eΛR=> 2Dd(A9 B) e ΛR

— 2A + (A + B)(A + 5+1)64

= > A + BeΛB .

The first two implications are clear. The last one follows from (*)
and the property,

A + B ^ 2A + (A + J5)(4 + β + 1) .

Together they imply (4). In view of (1), (3) and (4) we obtain C e
Λ — ΛB9 and if we combine this property with (2) the desired result
follows directly.

N. B. The fact that the familiar j function is combinatorial we
first learned from some unpublished notes of Erik Ellentuck. Once
this property is pointed out it is easy to show, and we will leave it
for the reader.

4* Recursive functions of several variables* We would like to
describe some of the results that can be obtained for recursive func-
tions of more than one variable that are similar to those given in § 2.
First let us note some features that distinguish the one and more
than one variable cases. We know that for a recursive combinatorial
function of one variable, its canonical extension will map regressive
isols onto regressive isols. On the other hand, even for recursive
combinatorial functions of two variables, it need not be true that
their canonical extension will map pairs of regressive isols onto re-
gressive isols. For example, Dekker showed in [4] that it is possible
for both the sum and the product of two regressive isols to be an
ίsol that is non-regressive. The characterization of those recursive
functions of two variables whose canonical extensions will map re-
gressive isols to regressive isols was given by Mathew Hassett in
[9]. The following is a special case of a theorem also due to Hassett
[8].

THEOREM B. (Hassett) Let f:En-+Ebe a recursive and com-
binatorial function. Let Au , An be n regressive isols whose sum
Aι + + An is also regressive. Then the value of Df(Au , An)
will be a regressive isol.

Note that when n = 1 in Theorem B one obtains the earlier result
mentioned about recursive combinatorial functions of one variable.
Based upon the procedure for representing the canonical extension of
a recursive function (in terms of the canonical extensions of recursive
combinatorial functions) and applying Theorem B, analogues of Theorems
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1 and 2 can be obtained for functions of more than one variable. We
conclude the paper with statements of these two theorems.

THEOREM C. Let f:En—>E be a recursive function and Al9 •••,
An and Y be ίsols with Df{Au , An) = Y. If the sum Aλ + +
An is regressive, then the isol Y will also be regressive.

THEOREM D. Let f: En—>E be a recursive function and Al9 •••,
An and Y be isols with Df{Au An) = Y. If Y is regressive, then there
will be regressive isols Bly , Bn such that the sum B1 + + Bn

will be regressive and also Df(Bl9 , Bn) = Y.
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