THE RANGE OF A DERIVATION AND IDEALS

R. E. Weber

Abstract

When A is in the Banach algebra $\mathscr{B}(\mathscr{H})$ of all bounded linear operators on a Hilbert space \mathscr{H}, the derivation generated by A is the bounded operator Δ_{A} on $\mathscr{B}(\mathscr{H})$ defined by $\Delta_{A}(X)=A X-X A$. It is shown that the range of a derivation generated by a Hilbert-Schmidt or a diagonal operator contains no nonzero one-sided ideals of $\mathscr{F}(\mathscr{H})$. Also, for a two-sided ideal \mathscr{I} of $\mathscr{B}(\mathscr{C})$, necessary and sufficient condition on an operator A are given in order that the range of Δ_{A} equals the range of Δ_{A} restricted to \mathscr{I}.

1. In the following \mathscr{H} will denote an infinite dimensional complex Hilbert space.

For a fixed $A \in \mathscr{B}(\mathscr{H})$, we will concern ourselves with the following problems:
(a) For what $B \in \mathscr{B}(\mathscr{H})$ is $B \mathscr{R}\left(\Delta_{A}\right) \subset \mathscr{R}\left(\Delta_{A}\right)$ or $\mathscr{R}\left(\Delta_{A}\right) B \subset$ $\mathscr{R}\left(\Delta_{4}\right)$.
(b) For what $B \in \mathscr{B}(\mathscr{H})$ is $B \mathscr{B}(\mathscr{H}) \subset \mathscr{R}\left(\Delta_{A}\right)$ or $\mathscr{B}(\mathscr{H}) B \subset$ $\mathscr{R}\left(\Delta_{A}\right)$.
(c) For what $B \in \mathscr{B}(\mathscr{H})$ is $\mathscr{R}\left(\Delta_{B}\right) \subset \mathscr{R}\left(\Delta_{A}\right)$.
It is easy to verify that for $A, X, Y \in \mathscr{B}(\mathscr{C})$.
(i) $\Delta_{A}=\Delta_{A+\lambda}$ for all $\lambda \in \mathscr{C}$
and
(ii) $\quad \Delta_{A}(X Y)=X \Delta_{A}(Y)+\Delta_{A}(X) Y$.

The identity (ii) yields some simple facts about the range of a derivation which show the interrelation of the above problems. (For a proof see [8].)

Lemma 1. Let $A, B \in \mathscr{B}(\mathscr{H})$ and let A^{\prime} belong to the commutant $\{A\}^{\prime}$ of A. Then
(a) both $A^{\prime} \mathscr{R}\left(\Delta_{A}\right)$ and $\mathscr{R}\left(\Delta_{A}\right) A^{\prime}$ are contained in $\mathscr{R}\left(\Delta_{A}\right)$.
(b) if $\mathscr{R}\left(\Delta_{B}\right) \subset \mathscr{R}\left(\Delta_{A}\right)$, then both $\Delta_{A^{\prime}}(B) \mathscr{B}(\mathscr{H})$ and $\mathscr{B}(\mathscr{C}) \Delta_{A^{\prime}}(B)$ are contained in $\mathscr{R}\left(\Delta_{A}\right)$.
(c) $B \mathscr{R}\left(\Delta_{A}\right) \subset \mathscr{R}\left(\Delta_{A}\right)$ if and only if $\Delta_{A}(B) \mathscr{B}(\mathscr{H}) \subset \mathscr{R}\left(\Delta_{A}\right)$.
(d) $\mathscr{R}\left(\Delta_{A}\right) B \subset \mathscr{R}\left(\Delta_{A}\right)$ if and only if $\mathscr{B}(\mathscr{H}) \Delta_{A}(B) \subset \mathscr{R}\left(\Delta_{A}\right)$.

From (b) of Lemma 1 it follows that if $\mathscr{R}\left(\Delta_{A}\right)$ does not contain left- or right-ideals, then a necessary condition for $\mathscr{R}\left(\Lambda_{B}\right) \subset \mathscr{R}\left(\Lambda_{A}\right)$ is that $B \in\{A\}^{\prime \prime}$. In fact, more is true:

Lemma 2. Let $A \in \mathscr{B}(\mathscr{H})$. If $\mathscr{R}\left(\Delta_{A}\right)$ contains either no nonzero left-ideals or no nonzero right-ideals, then $\Delta_{B}(\mathscr{F}) \subset \mathscr{R}\left(\Delta_{A}\right)$ implies
$B \in\{A\}^{\prime \prime}$. (\mathscr{F} denotes the ideal of finite rank operators.)
Proof. Assume that $\mathscr{R}\left(\Delta_{A}\right)$ contains no nonzero left-ideals (the argument for the other assumption is similar). Let P be a finite rank projection. If $A^{\prime} \in\{A\}^{\prime}$, then

$$
\Delta_{A^{\prime}}(B) P X=A^{\prime} \Delta_{B}(P X)-\Delta_{B}\left(A^{\prime} P X\right)
$$

is in $\mathscr{R}\left(\Delta_{A}\right)$ for all $X \in \mathscr{B}(\mathscr{H})$. Therefore, $\Delta_{A^{\prime}}(B) P \mathscr{B}(\mathscr{C}) \subset \mathscr{R}\left(\Delta_{A}\right)$ and hence $\Delta_{A^{\prime}}(B) P=0$. However, this is true for any such P and hence $\Delta_{A^{\prime}}(B)=0$.

For the sake of completeness we include a somewhat simpler proof of a theorem of Stampfli [6]. In the proof, $\sigma_{l}(A)$ denotes the left essential spectrum of A and is defined to be the set of those λ for which the coset of the Calkin algebra $\mathscr{B}(\mathscr{C}) / \mathscr{K}$ (where \mathscr{K} is the ideal of compact operators) containing $A-\lambda$ fails to have a left inverse. The right essential spectrum $\sigma_{r}(A)$ is defined in the obvious way.

Theorem 1. Let $A \in \mathscr{B}(\mathscr{C})$. Then $\mathscr{R}\left(\Delta_{A}\right)$ contains no nonzero two-sided ideals of $\mathscr{B}(\mathscr{C})$.

Proof. Replace A by $A-\lambda$ where $\lambda \in \sigma_{l}(A) \cap \sigma_{r}(A)$ if necessary in order to assume that there exist orthonormal sequences $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ such that $\sum\left\|A f_{n}\right\|^{1 / 2}<\infty$ and $\sum\left\|A^{*} g_{n}\right\|^{1 / 2}<\infty$. (See [6].) Then for all $X \in \mathscr{B}(\mathscr{C})$,

$$
\sum\left|\left((A X-X A) f_{n}, g_{n}\right)\right|^{1 / 2} \leqq \sum\|X\|^{1 / 2}\left(\left\|A^{*} g_{n}\right\|^{1 / 2}+\left\|A f_{n}\right\|^{1 / 2}\right)<\infty
$$

If $\mathscr{R}\left(\Delta_{A}\right)$ contains a two-sided ideal, then it contains all finite rank operators. In particular, if $f \otimes g$ denotes the rank one operator $f \otimes g(x)=(x, g) f$, then $(f \otimes f) X \in \mathscr{R}\left(\Delta_{A}\right)$ for all $f \in \mathscr{C}$ and $X \in \mathscr{B}(\mathscr{L})$. Hence

$$
\sum\left|\left((f \otimes f) X f_{n}, g_{n}\right)\right|^{1 / 2}<\infty .
$$

Since

$$
\begin{aligned}
\sum\left|\left((f \otimes f) X f_{n}, g_{n}\right)\right|^{1 / 2} & =\sum\left|\left(X f_{n},(f \otimes f) g_{n}\right)\right|^{1 / 2} \\
& =\sum\left|\left(X f_{n}, f\right)\left(\overline{g_{n}, f}\right)\right|^{1 / 2}
\end{aligned}
$$

then

$$
\sum\left|\left(X f_{n}, f\right)\left(\overline{g_{n}, f}\right)\right|^{1 / 2}<\infty
$$

for all $f \in \mathscr{H}$ and $X \in \mathscr{B}(\mathscr{C})$. However, if we choose X such that $X f_{n}=g_{n}$ and f such that $\left\{\left|\left(g_{n}, f\right)\right|\right\}$ is not summable, we have a contradiction.
2. Let \mathscr{S} denote the set of Hilbert-Schmidt operators on \mathscr{H}. Equipped with the trace inner product $(A, B)=\operatorname{tr}\left(A B^{*}\right), \mathscr{S}$ is a Hilbert space [5]. If $A \in \mathscr{B}(\mathscr{H})$, then the restriction of Δ_{A} to \mathscr{S} is a bounded operator on \mathscr{S} with adjoint $\left(\Delta_{A} \mid \mathscr{S}\right)^{*}=\Delta_{A^{*}} \mid \mathscr{S}$. Hence $\mathscr{S}=\mathscr{R}\left(\Delta_{A} \mid \mathscr{S}\right)^{=} \oplus\left(\left\{A^{*}\right\}^{\prime} \cap \mathscr{S}\right)$ where the double bar indicates closure with respect to the topology on \mathscr{S}.

Theorem 2. Let $A \in \mathscr{S}$. Then $\mathscr{R}\left(\Delta_{A}\right)^{=}=\mathscr{R}\left(\Delta_{A} \mid \mathscr{S}\right)^{=}$.
Proof. It follows from the above remarks that $\mathscr{R}\left(\Delta_{A}\right)^{\perp} \subset$ $\mathscr{R}\left(\Delta_{A} \mid \mathscr{S}\right)^{\perp}=\left\{A^{*}\right\}^{\prime} \cap \mathscr{S}$. It remains to show the reverse inclusion. Let $T \in\left\{A^{*}\right\}^{\prime} \cap \mathscr{S}$. Then for $X \in \mathscr{B}(\mathscr{C})$

$$
\begin{aligned}
\left(\Delta_{A}(X), T\right) & =\operatorname{tr}\left(T^{*} \Delta_{A}(X)\right)=\operatorname{tr}\left(T^{*} A X\right)-\operatorname{tr}\left(T^{*} X A\right) \\
& =\operatorname{tr}\left(A T^{*} X\right)-\operatorname{tr}\left(T^{*} X A\right)=\operatorname{tr}\left(T^{*} X A\right)-\operatorname{tr}\left(T^{*} X A\right)=0
\end{aligned}
$$

Therefore $T \in \mathscr{R}\left(\Delta_{A}\right)^{\perp}$.
Corollary. Let $A \in \mathscr{S}$. Then $\mathscr{R}\left(\Delta_{A}\right)=\oplus\left(\left\{A^{*}\right\}^{\prime} \cap \mathscr{S}\right)=\mathscr{S}$.
Theorem 3. If $A \in \mathscr{S}$, then $\mathscr{R}\left(\Delta_{A}\right)$ does not contain any nonzero left- or right-ideals.

In the proof of Theorem 3 we will make use of the following result.

Lemma 3. Let $A \in \mathscr{S}$. If $(f \otimes f) \mathscr{B}(\mathscr{H}) \subset \mathscr{R}\left(U_{A}\right)$, then $A f=0$.
Proof. Since $\mathscr{R}\left(\Lambda_{A}\right) \perp\left\{A^{*}\right\}^{\prime} \cap \mathscr{S}$, then $0=\operatorname{tr}(A(f \otimes f) X)=$ $\operatorname{tr}\left(A f \otimes X^{*} f\right)=\left(A f, X^{*} f\right)$ for all $X \in \mathscr{B}(\mathscr{L})$. Hence $A f=0$.

Proof of Theorem 3. Suppose that $(f \otimes f) \mathscr{B}(\mathscr{C}) \subset \mathscr{R}\left(\Lambda_{A}\right)$. Then $f \otimes f=\Delta_{A}(X)$ for some $X \in \mathscr{B}(\mathscr{C})$ and by Lemma $3, f=(f \otimes f) f=$ $A X f-X A f=A X f . \quad$ Since $(f \otimes f) \mathscr{B}(\mathscr{H})=\Delta_{A}(X) \mathscr{B}(\mathscr{C}) \subset \mathscr{R}\left(\Delta_{A}\right)$, then by Lemma 1, $X \mathscr{R}\left(\Delta_{A}\right) \subset \mathscr{R}\left(\Delta_{A}\right)$. Therefore, $((X f) \otimes(X f)) \mathscr{B}(\mathscr{H}) \subset$ $X(f \otimes f) \mathscr{B}(\mathscr{C}) \subset \mathscr{R}\left(\Delta_{A}\right)$ and by Lemma $3, X f \in \operatorname{ker}(A)$. Hence $f=A X f=0$. The remainder follows by taking adjoints.

Corollary 1. Let $A \in \mathscr{S}$ and $B \in \mathscr{B}(\mathscr{\mathscr { C }})$. Then $B \mathscr{R}\left(\Delta_{A}\right) \subset$ $\mathscr{R}\left(U_{A}\right)$ if and only if $B \in\{A\}^{\prime}$.

Proof. This follows from Lemma 1 and the theorem.
Corollary 2. Let $A \in \mathscr{S}$. If $\Delta_{B}(\mathscr{F}) \subset \mathscr{R}\left(\Delta_{A}\right)$ then $B \in\{A\}^{\prime \prime}$.
Proof. This follows from Lemma 2 and the theorem.
3. We now turn our attention to diagonal operators. When expressing a diagonal operator as the sum $A=\sum \alpha_{n} P_{n}$, unless otherwise stated we shall assume that P_{n} is the rank one projection onto the subspace spanned by e_{n}, where $\left\{e_{n}\right\}$ is an orthonormal basis. (However, we do not require that the α_{n} 's be distinct.) Each operator X has a matrix $\left(x_{i j}\right)$ with respect to this fixed basis.

The principle result of this section is that the range of a derivation generated by a diagonal operator contains no nonzero left- or right-ideals. The theorem is slightly more general.

Theorem 4. Let $A \in \mathscr{B}(\mathscr{C})$ have the property that there exist reducing subspaces \mathscr{M}_{n} of A, each finite dimensional, such that $\mathscr{H}=\sum \oplus \mathscr{M}_{n} . \quad$ Then $\mathscr{R}\left(\Delta_{A}\right)$ contains no nonzero positive operators.

Proof. Let $P=\Delta_{A}(X)$ where P is positive. If P_{n} is the orthogonal projection onto \mathscr{N}_{n}, then $P_{n} P \mid \mathscr{A}_{n}=A_{n} X_{n}-X_{n} A_{n}$ where $A_{n}=$ $A \mid \mathscr{I}_{n}$ and X_{n} is the compression of X to \mathscr{N}_{n}. Since \mathscr{M}_{n} is finite dimensional, then $\operatorname{tr}\left(P_{n} P \mid \mathscr{M}_{n}\right)=0$. Hence $P_{n} P \mid \mathscr{L}_{n}$ being a positive operator with zero trace, must be 0 . Therefore, $P_{n} P P_{n}=0$ (on \mathscr{H}). Hence $P^{1 / 2} P_{n}=0$ and $P^{1 / 2}=0$.

Corollary 1. If A satisfies the hypothesis of the theorem and if either $B \mathscr{R}\left(\Delta_{A}\right)$ or $\mathscr{R}\left(\Delta_{A}\right) B$ is contained in $\mathscr{R}\left(\Delta_{A}\right)$, then $B \in\{A\}^{\prime}$.

Corollary 2. If A satisfies the hypothesis of the theorem and $\Delta_{B}(\mathscr{F}) \subset \mathscr{R}\left(\Delta_{A}\right)$, then $B \in\{A\}^{\prime \prime}$.

Corollary 3. Let A be normal with finite spectrum. Then for $B \in \mathscr{B}(\mathscr{C}), \mathscr{R}\left(\Delta_{B}\right) \subset \mathscr{R}\left(\Delta_{A}\right)$ if and only if $B \in\{A\}^{\prime \prime}$.

Proof. If $B \in\{A\}^{\prime \prime}$ then B is a polynomial of A and hence $\mathscr{R}\left(\Lambda_{B}\right) \subset$ $\mathscr{R}\left(\Delta_{A}\right)$. (See [1, p. 79].) The converse follows from Corollary 2.

Lemma 4. Let $A, B \in \mathscr{B}(\mathscr{H})$ where $A=\sum \alpha_{i} P_{i}$. Then $\mathscr{R}\left(\Delta_{B}\right) \subset$ $\mathscr{R}\left(\Delta_{A}\right)$ if and only if $B=\sum \beta_{i} P_{i}$ for some set of scalars $\beta_{0}, \beta_{1} \ldots$ and for every operator $X=\left(x_{i j}\right) \in \mathscr{B}(\mathscr{C})$ there exists an operator $Y=\left(y_{i j}\right) \in \mathscr{B}(\mathscr{O})$ such that $\left(\alpha_{i}-\alpha_{j}\right)=\left(\beta_{i}-\beta_{j}\right) x_{i j}$ for all i, j.

Proof. This follows from Corollary 2 and the fact that $\left[\Delta_{A}(X)\right]_{i j}=$ $\left(\alpha_{i}-\alpha_{j}\right) x_{i j}$ if $X=\left(x_{i j}\right)$.

Theorem 5. Let $A \in \mathscr{B}(\mathscr{H})$ be diagonal. If for $B \in \mathscr{B}(\mathscr{H})$, $\mathscr{R}\left(\Delta_{B}\right) \subset \mathscr{R}\left(\Delta_{A}\right)$, then $B=f(A)$ for some function f which is Lipschitz on the spectrum of A.

Proof. Let $A=\sum \alpha_{i} P_{i}$. If $\mathscr{R}\left(\Delta_{B}\right) \subset \mathscr{R}\left(\Delta_{A}\right)$, then by Corollary $2, B=\sum \beta_{i} P_{i}$ for some sequence of scalars $\left\{\beta_{i}\right\}$ and for any $X=$ $\left(x_{i j}\right) \in \mathscr{B}(\mathscr{C})$, there exists a $Y=\left(y_{i j}\right) \in \mathscr{B}(\mathscr{O})$ such that $y_{i j}=\left(\left(\beta_{i}-\right.\right.$ $\left.\left.\beta_{j}\right) /\left(\alpha_{i}-\alpha_{j}\right)\right) x_{i j}$ whenever $\alpha_{i} \neq \alpha_{j}$. It follows that $\left(\left(\beta_{i}-\beta_{j}\right) /\left(\alpha_{i}-\alpha_{j}\right)\right)$ is bounded by some positive number M. Define f such that $f\left(\alpha_{i}\right)=\beta_{i}$. Then f is a Lipschitz function defined on a dense subset of $\sigma(A)$ onto a dense subset of $\sigma(B)$. Therefore, we can extend f to be Lipschitz on $\sigma(A)$ onto $\sigma(B)$.

It was shown in [7] that if B is an analytic function of A, then $\mathscr{R}\left(\Delta_{B}\right) \subset \mathscr{R}\left(\Delta_{A}\right)$. To have range inclusion it is neither necessary that B be an analytic function of A nor sufficient that B be a continuous function of A as seen in the next two examples.

Example 1. Let $A=\sum \alpha_{n} P_{n}$ where $\operatorname{dim} P_{n}=1, \alpha_{0}=0$, and

$$
\alpha_{n}=\left\{\begin{array}{llll}
i / n & \text { for } & n & \text { even } \\
1 / n & \text { for } & n & \text { odd }
\end{array}\right.
$$

Let $B=\sum \beta_{n} P_{n}$ where $\beta_{0}=0$ and $\beta_{n}=-i / n^{2}$ for $n \geqq 1$. A direct computation shows that if $n<m$, then $\left|\left(\beta_{n}-\beta_{m}\right) /\left(\alpha_{n}-\alpha_{m}\right)\right| \leqq 2 / n$. Now, for any $X=\left(x_{i j}\right) \in \mathscr{B}(\mathscr{C})$, consider the matrix $Y=\left(y_{i j}\right)$ where $y_{i j}=\left(\left(\beta_{i}-\beta_{j}\right) /\left(\alpha_{i}-\alpha_{j}\right)\right) x_{i j}$ whenever $\alpha_{i} \neq \alpha_{j}$ and zero otherwise. Then

$$
\sum_{i, j}\left|y_{i j}\right|^{2}=\sum_{n=0}^{\infty} \sum_{j=n}^{\infty}\left|y_{n j}\right|^{2}+\sum_{m=0}^{\infty} \sum_{i=m}^{\infty}\left|y_{i m}\right|^{2} .
$$

For $m>0$,

$$
\sum_{i=m}^{\infty}\left|y_{i m}\right|^{2} \leqq 4 / m^{2} \sum_{i=m}^{\infty}\left|x_{i m}\right|^{2} \leqq 4 / m^{2}\|X\|^{2}
$$

and for $n>0$,

$$
\sum_{j=n}^{\infty}\left|y_{n j}\right|^{2} \leqq 4 / n^{2}\|X\|^{2}
$$

Hence

$$
\sum_{i, j}\left|y_{i j}\right|^{2} \leqq\|X\|^{2}+\sum_{m=1}^{\infty} 4 / n^{2}\|X\|^{2}+\|X\|^{2}+\sum_{m=1}^{\infty} 4 / m^{2}\|X\|^{2}
$$

Therefore, $Y \in \mathscr{B}(\mathscr{C})$ and by Lemma $4, \mathscr{R}\left(\Delta_{B}\right) \subset \mathscr{R}\left(\Delta_{A}\right)$. Now, assume f is an analytic function on $\sigma(A)$ such that for even $n, f(i / n)=$ $-i / n^{2}$. Then $f(z)=z^{2} i$. Hence for odd $n, f(1 / n)=i / n^{2} \neq-i / n^{2}$ and $B \neq f(A)$.

Example 2. Let $A=\sum \alpha_{n} P_{n}$ where P_{n} is rank one for all n, $\alpha_{0}=0$, and $\alpha_{n}=1 / n^{2}$ for $n>0$ and let $B=\sum \beta_{n} P_{n}$ where $\beta_{0}=0$
and $\beta_{n}=1 / n$ for $n>0$. Then B is a continuous function of A, in fact $B=f(A)$ where $f(z)=z^{1 / 2}$. Let $X=\left(x_{i j}\right) \in \mathscr{B}(\mathscr{H})$ where

$$
x_{n j}= \begin{cases}1 / n & \text { for } n>0 \\ 0 & \text { otherwise } .\end{cases}
$$

If $\Delta_{B}(X)=\Delta_{A}(Y)$ where $Y=\left(y_{i j}\right)$, then

$$
y_{n 0}=x_{n 0}\left(\beta_{n}-\beta_{0}\right) /\left(\alpha_{n}-\alpha_{0}\right)=(1 / n)(1 / n) /\left(1 / n^{2}\right)=1
$$

for all n. Hence $Y \notin \mathscr{B}(\mathscr{C})$ and $\mathscr{R}\left(\Lambda_{B}\right) \not \subset \mathscr{R}\left(\Lambda_{A}\right)$.
Other derivations whose ranges do not contain any nonzero onesided ideals are those generated by unitary and self-adjoint operators. (See [9].)

It was shown in [7] that the range of a derivation generated by a nonunitary isometry does contain nonzero left-ideals. Other operators which possess this property are some of the weighted shifts.
4. Another question concerning the range of a derivation and, in this case, a two-sided ideal \mathscr{F} of $\mathscr{B}(\mathscr{H})$ is whether $\mathscr{R}\left(\Lambda_{A}\right)=\Lambda_{A}(\mathscr{F})$.

Theorem 6. Let $A \in \mathscr{B}(\mathscr{H})$ and let \mathscr{I} be a proper two-sided ideal of $\mathscr{B}(\mathscr{H})$. Consider the following conditions:
(a) $\{A\}^{\prime}+\mathscr{I}=\mathscr{B}(\mathscr{H})$.
(b) $\mathscr{R}\left(\Lambda_{A}\right)=\Lambda_{A}(\mathscr{F})$.
(c) $\mathscr{R}\left(\Lambda_{A}\right) \subset \mathscr{J}$.
(d) $A=T-\lambda$ for some $T \in \mathscr{F}$ and $\lambda \in \mathscr{C}$.
(a) is equivalent to (b), (c) is equivalent to (d), and (b) implies (c).

Proof. That (a) is equivalent to (b) is a consequence of the fact that $X=T+A^{\prime}$ for some $T \in \mathscr{I}$ and $A^{\prime} \in\{A\}^{\prime}$ if and only if $\Delta_{A}(X) \in$ $\Delta_{A}(\mathscr{F})$. That (c) is equivalent to (d) is a consequence of a theorem of Calkin [2] where he shows that the center of $\mathscr{B}(\mathscr{C}) / \mathcal{J}$ consists of scalars. It is immediate that (b) implies (c).

Remark. An example to show that (c) does not imply (b) for the case when \mathcal{J} is the ideal of compact operators can be obtained by letting A be the adjoint of the weighted shift with weights $\{2,1$, $1 / 2,1 / 3, \cdots\}$ and showing that each element of $\{A\}^{\prime}$ is the translate of a Hilbert-Schmidt operator. (See [8].)

If we require only that the closures be equal, we have the following;

Theorem 7. Let $A \in \mathscr{B}(\mathscr{H})$ be compact and let \mathscr{F} be the ideal of finite rank operators. Then $\mathscr{R}\left(\Lambda_{\Lambda}\right)^{-}=\Lambda_{A}(\mathscr{F})^{-}$.

Proof. Let $f \in \mathscr{B}(\mathscr{H})^{*}$. Then $f=f_{0}+f_{T}$ for some trace-class operator T where $f_{T}(X)=\operatorname{tr}(X T)$ and where f_{0} annihilates the compact operators. (See Dixmier [3].) If f annihilates $\Delta_{A}(\mathscr{F})$ then $f_{T}\left(\Delta_{A}(F)\right)=f\left(\Delta_{A}(F)\right)=0$ for all $F \in \mathscr{F}$. However,

$$
\begin{aligned}
f_{T}\left(\Delta_{A}(F)\right) & =\operatorname{tr}((A F-F A) T)=\operatorname{tr}(A F T-F A T) \\
& =\operatorname{tr}(F T A-F A T)=\operatorname{tr}\left(F \Delta_{A}(-T)\right)
\end{aligned}
$$

for all $F \in \mathscr{F}$. Since \mathscr{F} is dense in the trace-class operators, then $\Delta_{A}(-T)=0$ and $T \in\{A\}^{\prime}$. Hence f_{T} annihilates the range of Δ_{A} and since A is compact, $f\left(\Delta_{A}(X)\right)=f_{T}\left(\Delta_{A}(X)\right)=0$ for all $X \in \mathscr{B}(\mathscr{\mathscr { C }})$.

If A is normal then Theorem 6 can be improved;
Theorem 8. Let $A \in \mathscr{B}(\mathscr{L})$ be normal and let \mathscr{F} be a proper two-sided ideal of $\mathscr{B}(\mathscr{H})$. The following are equivalent:
(a) $\{A\}^{\prime}+\mathscr{J}=\mathscr{B}(\mathscr{O})$.
(b) $\mathscr{R}\left(\Delta_{A}\right)=\Delta_{A}(\mathscr{J})$.
(c) $\mathscr{R}\left(\Delta_{A}\right) \subset \mathscr{F}$ and $\sigma(A)$ is finite.
(d) $A=T-\lambda$ for some $T \in \mathscr{F}$, some $\lambda \in \mathscr{C}$ and $\sigma(A)$ is finite.

Proof. That (a) is equivalent to (b) and (c) is equivalent to (d) follows from Theorem 6. If A is normal with finite spectrum, then by a theorem of Anderson [1, p. 96] $\mathscr{R}\left(\Delta_{A}\right)+\{A\}^{\prime}=\mathscr{B}(\mathscr{C})$. Hence, if $A=T-\lambda$ for some $T \in \mathscr{J}$ and $\lambda \in \mathscr{C}$ then $\mathscr{R}\left(\Lambda_{A}\right) \subset \mathscr{F}$ and (d) implies (a). To show that (a) implies (d), assume that $\sigma(A)$ is infinite and that $\{A\}^{\prime}+\mathscr{J}=\mathscr{B}(\mathscr{H})$. Then by Theorem 6, $A-\lambda \in \mathscr{J}$ for some $\lambda \in \mathscr{C}$. Since \mathscr{F} is contained in the ideal of compact operators, we can assume that A is compact. Let $A=A_{1} \oplus A_{2}$ on $\mathscr{M} \oplus \mathscr{M}^{\perp}$ where A_{1} is an infinite dimensional diagonal operator with distinct eigenvalues and let P be the orthogonal projection onto \mathscr{M}. Hence, if $X \in\{A\}^{\prime}$, then $P X P$ is diagonal. However, if we let U be the unilateral shift on \mathscr{I}, then $\{A\}^{\prime}+\mathscr{J}=\mathscr{B}(\mathscr{C})$ implies that $U=$ $D+K$ for some diagonal operator D and some compact operator K. This is clearly a contradiction (let $\left\{e_{n}\right\}$ be an orthonormal basis for \mathscr{M} by which U is the shift, then $\left((D-U) e_{n}, e_{n+1}\right)=1$ for all $\left.n\right)$.

References

1. J. H. Anderson, Derivations, Commutators, and The Essential Numerical Range, Thesis, Indiana University, 1971.
2. J. W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math., 42 (1941), 839-872.
3. J. Dixmier, Les fonctionnelles linéaires sur l'ensemble des opératures bornés d'un espace de Hilbert, Ann. of Math., 51 (1950), 387-408.
4. R. G. Douglas, On majorization, factorization, and range inclusion of operators in Hilbert space, Proc. Amer. Math. Soc., 17 (1966), 413-416.
5. R. Schatten, Norm Ideals of Completely Continuous Operators, 2nd printing, Ergebnisse der Mathematik und ihrer Grenzgebiete Band 27, Springer-Verlag, Berlin, 1970.
6. J. G. Stampfli, On the range of a derivation, Proc. Amer. Math. Soc., 40 (1973), 492-496.
7. R. E. Weber, Analytic functions, ideals, and derivation ranges, to appear.
8. -, Derivation Ranges, Thesis, Indiana University, 1972.
9. J. P. Williams, On the range of a derivation $I I$, to appear.

Received November 28, 1972 and in revised form October 10, 1973. This paper contains part of a doctoral dissertation written under the direction of Professor J. P. Williams at Indiana University.

Indiana University Southeast

