INTEGRABILITY THEOREMS FOR POWER SERIES EXPANSIONS OF TWO VARIABLES

Yoshimithu Hasegawa

Let $f(x, y)=\sum_{m, n=0}^{\infty} a_{m, n} x^{m} y^{n}$ in the triangle $x+y \leqq 1$, $x, y \geqq 0$, or in the quarter-disk $x^{2}+y^{2}<1, x, y \geqq 0$. This paper show some relations between L-integrability of $f(x, y)$, with certain multipliers, and the coefficients $a_{m, n}$.

1. Definition. A real-valued function $f(x, y)$ is said to be harmonic in a domain D in R^{2} if it is 2 -times continuously differentiable in D and satisfies Laplace's equation

$$
\Delta f \equiv \frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0 \quad \text { for any }(x, y) \in D
$$

Throughout the paper, the letter C, with or without a suffix, denotes a positive constant, not necessarily the same at each appearance.

Heywood [3] proved a result as follows:
Suppose that $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ for $0 \leqq x<1$, that $\gamma<1$, and that there are positive numbers ε, C such that $a_{n} \geqq-C n^{-(\gamma+\varepsilon)}$ for all sufficiently large n. Then $(1-x)^{-r} f(x) \in L(0,1)$ if and only if $\sum_{n=1}^{\infty} n^{r-1} a_{n}$ converges absolutely.

We shall show two analogues of his result for power series expansions of two variables.

Kiselman [4] proved the following theorem.
Theorem A. If $f(x, y)$ is harmonic in the disk $x^{2}+y^{2}<r_{0}^{2}$ $\left(r_{0}>0\right)$, but not in any open disk of larger radius centred on the origin, then the power series expansion

$$
\begin{equation*}
f(x, y)=\sum_{m, n=0}^{\infty} a_{m, n} x^{m} y^{n} \tag{1}
\end{equation*}
$$

converges absolutely in the square $K:|x|+|y|<r_{0}$, uniformly on every compact subset of K. It diverges at all points exterior to K for which $x \neq 0$, and $y \neq 0$.

Further, the following theorem is known (see [2, p. 189 and 200] and [4]).

Theorem B. Suppose that $f(x, y)$ is harmonic in the disk

$$
x^{2}+y^{2}<r_{0}^{2},
$$

and that $f(x, y)$ has the power series expansion (1) in the square K, where K is defined as in Theorem A. Let $P_{N}(x, y)$ be defined by

$$
P_{N}(x, y)=\sum_{m+n=N} a_{m, n} x^{m} y^{n} \quad(N=0,1,2, \cdots)
$$

Then the polynomial expansion

$$
f(x, y)=\sum_{N=0}^{\infty} P_{N}(x, y)
$$

of $f(x, y)$ converges uniformly and absolutely in $x^{2}+y^{2} \leqq r^{2}$ for any $0<r<r_{0}$, where $P_{N}(x, y)$ are harmonic.

We give the following four theorems.
Theorem 1. Suppose that a double power series (1) converges absolutely in the triangle

$$
\begin{equation*}
T: x+y<1, \quad x, y \geqq 0 \tag{2}
\end{equation*}
$$

that $\gamma<1$, and that there are positive numbers ε, C such that

$$
\begin{equation*}
a_{m, n} \geqq-C(m+n+1)^{m+n-\gamma-\varepsilon+1 / 2}(m+1)^{-(m+1 / 2)}(n+1)^{-(n+1 / 2)} \tag{3}
\end{equation*}
$$

for all sufficiently large $m+n$. Then $(1-x-y)^{-r} f(x, y)$ is Lebesgueintegrable on T if and only if

$$
\begin{equation*}
\sum_{m, n=0}^{\infty}(m+n+1)^{-m-n+\gamma-5 / 2}(m+1)^{m+1 / 2}(n+1)^{n+1 / 2} a_{m, n} \tag{4}
\end{equation*}
$$

converges absolutely.

Theorem 2. Suppose that $f(x, y)$ is harmonic in the quarter-disk

$$
\begin{equation*}
Q: x^{2}+y^{2}<1, \quad x, y \geqq 0 \tag{5}
\end{equation*}
$$

and that $f(x, y)$ has the power series expansion (1) in the triangle T, where T is defined by (2). Then, under the assumption (3), the function $(1-x-y)^{-\gamma} f(x, y), \gamma<1$, is Lebesgue-integrable on T if and only if the series (4) converges absolutely.

Theorem 2 is an obvious consequence of Theorem $\mathrm{A}\left(r_{0}=1\right)$ and Theorem 1, and so we omit the proof.

Theorem 3. Suppose that a double power series (1) converges absolutely in the quarter-disk Q, where Q is defined by (5), that $\gamma<1$, and that there are positive numbers ε, C such that

$$
\left.a_{m, n} \geqq\left\{\begin{array}{cc}
-C(m+n+1)^{(m+n+1) / 2-\gamma-\varepsilon}(m+1)^{-(m+1) / 2} & \tag{6}\\
\times(n+1)^{-(n+1) / 2} & \text { (even } m, n) \\
-C(m+n+1)^{(m+n) / 2-\gamma-\varepsilon}(m+1)^{-m / 2} & \\
\times(n+1)^{-(n+1) / 2} & \text { (odd } m \text { and even } n) \\
-C(m+n+1)^{(m+n) / 2-\gamma-\varepsilon}(m+1)^{-(m+1) / 2} \\
\times(n+1)^{-n / 2} & (\text { even } m
\end{array}\right) \text { and odd } n\right)
$$

for all sufficiently large $m+n$. Then the function

$$
\left\{1-\left(x^{2}+y^{2}\right)^{1 / 2}\right\}^{-\gamma} f(x, y)
$$

is Lebesgue-integrable on Q if and only if the series

$$
\begin{equation*}
\sum_{m, n=0}^{\infty}(m+n+1)^{-(m+n+3) / 2+\gamma}(m+1)^{m / 2}(n+1)^{n / 2} a_{m, n} \tag{7}
\end{equation*}
$$

converges absolutely.
Remark 1. In Theorem 3, it is easily seen that (6) may be replaced by a stronger condition

$$
\begin{aligned}
\alpha_{m, n} \geqq-C(m+n+1)^{(m+n-1) / 2-\gamma-\varepsilon}(m+1)^{-m / 2}(n+1)^{-n / 2} \\
\quad(m, n=0,1,2, \cdots)
\end{aligned}
$$

for all sufficiently large $m+n$.
Theorem 4. Suppose that $f(x, y)$ is harmonic in the quarter-disk Q, where Q is defined by (5), and that $f(x, y)$ has the power series expansion (1) in the triangle T, where T is defined by (2). Then, under the assumption (6), the function $\left\{1-\left(x^{2}+y^{2}\right)^{1 / 2}\right\}^{-\gamma} f(x, y), \gamma<1$, is Lebesgue-integrable on Q if and only if the series (7) converges absolutely.

Theorem 4 is a consequence of Theorem B ($r_{0}=1$) and Theorem 3. In §2, we shall prove Theorem 1 and give an example for Theorem 2. Further, in §3, we shall prove Theorems 3 and 4.
2. Proof of Theorem 1. First, suppose that $(1-x-y)^{-r} f(x, y)$ is Lebesgue-integrable on T. Without loss of generality, we suppose that $\gamma+\varepsilon$ is a noninteger value <1. For, we get

$$
a_{m, n} \geqq-C(m+n+1)^{m+n-\gamma-\varepsilon^{\prime}+1 / 2}(m+1)^{-(m+1 / 2)}(n+1)^{-(n+1 / 2)}
$$

for $0<\varepsilon^{\prime}<\varepsilon$. We have, for any $(x, y) \in T$,

$$
\begin{align*}
(1-x-y)^{\gamma+\varepsilon-1}= & \sum_{N=0}^{\infty} \frac{\Gamma(N+1-\gamma-\varepsilon)}{\Gamma(N+1) \Gamma(1-\gamma-\varepsilon)}(x+y)^{N} \\
= & \frac{1}{\Gamma(1-\gamma-\varepsilon)} \sum_{N=0}^{\infty} \frac{\Gamma(N+1-\gamma-\varepsilon)}{\Gamma(N+1)} \\
& \times \sum_{\substack{m+n=N \\
m, n \geq 0}}\binom{m+n}{n} x^{m} y^{n} \tag{8}\\
= & \frac{1}{\Gamma(1-\gamma-\varepsilon)} \sum_{m, n=0}^{\infty} \frac{\Gamma(m+n-\gamma-\varepsilon+1)}{\Gamma(m+1) \Gamma(n+1)} x^{m} y^{n} \\
= & \frac{1}{\Gamma(1-\gamma-\varepsilon)} \sum_{m, n=0}^{\infty} b_{m, n} x^{m} y^{n}
\end{align*}
$$

say, where $\Gamma(u)$ is the Gamma function. By Stirling's formula (see e.g. [1, p. 24])

$$
\Gamma(u)=\sqrt{2 \pi} u^{u-1 / 2} e^{-u+\eta / 12 u} \quad \text { for any } u>0
$$

where η is a number independent of u between 0 and 1 , we obtain

$$
\begin{equation*}
C_{1} u^{u-1 / 2} e^{-u} \leqq \Gamma(u) \leqq C_{2} u^{u-1 / 2} e^{-u} \quad \text { for any } u \geqq u_{0} \tag{9}
\end{equation*}
$$

if u_{0} is a fixed positive number. Hence we get easily

$$
\begin{equation*}
C_{3} \lambda_{m, n} \leqq b_{m, n} \leqq C_{4} \lambda_{m, n} \quad \text { for all } m, n \geqq 0 \tag{10}
\end{equation*}
$$

where

$$
\lambda_{m, n}=(m+n+1)^{m+n-r-\varepsilon+1 / 2}(m+1)^{-(m+1 / 2)}(n+1)^{-(n+1 / 2)}
$$

(notice $u_{0} \geqq \min (1-\gamma-\varepsilon, 1)$). Let

$$
g(x, y)=C_{5} \Gamma(1-\gamma-\varepsilon)(1-x-y)^{\gamma+\varepsilon-1}, \quad C_{5} \geqq C / C_{3} .
$$

Then, it is clear that $(1-x-y)^{-r} g(x, y)$ is Lebesgue-integrable on T. Thus, by assumption,

$$
\begin{aligned}
(1-x-y)^{-r}\{f(x, y)+g(x, y)\}= & (1-x-y)^{-r} \\
& \times \sum_{m, n=0}^{\infty}\left(a_{m, n}+C_{5} b_{m, n}\right) x^{m} y^{n}
\end{aligned}
$$

is Lebesgue-integrable on T. By (3) and (10), we heve

$$
a_{m, n}+C_{5} b_{m, n} \geqq a_{m, n}+C \lambda_{m, n} \geqq 0
$$

for all sufficiently large $m+n$. Hence we get

$$
\begin{align*}
\iint_{T}(1-x-y)^{-r} & \left\{\sum_{m, n=0}^{\infty}\left(a_{m, n}+C_{5} b_{m, n}\right) x^{m} y^{n}\right\} d x d y \tag{11}\\
& =\sum_{m, n=0}^{\infty}\left(a_{m, n}+C_{5} b_{m, n}\right) \iint_{T}(1-x-y)^{-r} x^{m} y^{n} d x d y
\end{align*}
$$

where the right-side series converges absolutely. Using the change of variable $x=(1-y) u$, we have, for all $m, n \geqq 0$,

$$
\begin{aligned}
\iint_{T}(1-x & -y)^{-\gamma} x^{m} y^{n} d x d y \\
& =\int_{0}^{1} d y \int_{0}^{1-y}(1-x-y)^{-\gamma} x^{m} y^{n} d x \\
& =\int_{0}^{1}(1-y)^{m+1-\gamma} y^{n} d y \int_{0}^{1}(1-u)^{-\gamma} u^{m} d u \\
& =\frac{\Gamma(n+1) \Gamma(m+2-\gamma)}{\Gamma(m+n+3-\gamma)} \cdot \frac{\Gamma(m+1) \Gamma(1-\gamma)}{\Gamma(m+2-\gamma)} \\
& =\Gamma(1-\gamma) \cdot \frac{\Gamma(m+1) \Gamma(n+1)}{\Gamma(m+n+3-\gamma)} .
\end{aligned}
$$

Hence, from (9), we get

$$
\begin{align*}
C_{6}(m+n+1 &)^{-m-n+\gamma-5 / 2}(m+1)^{m+1 / 2}(n+1)^{n+1 / 2} \\
& \leqq \iint_{T}(1-x-y)^{-\gamma} x^{m} y^{n} d x d y \tag{12}\\
& \leqq C_{7}(m+n+1)^{-m-n+\gamma-5 / 2}(m+1)^{m+1 / 2}(n+1)^{n+1 / 2}
\end{align*}
$$

for all $m, n \geqq 0$. Thus, by (11) and (12),

$$
\begin{equation*}
\sum_{m, n=0}^{\infty}(m+n+1)^{-m-n+\gamma-5 / 2}(m+1)^{m+1 / 2}(n+1)^{n+1 / 2}\left(a_{m, n}+C_{5} b_{m, n}\right) \tag{13}
\end{equation*}
$$

converges absolutely. Further, from (10)

$$
\begin{array}{r}
\sum_{m, n=0}^{\infty}(m+n+1)^{-m-n+\gamma-5 / 2}(m+1)^{m+1 / 2}(n+1)^{n+1 / 2} b_{m, n} \tag{14}\\
\leqq C_{4} \sum_{m, n=0}^{\infty}(m+n+1)^{-2-\varepsilon}<\infty .
\end{array}
$$

By (3) and (10), we get

$$
\left|a_{m, n}\right| \leqq a_{m, n}+2 C \lambda_{m, n} \leqq a_{m, n}+2 C_{5} b_{m, n} \quad\left(C_{5} \geqq C / C_{3}\right)
$$

for all sufficiently large $m+n$. Hence, from (13) and (14), the series (4) converges absolutely.

Conversely we suppose that the series (4) converges absolutely, and will deduce that $(1-x-y)^{-\gamma} f(x, y)$ is Lebesgue-integrable on T. For this part of the argument we do not assume (3). We have in fact

$$
\begin{aligned}
& \iint_{T}(1-x-y)^{-r}|f(x, y)| d x d y \\
& \quad \leqq \iint_{T}(1-x-y)^{-r}\left\{\sum_{m, n=0}^{\infty}\left|a_{m, n}\right| x^{m} y^{n}\right\} d x d y \\
& \quad=\sum_{m, n=0}^{\infty}\left|a_{m, n}\right| \iint_{T}(1-x-y)^{-r} x^{m} y^{n} d x d y \\
& \quad \leqq C_{7} \sum_{m, n=0}^{\infty}(m+n+1)^{-m-n+\gamma-5 / 2}(m+1)^{m+1 / 2}(n+1)^{n+1 / 2}\left|a_{m, n}\right|<\propto
\end{aligned}
$$

by (12). Thus Theorem 1 is proved.
Example for Theorem 2. Let

$$
f(x, y)=\Re(1-z)^{-2}=\frac{(1-x)^{2}-y^{2}}{\left\{(1-x)^{2}+y^{2}\right\}^{2}} \quad(z=x+i y, i=\sqrt{-1})
$$

Then $f(x, y)$ is harmonic in the disk $x^{2}+y^{2}<1$. Since

$$
f(x, y)=\Re \sum_{N=0}^{\infty}(N+1) z^{N}=\sum_{N=0}^{\infty}(N+1) \sum_{m+2 n=N}(-1)^{n}\binom{m+2 n}{2 n} x^{m} y^{2 n}
$$

in the disk $x^{2}+y^{2}<1$, we get

$$
f(x, y)=\sum_{m, n=0}^{\infty}(-1)^{n} \frac{\Gamma(m+2 n+2)}{\Gamma(m+1) \Gamma(2 n+1)} x^{m} y^{2 n}
$$

in the square $|x|+|y|<1$, by Theorem A. When $a_{m, n}$ denote the (m, n)th coefficients of this power series expansion, we have, from (9),

$$
\begin{aligned}
C_{1}(m+ & 2 n+1)^{m+2 n+3 / 2}(m+1)^{-(m+1 / 2)}(2 n+1)^{-(2 n+1 / 2)} \\
& \leqq\left|a_{m, 2 n}\right| \leqq C_{2}(m+2 n+1)^{m+2 n+3 / 2}(m+1)^{-(m+1 / 2)}(2 n+1)^{-(2 n+1 / 2)}
\end{aligned}
$$

and $a_{m, 2 n+1}=0$. First we put $\gamma<-1$. Then the sequence $\left\{a_{m, n}\right\}$ satisfies (3) for $\varepsilon=-(\gamma+1) / 2$. Now we have

$$
\begin{aligned}
& \iint_{T}(1-x-y)^{-r}|f(x, y)| d x d y \\
= & \int_{0}^{1}(1-x)^{-r-1} d x \int_{0}^{1} \frac{(1-u)^{-r+1}(1+u)}{\left(1+u^{2}\right)^{2}} d u<\infty
\end{aligned}
$$

by the change of variable $y=(1-x) u$. Further we get

$$
\begin{gathered}
\sum_{m, n=0}^{\infty}(m+n+1)^{-m-n+\gamma-5 / 2}(m+1)^{m+1 / 2}(n+1)^{n+1 / 2}\left|a_{m, n}\right| \\
\leqq C_{2} \sum_{m, n=0}^{\infty}(m+n+1)^{r-1}<\infty .
\end{gathered}
$$

Next we set $\gamma=-1$. Then $\left\{a_{m, n}\right\}$ does not satisfy (3), but we notice $\varepsilon=0$. It is clear that

$$
\iint_{T}(1-x-y)|f(x, y)| d x d y=\int_{0}^{1} \frac{(1-u)^{2}(1+u)}{\left(1+u^{2}\right)^{2}} d u<\infty
$$

But we get

$$
\begin{aligned}
& \sum_{m, n=0}^{\infty}(m+n+1)^{-m-n-7 / 2}(m+1)^{m+1 / 2}(n+1)^{n+1 / 2}\left|a_{m, n}\right| \\
& \quad \geqq C_{1} \sum_{m, n=0}^{\infty}(m+2 n+1)^{-2}>\frac{C_{1}}{4} \sum_{m, n=0}^{\infty}(m+n+1)^{-2}=\infty .
\end{aligned}
$$

Thus this example ($\gamma=-1$) show that we cannot set $\varepsilon=0$ in (3) without destroying the validity of Theorem 2.
3. In order to prove Theorem 3, we need the following lemma.

Lemma. Suppose that $\mu<1$, and that $A(x, y)$ is defined by

$$
A(x, y)=(1+x+y+x y)\left(1-x^{2}-y^{2}\right)^{\mu-1}
$$

in the quarter-disk Q, where Q is defined by (5). Then $A(x, y)$ has the power series expansion

$$
\begin{equation*}
A(x, y)=\sum_{m, n=0}^{\infty} d_{m, n} x^{m} y^{n}, \quad C_{1} \delta_{m, n} \leqq d_{m, n} \leqq C_{2} \delta_{m, n} \quad\left(C_{1}, C_{2}>0\right) \tag{15}
\end{equation*}
$$

in Q, where

$$
\delta_{m, n}=\left\{\begin{array}{rr}
(m+n+1)^{(m+n+1) / 2-\mu}(m+1)^{-(m+1) / 2} & \\
\times(n+1)^{-(n+1) / 2} & (\text { even } m, n) \\
(m+n+1)^{(m+n) / 2-\mu}(m+1)^{-m / 2} & \\
\times(n+1)^{-(n+1) / 2} & (\text { odd } m \text { and even } n) \\
(m+n+1)^{(m+n) / 2-\mu}(m+1)^{-(m+1) / 2} & \\
\times(n+1)^{-n / 2} & (\text { even } m \text { and odd } n) \\
(m+n+1)^{(m+n-1) / 2-\mu}(m+1)^{-m / 2} & \\
\times(n+1)^{-n / 2} & (\text { odd } m, n) .
\end{array}\right.
$$

Proof. We have, for any $(x, y) \in Q$,

$$
\begin{aligned}
\left(1-x^{2}-y^{2}\right)^{\mu-1} & =\sum_{N=0}^{\infty} \frac{\Gamma(N+1-\mu)}{\Gamma(N+1) \Gamma(1-\mu)}\left(x^{2}+y^{2}\right)^{N} \\
& =\sum_{N=0}^{\infty} \frac{\Gamma(N+1-\mu)}{\Gamma(N+1) \Gamma(1-\mu)} \sum_{\substack{m+n=N \\
m \geq n}}\binom{m+n}{m} x^{2 m} y^{2 n} \\
& =\sum_{m, n=0}^{\infty} \frac{1}{\Gamma(1-\mu)} \cdot \frac{\Gamma(m+n+1-\mu)}{\Gamma(m+1) \Gamma(n+1)} x^{2 m} y^{2 n} \\
& =\sum_{m, n=0}^{\infty} p_{m, n} x^{2 m} y^{2 n}
\end{aligned}
$$

say. Then we get

$$
\begin{equation*}
A(x, y)=\sum_{m, n=0}^{\infty} p_{m, n}\left(x^{2 m} y^{2 n}+x^{2 m+1} y^{2 n}+x^{2 m} y^{2 n+1}+x^{2 m+1} y^{2 n+1}\right) \tag{16}
\end{equation*}
$$

We put

$$
d_{m, n}= \begin{cases}p_{m / 2, n / 2} & (\text { even } m, n \text {) } \\ p_{(m-1) / 2, n / 2} & \text { (odd } m \text { and even } n \text {) } \\ p_{m / 2,(n-1) / 2} & \text { (even } m \text { and odd } n \text {) } \\ p_{(m-1) / 2,(n-1) / 2} & \text { (odd } m, n) .\end{cases}
$$

Now, from (16) and (9), we get easily (15). Thus the Lemma is proved.

Proof of Theorem 3. First, suppose that $\left\{1-\left(x^{2}+y^{2}\right)^{1 / 2}\right\}^{-r} f(x, y)$ is Lebesgue-integrable on Q. Without loss of generality, we may suppose that $\gamma+\varepsilon$ is a noninteger <1. Let

$$
\begin{equation*}
h(x, y)=(1+x+y+x y)\left(1-x^{2}-y^{2}\right)^{r+\varepsilon-1} \tag{17}
\end{equation*}
$$

in Q. Then, by the Lemma $(\mu=\gamma+\varepsilon)$, we have

$$
\begin{equation*}
h(x, y)=\sum_{m, n=0}^{\infty} k_{m, n} x^{m} y^{n}, \quad C_{1} \theta_{m, n} \leqq k_{m, n} \leqq C_{2} \theta_{m, n} \tag{18}
\end{equation*}
$$

in Q, where $k_{m, n}$ and $\theta_{m, n}$ are defined respectively like $d_{m, n}$ and $\delta_{m, n}$ in the Lemma with $\mu=\gamma+\varepsilon$. Clearly, the function

$$
\begin{aligned}
& \left\{1-\left(x^{2}+y^{2}\right)^{1 / 2}\right\}^{-r} h(x, y) \\
= & (1+x+y+x y)\left\{1+\left(x^{2}+y^{2}\right)^{1 / 2}\right\}^{r+\varepsilon-1}\left\{1-\left(x^{2}+y^{2}\right)^{1 / 2}\right\}^{\varepsilon-1}
\end{aligned}
$$

is Lebesgue-integrable on Q. Hence, by assumption, the function

$$
\begin{aligned}
&\left\{1-\left(x^{2}+y^{2}\right)^{1 / 2}\right\}^{-r}\left\{f(x, y)+C_{3} h(x, y)\right\} \\
&=\left\{1-\left(x^{2}+y^{2}\right)^{1 / 2}\right\}^{-r} \sum_{m, n=0}^{\infty}\left(a_{m, n}+C_{3} k_{m, n}\right) x^{m} y^{n}
\end{aligned}
$$

is Lebesgue-integrable on Q, where $C_{3} \geqq C / C_{1}$. Further, by (6) and (18), we have

$$
\begin{equation*}
a_{m, n}+C_{3} k_{m, n} \geqq a_{m, n}+C \theta_{m, n} \geqq 0 \tag{19}
\end{equation*}
$$

for all sufficiently large $m+n$. Thus we get

$$
\begin{align*}
\iint_{Q}\{1- & \left.\left(x^{2}+y^{2}\right)^{1 / 2}\right\}^{-\gamma}\left\{\sum_{m, n=0}^{\infty}\left(a_{m, n}+C_{3} k_{m, n}\right) x^{m} y^{n}\right\} d x d y \tag{20}\\
& =\sum_{m, n=0}^{\infty}\left(a_{m, n}+C_{3} k_{m, n}\right) \iint_{Q}\left\{1-\left(x^{2}+y^{2}\right)^{1 / 2}\right\}^{-\gamma} x^{m} y^{n} d x d y
\end{align*}
$$

where the right-side series converges absolutely. By the change of variables

$$
x=r \cos v, \quad y=r \sin v \quad(0 \leqq r<1,0 \leqq v \leqq \pi / 2)
$$

we get

$$
\begin{aligned}
\iint_{Q}\{1 & \left.-\left(x^{2}+y^{2}\right)^{1 / 2}\right\}^{-\gamma} x^{m} y^{n} d x d y \\
& =\int_{0}^{1}(1-r)^{-\gamma} r^{m+n+1} d r \int_{0}^{\pi / 2} \sin ^{m} v \cos ^{n} v d v \\
& =\frac{\Gamma(m+n+2) \Gamma(1-\gamma)}{\Gamma(m+n+3-\gamma)} \cdot \frac{1}{2} \cdot \frac{\Gamma((m+1) / 2) \Gamma((n+1) / 2)}{\Gamma((m+n) / 2+1)}
\end{aligned}
$$

Thus, from (9), we get

$$
C_{4}(m+n+1)^{-(m+n+3) / 2+\gamma}(m+1)^{m / 2}(n+1)^{n / 2}
$$

$$
\begin{align*}
& \leqq \iint_{Q}\left\{1-\left(x^{2}+y^{2}\right)^{1 / 2}\right\}^{-r} x^{m} y^{n} d x d y \tag{21}\\
& \leqq C_{5}(m+n+1)^{-(m+n+n+3 / 2+\gamma}(m+1)^{m / 2}(n+1)^{n / 2}
\end{align*}
$$

for all $m, n \geqq 0$. Hence, by (20),

$$
\begin{equation*}
\sum_{m, n=0}^{\infty}(m+n+1)^{-(m+n+3 / / 2+\gamma}(m+1)^{m / 2}(n+1)^{n / 2}\left(\alpha_{m, n}+C_{3} k_{m, n}\right) \tag{22}
\end{equation*}
$$

converges absolutely. Further, by (18), we have

$$
\begin{align*}
& \sum_{m, n=0}^{\infty}(m+n+1)^{-(m+n+3 / 2+\gamma}(m+1)^{m / 2}(n+1)^{n / 2} k_{m, n} \\
& \quad \leqq C_{2} \sum_{m, n=0}^{\infty}\left\{(m+n+1)^{-1-\varepsilon}(m+1)^{-1 / 2}(n+1)^{-1 / 2}\right. \tag{23}\\
& \quad+(m+n+1)^{-3 / 2-\varepsilon}(n+1)^{-1 / 2}+(m+n+1)^{-3 / 2-\varepsilon}(m+1)^{-1 / 2} \\
& \left.\quad+(m+n+1)^{-2-\varepsilon}\right\}<\infty
\end{align*}
$$

By (6) and (18), we get

$$
\left|a_{m, n}\right| \leqq a_{m, n}+2 C \theta_{m, n} \leqq a_{m, n}+2 C_{3} k_{m, n} \quad\left(C_{3} \geqq C / C_{1}\right)
$$

for all sufficiently large $m+n$. Hence, from (22) and (23), the series (7) converges absolutely.

Conversely we suppose that series (7) converges absolutely, and will deduce that $\left\{1-\left(x^{2}+y^{2}\right)^{1 / 2}\right\}^{-\gamma} f(x, y)$ is Lebesgue-integrable on Q. For this part of the argument we do not assume (6). We have in fact

$$
\begin{aligned}
& \iint_{Q}\left\{1-\left(x^{2}+y^{2}\right)^{1 / 2}\right\}^{-r}|f(x, y)| d x d y \\
& \quad \leqq \iint_{Q}\left\{1-\left(x^{2}+y^{2}\right)^{1 / 2}\right\}^{-r}\left\{\sum_{m, n=0}^{\infty}\left|a_{m, n}\right| x^{m} y^{n}\right\} d x d y \\
& \quad=\sum_{m, n=0}^{\infty}\left|a_{m, n}\right| \iint_{Q}\left\{1-\left(x^{2}+y^{2}\right)^{1 / 2}\right\}^{-r} x^{m} y^{n} d x d y \\
& \quad \leqq C_{5} \sum_{m, n=0}^{\infty}(m+n+1)^{-(m+n+3) / 2+r}(m+1)^{m / 2}(n+1)^{n / 2}\left|a_{m, n}\right|<\infty
\end{aligned}
$$

by (21). Thus Theorem 3 is proved.
Remark 2. From (17), it is easily seen that

$$
C_{1} h(x, y) \leqq\left\{1-\left(x^{2}+y^{2}\right)^{1 / 2}\right\}^{\gamma+\varepsilon-1} \leqq C_{2} h(x, y)
$$

in Q.
Proof of Theorem 4. By Theorem B $\left(r_{0}=1\right)$, we get

$$
f(x, y)=\sum_{N=0}^{\infty} \sum_{m+n=N} a_{m, n} x^{m} y^{n}
$$

in Q. We define $h(x, y)$ by (17). Then it is sufficient for us to notice that

$$
\begin{aligned}
f(x, y)+C_{3} h(x, y) & =\sum_{N=0}^{\infty} \sum_{m+n=R} a_{m, n} x^{m} y^{n}+C_{3} \sum_{m, n=0}^{\infty} k_{m, n} x^{m} y^{n} \\
& =\sum_{N=0}^{\infty} \sum_{m+n=N}\left(a_{m, n}+C_{3} k_{m, n}\right) x^{m} y^{n} \\
& =\sum_{m, n=0}^{\infty}\left(a_{m, n}+C_{3} k_{m, n}\right) x^{m} y^{n}
\end{aligned}
$$

in Q, in view of (18) and (19), where the last right-side series converges absolutely. Thus Theorem 4 is a consequence of Theorem 3.

The author wishes to thank the referee for several helpful suggestions.

References

1. E. Artin, The Gamma Function, Holt, Rinehart and Winston, New York (1964).
2. M. Brelot, Éléments de la théorie classique du potentiel, Les cours de Sorbonne. 3rd edition, Paris (1965).
3. P. Heywood, Integrability theorems for power series and Laplace transforms (II), J. London Math. Soc., 32 (1957), 22-27.
4. C. O. Kiselman, Prolongement des solutions d'une équation aux dérivées partielles à coefficients constants, Bull. Soc. Math. France, 97 (1969), 329-356.

Received January 12, 1972 and in revised form July 24, 1972.
Hirosaki University, Japan

