NORMAL BASES FOR QUADRATIC EXTENSIONS

Charles Small

Abstract

This note complements the author's paper in Journal of Pure and Applied Algebra, 2 (1972), in which a computation is made of the functor which associates to each commutative ring k its group $Q(k)$ of quadratic extensions, where "quadratic extension of k " means "Galois extension of k with respect to a group of order two". In general, quadratic extensions are rank two projective k-modules; the free ones form a subgroup $Q_{F}(k)$ of $Q(k)$. Among the free ones are some which admit a normal basis (definition recalled below); these form a subgroup $Q_{N B}(k)$. This paper studies the filtration $0 \cong Q_{N B} \cong Q_{F} \cong Q$.

The starting point for the computation in [5] was the construction of a functor \mathscr{R} and a natural monomorphism $\beta: \mathscr{R}(k) \rightarrow Q(k)$ (definitions recalled below). Our first observation here is that β is an isomorphism $\mathscr{R}(k) \rightarrow Q_{F}(k)$ and that the subfunctor R of \mathscr{R} which corresponds to $Q_{N B}$ (via β) is one studied by Micali and Villamayor in [3]. These results, which follow without difficulty from the work in [5], allow us to find simple necessary and sufficient conditions for $Q_{N B}(k)=Q_{F}(k)$, and at the other extreme to produce an infinite family of k for which $0=Q_{N B}(k) \neq Q_{F}(k)$.

Now it is known that $Q_{N B}$ is isomorphic to the Harrison cohomology functor $H^{2}(, \Pi)$ where Π is the group of order two. (See [2] and [4] for the following more general result: The group of normalbasis extensions of k with Galois group G is naturally isomorphic to $H^{2}(k, G)$ for any abelian group G.) In § 2 we establish directly, by a series of simple calculations, an isomorphism $\alpha: H^{2}(, \Pi) \rightarrow R$. (In fact $\beta \alpha$ turns out to be the isomorphism $H^{2}(, I I) \rightarrow Q_{N B}$ of [2] and [4].) This provides a new proof of the isomorphism $H^{2}(, \Pi)=Q_{N B}$ and also, in our opinion, sheds new light on it by identifying the functor in question with that of Micali-Villamayor. The isomorphism $Q_{N B}=H^{2}(, \Pi)$ generalizes nicely, as indicated above; on the other hand, for quadratic extensions the description in terms of Harrison cohomology is unnecessarily complicated and R is considerably easier to compute with.

Thanks are due to L. N. Childs and M. Orzech for (respectively) raising and discussing the question.

1. Identification of $R \cong \mathscr{R}$ with $Q_{N B} \cong Q_{F}$. Throughout, k is an arbitrary commutative ring (with 1) and Π is the group of order two. We will associate various groups with k, using the same symbol

* for the operation in each; our results relate the groups in such a way that, among other things, this ambiguity of notation is rendered harmless.

By a quadratic extension of k we mean a (commutative) k-algebra which is a Galois extension of k with respect to Π, in the sense of [1]. If A and B are quadratic extensions of k then so is $A * B$, the subring of elements of $A \boldsymbol{\otimes}_{k} B$ left fixed by $\sigma_{A} \otimes \sigma_{B}$ (where σ_{A} generates the Galois group of A / k, etc.). Indeed, $*$ makes the set of isomorphism classes of quadratic extensions of k into an abelian group of exponent $\leqq 2$ (see [5]). This group we denote $Q(k) . \quad Q$ is a functor: $k \rightarrow K$ induces $Q(k) \rightarrow Q(K)$ by $A \mapsto A \boldsymbol{\otimes}_{k} K$.

In general, quadratic extensions of k are projective of rank two as k-modules ([1], Lemma 4.1). The free ones form a subgroup $Q_{F}(k)$ of $Q(k)$. Among the free quadratic extensions are some which admit a normal basis, that is, a basis of the form $\{w, \sigma w\}$ where σ generates the Galois group. These form a subgroup $Q_{N B}(k)$ of $Q_{F}(k)$.

We now recall the construction of the groups $\mathscr{R}(k)$ and $R(k)$, referring to [5] for the proofs. Let $U(k)$ denote the multiplicative group of units of k. If $f: R \rightarrow k$ is a homomorphism from a commutative ring R to k and we fix an element $y \in R$, the set

$$
k_{y}=\{x \in k \mid(1-f(y) x) \in U(k)\}
$$

becomes an abelian group under the operation $x_{1} * x_{2}=x_{1}+x_{2}-f(y) x_{1} x_{2}{ }^{1}$. In particular we get a group k_{n} for each $n \in \boldsymbol{Z}$ from the unique homomorphism $Z \rightarrow k$. Write $*$, or $*_{n}$ where necessary, for the group operation in k_{n}.

Proposition 1. $\psi(x)=x(1-x)$ defines a natural homomorphism $\psi: k_{2} \rightarrow k_{4}$ whose kernel is the group $I(k)$ of idempotents of k.

Proof. We have first to show that $x \in k_{2}$ implies $x(1-x) \in k_{4}$ and that $\psi\left(x_{1} *_{2} x_{2}\right)=\left(\psi x_{1}\right) *_{4}\left(\psi x_{2}\right)$. Both are trivial. The statement about the kernel just says $x(1-x)=0 \Leftrightarrow x=x^{2}$.

Now define $R(k)=$ coker (ψ), so that the sequence

$$
0 \longrightarrow I(k) \longrightarrow k_{2} \xrightarrow{\psi} k_{4} \longrightarrow R(k) \longrightarrow 0
$$

is exact. Note that $x \in k_{4}$ implies that $x *_{4} x=2 x(1-2 x)$ is in $\psi\left(k_{2}\right)$. This shows that $R(k)$, with the operation $*$ induced by $*_{4}$, is a group of exponent $\leqq 2$. The functor R was first considered in [3, §7], where it is called G.

To construct $\mathscr{R}(k)$ we consider first the set $\mathscr{T}(k)$ of triples

[^0](u, a, x) where $u \in U(k)$ and $a, x \in k$ satisfy $a^{2} u+4 x=1$. If (u, a, x) and $\left(u^{\prime}, a^{\prime}, x^{\prime}\right)$ are in $\mathscr{T}(k)$ then so is $(u, a, x) *\left(u^{\prime}, a^{\prime}, x^{\prime}\right)=\left(u u^{\prime}, a a^{\prime}\right.$, $\left.x+x^{\prime}-4 x x^{\prime}\right)$, and $*$ is commutative and associative and has ($1,1,0$) as neutral element. Define " $(u, a, x) \sim\left(u^{\prime}, a^{\prime}, x^{\prime}\right)$ by v, b " to mean: $v \in U(k), b \in k, u^{\prime}=v^{2} u, a^{\prime} v=a-2 b, x^{\prime}=x+b(a-b) u$. Write $(u, a, x) \sim$ ($u^{\prime}, a^{\prime}, x^{\prime}$) iff $(u, a, x) \sim\left(u^{\prime}, a^{\prime}, x^{\prime}\right)$ by v, b for some $v, b \in k$. Then \sim is an equivalence relation on $\mathscr{T}(k)$, and is compatible with *. (Again, for complete proofs see [5].) Hence $*$ induces an operation, again denoted *, on the set $\mathscr{T}(k) / \sim$ of equivalence classes. In fact $\mathscr{G}(k) / \sim$ with this operation is a group of exponent $\leqq 2$, since $(1,1,0) \sim\left(u^{2}, a^{2}, 2 x-4 x^{2}\right)$ by $v=u, b=2 x$, for any $(u, a, x) \in \mathscr{T}(k)$. This group we call $\mathscr{R}(k)$. \mathscr{R} is, in the obvious way, a functor.

Proposition 2. The map from k_{4} to $\mathscr{T}(k)$ given by $x \mapsto(1-4 x, 1, x)$ induces a natural injective homomorphism $R(k) \rightarrow \mathscr{R}(k)$.

Proof. Immediate from the definitions.
We will identify $R(k)$ with its image in $\mathscr{R}(k)$; thus an element of $\mathscr{R}(k)$ is in $R(k)$ iff it has a representative (u, a, x) with $a=1$. It should be noted that when $2 \in U(k), R(k)=\mathscr{R}(k) \cong U(k) / U(k)^{2}$, and when k has characteristic two, $R(k)=\mathscr{R}(k) \cong k^{+} / \mathscr{P}\left(k^{+}\right)$, where k^{+} is the additive group of k and $\mathscr{P}: k^{+} \rightarrow k^{+}$is the homomorphism $\mathscr{P}(x)=x^{2}+x$. See example (1) below for the equality of R and \mathscr{R} in these extreme cases, and see [5] for the identification with the group of square classes (resp. \mathscr{P}-classes) of k.

Now, given $(u, a, x) \in \mathscr{T}(k)$, let $k\{u, a, x\}$ denote a free k-module $k s \oplus k t$ with elements $l, s t, t s, s^{2}, t^{2}, \sigma s, \sigma t$ defined by

$$
(*)\left\{\begin{array}{l}
l=a s+2 t \\
s t=t s=2 x s-a u t \\
s^{2}=u l \\
t^{2}=t-x l \\
\sigma s=-s \\
\sigma t=l-t
\end{array}\right.
$$

THEOREM 3. The first four equations of (*) (extended linearly) give $k\{u, a, x\}$ a well-defined structure of k-algebra with $l=1$, whose isomorphism class depends only on the class of (u, a, x) in $\mathscr{R}(k)$. The map σ given by the remaining two equations (extended linearly) is an algebra automorphism of order two, and $k\{u, a, x\}$ is a quadratic extension of k with Galois group generated by σ. The map $\beta: \mathscr{R}(k) \rightarrow Q(k)$ induced in this way is an injective homomorphism, natural in k. The image of β is precisely $Q_{F}(k)$; the image of the restriction of β to $R(k)$ is precisely $Q_{N B}(k)$.

Remark. When $2 \in U(k)$, any $(u, a, x) \in \mathscr{T}(k)$ is equivalent to ($u^{\prime}, 1, x^{\prime}$) with $u^{\prime}=1-4 x^{\prime}$ (see below, Example (1)) and $k\left\{u^{\prime}, 1, x^{\prime}\right\}$ is just $k[X] /\left(X^{2}-u^{\prime}\right)$ with the expected Galois automorphism " $\sigma(X)=$ $-X "$. When k has characteristic two, any $(u, a, x) \in \mathscr{T}(k)$ is equivalent to ($1,1, x^{\prime}$) (again, see Example (1) below) and $k\left\{1,1, x^{\prime}\right\}$ is $k[X] /\left(X^{2}+X+x^{\prime}\right)$ with the expected Galois automorphism " $\sigma(X)=$ $X+1$ '. See [5] for the proofs.

Proof. For everything except the last sentence, and for a basisfree description of $k\{u, a, x\}$, we refer to [5, Theorem 2]. If A is a quadratic extension of k, the k-linear trace map tr: $A \rightarrow k$ given by $\operatorname{tr}(x)=\sigma x+x$ is onto [1, Lemma 1.6] and therefore splits, so that, as k-modules, $A=k \oplus M$ for some rank one projective, viz. $M=\operatorname{ker}$ (tr). Now A is free if and only if M is free, for $M=\Lambda_{k}^{2}(A)$. On the other hand, Theorem 3 of [5] shows that M is free if and only if A is in the image of β. Hence β is an isomorphism $\mathscr{R}(k) \rightarrow Q_{F}(k)$ as claimed. ${ }^{2}$

To see that β restricts to an isomorphism $R(k) \rightarrow Q_{N B}(k)$, suppose first that the quadratic extension A is in $\beta(R(k))$. According to the first part of the theorem, A has a k-basis $\{s, t\}$ with $\sigma t=1-t$ and $1=s+2 t$. But then clearly t and $\sigma t=s+t$ form a normal basis for A. Conversely, suppose that $A=k w \oplus k(\sigma w)$ is a normal-basis quadratic extension. Choose an element $b w+c(\sigma w)$ of trace one; then $1=b \operatorname{tr}(w)+c \operatorname{tr}(\sigma w)=(b+c) \operatorname{tr} w$. Hence $\operatorname{tr}(w)$ is invertible, and we can replace w by $t=(\operatorname{tr} w)^{-1} w$ to get a normal basis $A=k t \oplus k(\sigma t)$ with $\sigma t=1-t$. Now let $s=\sigma t-t$. Then $\sigma s=-s$, and moreover, since the trace of an arbitrary element $b t+c(\sigma t)$ is just $b+c$, we have $k s=\operatorname{ker}(\operatorname{tr})$. Clearly $\{s, t\}$ is a basis, and we have $1=t+$ $\sigma t=s+2 t$. Since $\sigma\left(s^{2}\right)=(\sigma s)^{2}=s^{2}$ we have $s^{2}=u .1$ for some $u \in k$, and u is a unit by [5, Lemma 3]. Similarly, σ fixes $t-t^{2}$, so that $t^{2}=t-x .1$ for some $x \in k$. Now solving $x .1=t-t^{2}=(s+t) t$ for $s t$ we find $s t=2 x s+(4 x-1) t$; on the other hand, given an expression $s t=b s+c t(b, c \in k)$, computing the trace of each side shows that $c=-u$. Therefore, $s t=2 x s-u t$ and $u+4 x=1$, and we are done.

Now define $A(k)=\{a \in k \mid \exists b \in k,(a+2 b) \in U(k)\} \quad$ and $\quad B(k)=$ $\left\{a \in k \mid \exists c \in k,\left(a^{2}+4 c\right) \in U(k)\right\}$. Clearly $A(k) \cong B(k)$; if $a+2 b$ is a unit so is $(a+2 b)^{2}=a^{2}+4(a+b) b$. As a corollary of the theorem we have

Corollary 4. The following are equivalent:
(i) $Q_{N B}(k)=Q_{F}(k)$, i.e., every free $q u a d r a t i c ~ e x t e n s i o n ~ o f ~ k a d m i t s ~$ a normal basis.

[^1](ii) $\quad A(k)=B(k)$.

Proof. (i) is equivalent to $R(k)=\mathscr{R}(k)$, i.e., to the property that every element (u, a, x) of $\mathscr{T}(k)$ be equivalent to one of the form ($u^{\prime}, 1, x^{\prime}$). It is immediate from the definition of equivalence (\sim) in $\mathscr{T}(k)$ than this is in turn equivalent to (ii).

This arithmetic criterion allows us to list various examples:
(1) If $2 \in U(k)$, or if 2 is in every maximal ideal of k (e.g. if k has characteristic two), then $Q_{N B}(k)=Q_{F}(k)$. Proof: When $2 \in U(k)$, the equation $x+2 b=1$ can always be solved for b; hence $A(k)=k$ and, a fortiori, $A(k)=B(k)$. If 2 is in every maximal ideal, the three conditions $a^{2}+4 c \in U(k)$ for some $c, a+2 b \in U(k)$ for some $b, a \in U(k)$ are all equivalent, by Nakayama's lemma. Thus $A(k)=U(k)=B(k)$.
(2) Consequently, when k is local, we have $Q_{N B}(k)=Q_{F}(k)=Q(k)$, since 2 is either a unit or in the unique maximal ideal. (The same is true for semilocal k, see [1 , Theorem 4.2.c].)
(3) Let $k=\{(x, y) \in \boldsymbol{Z} \times \boldsymbol{Z} \mid x \equiv y \bmod n\}$ where $2<n \equiv 2 \bmod 4$. Then ($1, n+1$) is in $B(k)$ but not in $A(k)$, so that k has free quadratic extensions without normal basis. Note that k is connected. This example, with $n=6$, was found (in a different form) by N. Pullman.

A more shocking example is:
(4) Let k be the ring of integers in $\boldsymbol{Q}(\sqrt{\bar{D}})$ where D is squarefree and $-1>D \equiv 3 \bmod 4$. Then $2+\sqrt{D}$ is in $B(k)$ but not in $A(k)$. Moreover, since $U(k)=\{ \pm 1\}, R(k)=0$. This shows that $0=Q_{N_{B}}(k) \neq$ $Q_{F}(k)$.
(5) If k is quadratically closed (every element is a square) then $Q_{N B}(k)=Q_{F}(k)$. For, suppose $a \in B(k): a^{2}+4 c=u \in U(k)$. Choose b so that $b^{2}=-c$, then $u=(a+2 b)(a-2 b)$, hence $a+2 b \in U(k)$ and $a \in A(k)$.

Remark. If $2 \in U(k)$, quadratic closure of k implies $Q_{F}(k)=$ $U(k) / U(k)^{2}=0$. If $2 \notin U(k), 0 \neq Q_{F}(k)$ is possible even if k is quadratically closed; for example, $k=\boldsymbol{Z} / 2 \boldsymbol{Z}$. Can this happen with 2 outside some maximal ideal?
(6) Presumably, by a similar argument, $Q_{N B}(k)=Q_{F}(k)$ whenever k is von-Neumann regular. (Of course the only case of interest is when k is not Noetherian and 2 is a zero-divisor lying outside at least one maximal ideal, for if 2 is in every maximal ideal we have the result by Example (1); if 2 is not a zero-divisor it is a unit, and again we have Example (1); and if k is Noetherian it is a finite direct product of fields, and the result follows because Q, Q_{F}, and $Q_{N B}$ evidently commute with finite direct products.)

The above results favor bases $\{s, t\}$ with $\operatorname{tr}(s)=0, \operatorname{tr}(t)=1$. A
different view of the gap between $Q_{N B}$ and Q_{F} is obtained by completing 1 to a basis, as follows:

Lemma 5. If A is a free quadratic extension of k then $1 \in A$ can be completed to a k-basis $\{1, d\}$ for A, and writing $d^{2}=b_{0}+b_{1} d$ in this basis yields $b_{1}-2 d \in U(A), b_{0}=-N(d)$ and $b_{1}=\operatorname{tr}(d) . \quad($ Here $N(d)=$ $(\sigma d) d$, and $\operatorname{tr}(d)=\sigma d+d$ as above.)

Proof. $k \cdot 1$ is a free k-direct summand of A by [1, Lemma 1.6]. Let M be a complement: $A=k \cdot 1 \oplus M$. Then A is free if and only if M is free since $M \cong \Lambda_{k}^{2}(A)$. This says that A is free if and only if 1 extends to a basis. Invertibility of $b_{1}-2 d$ follows from k-separability of A, since $A \cong k[X] /(f(X))$ where $f(X)=X^{2}-\left(b_{0}+b_{1} X\right)$ and $2 d-b_{1}$ is the derivative at $X=d$ of $f(X)$. Finally if $b=\operatorname{tr}(d)$ then $N(d)=(b-d) d=-b_{0}+\left(b-b_{1}\right) d$ gives the rest.

Proposition 6. Let A be a free quadratic extension of k and for each basis of the form $\{1, d\}$ use the lemma to define $x_{d}, y_{d} \in k$ by $(\operatorname{tr}(d)-2 d)\left(x_{d}+y_{d} d\right)=1$. Then the following are equivalent:
(i) A admits a normal basis.
(ii) A admits a basis $\{1, d\}$ with $\operatorname{tr}(d)$ invertible.
(iii) A admits a basis $\{1, d\}$ with $x_{d} \in A(k)$.

Proof. (i) \Rightarrow (ii). If $A=k w \oplus k \sigma(w)$ we have seen that $\operatorname{tr}(w)$ is invertible. $\{1, w\}$ generate A as k-module since any element $a w+b(\sigma w)$ can be written as $b(\operatorname{tr} w) \cdot 1+(a-b) w$. It follows that $\{1, w\}$ is a basis, either by checking independence directly using invertibility of $\operatorname{tr}(w)$, or by the general fact that any generating set of n elements for a free (or even just projective) module of rank n is a basis.
(ii) \Rightarrow (iii). The relation $(\operatorname{tr}(d)-2 d)\left(x_{d}+y_{d} d\right)=1$ in $A=k \oplus k d$ implies $\operatorname{tr}(d) x_{d}-2 y_{d} b_{0}=1$ in k. If $\operatorname{tr}(d)$ is invertible we can divide this latter equation by it to see that x_{d} is in $A(k)$.
(iii) \Rightarrow (i). Choose $b \in k$ so that $v=x_{d}+2 b \in U(k)$. Put $z=$ $-\left(y_{d} b_{0}+b b_{1}\right) \in k$ (where $d^{2}=b_{0}+b_{1} d$) and put $w=z+v d \in A$. Using $\sigma d=b_{1}-d$ and $2 z+v b_{1}=b_{1} x_{d}-2 y_{d} b_{0}=1$ we find $w+\sigma w=1$. Now put $u=v^{-1}, \alpha=-u z$, and $\beta=\alpha+u$ (in k). Then $\beta w+\alpha(\sigma w)=$ $\alpha(w+\sigma w)+u w=\alpha+u z+d=d$. Consequently $\{w, \sigma w\}$ generate A as k-module, and therefore form a basis, as before.
2. Comparison with Harrison. In this section we recall (following [2]) the definition of the Harrison cohomology group $H^{2}(k, \Pi)$ and prove directly that it is naturally isomorphic to $R(k)$. As in $\S 1$, k is any commutative ring and Π is the group of order two.

Let Π^{i} denote the direct product of i copies of Π and let $k \Pi^{i}$
denote its group-ring. We will construct homomorphisms

$$
U(k \Pi) \xrightarrow{d^{1}} U\left(k \Pi^{2}\right) \xrightarrow{d^{2}} U\left(k \Pi^{3}\right),
$$

omit (as is traditional) the verification that $d^{2} d^{1}=0$, and define $H^{2}(k, \Pi)=\operatorname{ker} d^{2} / \operatorname{Im} d^{1}$.

First put $\Delta_{0}(z)=(1, z), \Delta_{1}(z)=(z, z)$, and $\Delta_{2}(z)=(z, 1)$ for $z \in \Pi$, and extend $\Delta_{i}(i=0,1,2)$ to maps $k \Pi \rightarrow k \Pi^{2}$ by linearity. Then, for any $x \in U(k \Pi), d^{1} x=\prod_{i=0}^{2}\left(\Delta_{i} x\right)^{-1^{i}}$. Similarly for $\left(z_{1}, z_{2}\right) \in \Pi^{2}$ define $\Delta_{0}\left(z_{1}, z_{2}\right)=\left(1, z_{1}, z_{2}\right), \Delta_{1}\left(z_{1}, z_{2}\right)=\left(z_{1}, z_{1}, z_{2}\right), \Delta_{2}\left(z_{1}, z_{2}\right)=\left(z_{1}, z_{2}, z_{2}\right)$ and $\Delta_{3}\left(z_{1}, z_{2}\right)$ $=\left(z_{1}, z_{2}, 1\right)$, and extend $\Delta_{i}(i=0,1,2,3)$ to maps $k \Pi^{2} \rightarrow k \Pi^{3}$ by linearity. Then, for any $x \in U\left(k \Pi^{2}\right), d^{2} x=\prod_{i=0}^{3}\left(\Lambda_{i} x\right)^{-1^{i}}$. For any i use ε to denote the augmentation on $k \Pi^{i}$, that is, the ring homomorphism $k \Pi^{i} \rightarrow k$ given by $\varepsilon\left(\sum a_{\sigma} \sigma\right)=\sum a_{\sigma}$ (both sums over $\sigma \in \Pi^{i}$). Some additional notation: $Z(k, \Pi)=\operatorname{ker} d^{2}=$ group of cocycles; $B(k, \Pi)=\operatorname{Im} d^{1}=$ group of coboundaries; and $N G=\operatorname{ker}(\varepsilon: G \rightarrow U(k))=$ subgroup of normalized elements of G (i.e., elements of augmentation 1), for any subgroup G of $U\left(k \Pi^{i}\right)$ (for example, $N Z(k, \Pi)=$ normalized cocycles, $N B(k, \Pi)=$ normalized coboundaries).

Proposition 7. Let $\mu=a_{1}+a_{\sigma} \sigma \in U(k \pi),\left(a_{1}, a_{\sigma} \in k\right)$. Then:
(i) $d^{1} \mu=(\varepsilon(\mu)-x)(1,1)+x(1, \sigma)+x(\sigma, 1)-x(\sigma, \sigma)$ where $x=$ $a_{1} a_{o} / \varepsilon(\mu)$, and
(ii) $\varepsilon\left(d^{1} \mu\right)=\varepsilon(\mu)$.

Proof. (ii) follows from (i). By definition we have $d^{1} \mu=\left(a_{1}(1,1)+\right.$ $\left.a_{\sigma}(1, \sigma)\right)\left(a_{1}(1,1)+a_{o}(\sigma, 1)\right) /\left(a_{1}(1,1)+a_{o}(\sigma, \sigma)\right)$. Letting $\mu^{-1}=b_{1}+b_{\sigma} \sigma$ we have $\varepsilon\left(\mu^{-1}\right)=(\varepsilon(\mu))^{-1}, a_{1} b_{1}+a_{\sigma} b_{\sigma}=1, a_{1} b_{\sigma}+a_{\sigma} b_{1}=0$, and $d^{1} \mu=$ $\left(a_{1}^{2}(1,1)+a_{1} a_{\sigma}(1, \sigma)+a_{\sigma} a_{1}(\sigma, 1)+a_{\sigma}^{2}(\sigma, \sigma)\right)\left(b_{1}(1,1)+b_{\sigma}(\sigma, \sigma)\right)$. Multiplying this out gives $d^{1} \mu=c_{1}(1,1)+c_{2}(1, \sigma)+c_{3}(\sigma, 1)+c_{4}(\sigma, \sigma)$ where $c_{1}=a_{1}^{2} b_{1}+a_{\sigma}^{2} b_{\sigma}, c_{2}=c_{3}=a_{1} a_{\sigma}\left(b_{1}+b_{\sigma}\right)=x$ and $c_{4}=a_{\sigma}^{2} b_{1}+a_{1}^{2} b_{\sigma}$. Since $a_{1}^{2} b_{1}+a_{\sigma}^{2} b_{\sigma}=\left(a_{1} b_{1}+a_{\sigma} b_{\sigma}\right)\left(a_{1}+a_{\sigma}\right)-a_{1} a_{\sigma}\left(b_{1}+b_{\sigma}\right)=\varepsilon(\mu)-x$ and $a_{\sigma}^{2} b_{1}+a_{1}^{2} b_{\sigma}=$ $\left(a_{1}+a_{\sigma}\right)\left(a_{1} b_{\sigma}+a_{\sigma} b_{1}\right)-a_{1} a_{\sigma}\left(b_{1}+b_{\sigma}\right)=-x$, the proof is complete.

PROPOSITION 8. Let $\nu=a_{11}(1,1)+a_{1 \sigma}(1, \sigma)+a_{\sigma 1}(\sigma, 1)+a_{\sigma \sigma}(\sigma, \sigma) \in$ $U\left(k \pi^{2}\right)$. Then:
(i) ν is a cocycle $\Leftrightarrow a_{1 \sigma}=a_{\sigma 1}=-a_{\sigma \sigma}$, and
(ii) ν is a coboundary $\Leftrightarrow \nu$ is a cocycle and $\exists a_{1}, a_{\sigma} \in k_{k}$ such that $a_{1}+a_{\sigma} \sigma \in U(k \pi), a_{1 \sigma}=a_{1} a_{\sigma} /\left(a_{1}+a_{\sigma}\right)$ and $a_{11}=a_{1}+a_{\sigma}-a_{1 \sigma}$.

Proof. (ii) is immediate from (i) and part (i) of Proposition 7. For (i), $d^{2}(\nu)$ is by definition A / B where A is the product of $\left(a_{11}(1,1,1)+a_{1 \sigma}(1,1, \sigma)+a_{\sigma 1}(1, \sigma, 1)+a_{o \sigma}(1, \sigma, \sigma)\right) \quad$ and $\quad\left(a_{11}(1,1,1)+\right.$
$\left.\alpha_{1 \sigma}(1, \sigma, \sigma)+\alpha_{\sigma 1}(\sigma, 1,1)+\alpha_{\sigma \sigma}(\sigma, \sigma, \sigma)\right)$ and B is the product of $\left(a_{11}(1,1,1)+\right.$ $\left.a_{1 \sigma}(1,1, \sigma)+a_{\sigma 1}(\sigma, \sigma, 1)+a_{\sigma o}(\sigma, \sigma, \sigma)\right) \quad$ and $\quad\left(a_{11}(1,1,1)+a_{1 \sigma}(1, \sigma, 1)+\right.$ $\left.a_{\sigma 1}(\sigma, 1,1)+a_{\sigma o}(\sigma, \sigma, 1)\right)$. Multiplying this out, we see that if $a_{1 \sigma}=$ $a_{o 1}=-a_{o \sigma}$, then each coefficient in A equals the corresponding coefficient in B, so that ν is a cocycle.

The converse is the key point; the proof that follows is implicit in [2]. Let $p_{1}\left(\right.$ resp. p_{2}) be the k-algebra homomorphism $k \pi^{2} \rightarrow k \pi^{2}$ induced by the map $(x, y) \rightarrow(x, 1)$ (resp. $(x, y) \rightarrow(1, y))$ from π^{2} to π^{2}, let δ_{1} (resp. δ_{2}) be the k-algebra homomorphism $k \pi^{3} \rightarrow k \pi^{2}$ induced by the map $(x, y, z) \rightarrow(x, 1)$ (resp. $(x, y, z) \rightarrow(1, z))$ from π^{3} to π^{2}, let $\varepsilon: k \pi^{2} \rightarrow k$ be the augmentation and let $j: k \rightarrow k \pi^{2}$ be the inclusion.

Lemma 9. With notation as above, we have the following equalities of maps $k \pi^{2} \rightarrow k \pi^{2}$:

$$
\begin{aligned}
\delta_{1} \Delta_{i} & =\left\{\begin{array}{lll}
p_{1} & \text { if } & i=1,2,3 \\
j \varepsilon & \text { if } & i=0,
\end{array}\right. \\
\delta_{2} \Delta_{i} & =\left\{\begin{array}{lll}
p_{2} & \text { if } & i=0,1,2 \\
j \varepsilon & \text { if } & i=3
\end{array}\right.
\end{aligned}
$$

Proof. Let $\nu=a_{11}(1,1)+a_{\jmath \sigma}(1, \sigma)+a_{\sigma 1}(\sigma, 1)+a_{\sigma o}(\sigma, \sigma) \in k \pi^{2}$, then $\delta_{1} \Delta_{1}(\nu)^{\prime}=\delta_{1}\left(a_{11}(1,1,1)+a_{1 \sigma}(1,1, \sigma)+a_{\sigma 1}(\sigma, \sigma, 1)+a_{\sigma \sigma}(\sigma, \sigma, \sigma)\right)=a_{11}(1,1)+$ $a_{1 \sigma}(1,1)+a_{o 1}(\sigma, 1)+a_{\sigma \sigma}(\sigma, 1)=p_{1}(\nu) \quad$ and $\quad \delta_{1} \Delta_{0}(\nu)=\delta_{1}\left(a_{11}(1,1,1)+\right.$ $\left.a_{1 \sigma}(1,1, \sigma)+\alpha_{\sigma 1}(1, \sigma, 1)+a_{\sigma \sigma}(1, \sigma, \sigma)\right)=\left(a_{11}+a_{1 \sigma}+a_{\sigma 1}+a_{\sigma \sigma}\right)(1,1)=j \varepsilon(\nu)$, etc.

We can now finish the proof of Proposition 8. If ν is a cocycle we have $A=B$ where as above $A=\Delta_{0}(\nu) \Delta_{2}(\nu)$ and $B=\Delta_{1}(\nu) \Delta_{3}(\nu)$. Hence $\delta_{1}(A)=\delta_{1}(B)$ and $\delta_{2}(A)=\delta_{2}(B)$. Using the lemma to compute we find $\delta_{1}(A)=\left(\delta_{1} \Delta_{0}(\nu)\right)\left(\delta_{1} \Lambda_{2}(\nu)\right)=j \varepsilon(\nu) p_{1}(\nu), \delta_{1}(B)=\left(\delta_{1} \Delta_{1}(\nu)\right)\left(\delta_{1} \Delta_{3}(\nu)\right)=$ $\left(p_{1}(\nu)\right)^{2}, \quad \delta_{2}(A)=\left(\delta_{2} \Delta_{0}(\nu)\right)\left(\delta_{2} \Delta_{2}(\nu)\right)=\left(p_{2}(\nu)\right)^{2}, \quad \delta_{2}(B)=\left(\delta_{2} \Delta_{1}(\nu)\right)\left(\delta_{2} \Delta_{3}(\nu)\right)=$ $p_{2}(\nu)(j \varepsilon(\nu))$. Since ν is invertible, $p_{1}(\nu)$ and $p_{2}(\nu)$ are also invertible, hence $\delta_{1}(A)=\delta_{1}(B)$ yields $j \varepsilon(\nu)=p_{1}(\nu)$ and $\delta_{2}(A)=\delta_{2}(B)$ yields $j \varepsilon(\nu)=$ $p_{2}(\nu)$. But this means that the three elements $\varepsilon(\nu)(1,1),\left(a_{11}+a_{10}\right)(1,1)+$ $\left(a_{\sigma 1}+a_{\sigma \sigma}\right)(\sigma, 1)$ and $\left(a_{11}+a_{\sigma 1}\right)(1,1)+\left(a_{1 \sigma}+a_{\sigma \sigma}\right)(1, \sigma)$ of $k \pi^{2}$ are equal. Hence $a_{\sigma 1}+a_{\sigma \sigma}=0=a_{1 \sigma}+a_{\sigma o}$, and we are done.

PROPOSITION 10. If $\nu=a_{11}(1,1)+a_{1 \sigma}(1, \sigma)+a_{\sigma 1}(\sigma, 1)+a_{\sigma \sigma}(\sigma, \sigma)$ is a cocycle, $\alpha_{1 \sigma} / \varepsilon(\nu)$ is in k_{4}.

Proof. We need $1-\left(4 a_{1 \sigma} / \varepsilon(\nu)\right) \in U(k)$, for which it suffices to show $\varepsilon(\nu)-4 a_{1 \sigma} \in U(k)$. Since ν is a cocycle, $\varepsilon(\nu)-4 a_{1 \sigma}=a_{11}-3 a_{1 \sigma}$. Let $\nu^{-1}=b_{11}(1,1)+b_{1 \sigma}(1, \sigma)+b_{\sigma 1}(\sigma, 1)+b_{\sigma \sigma}(\sigma, \sigma)$. Then, using $1=a_{11} b_{11}+$ $a_{1 \sigma} b_{1 \sigma}+a_{\sigma 1} b_{\sigma 1}+a_{\sigma \sigma} b_{\sigma \sigma}=a_{11} b_{11}+3 a_{1 \sigma} b_{1 \sigma}$ and $0=a_{11} b_{1 \sigma}+a_{1 \sigma} b_{11}+a_{\sigma \sigma} b_{\sigma 1}+$
$a_{\sigma 1} b_{\sigma \sigma}=a_{11} b_{1 o}+a_{1 o} b_{11}-2 a_{1 o} b_{1 \sigma}$, we have $\left(a_{11}-3 a_{1 \sigma}\right)\left(b_{11}-3 b_{1 \sigma}\right)=1-3\left(2 a_{1 o} b_{1 \sigma}-\right.$ $\left.a_{10} b_{11}-a_{11} b_{10}\right)=1$.

Proposition 11. If $x \in k_{4}$ then $\nu=(1-x)(1,1)+x(1, \sigma)+x(\sigma, 1)-$ $x(\sigma, \sigma)$ is a unit in $k \pi^{2}$, and therefore is in $Z(k, \pi)$.

Proof. Let $\nu^{\prime}=(1-3 x)(1,1)-x(1, \sigma)-x(\sigma, 1)+x(\sigma, \sigma)$, then $\nu \nu^{\prime}=(1-4 x)(1,1)$, which is a unit since $x \in k_{4}$, hence ν is a unit too.

The preceeding propositions show that the rules $\alpha\left(a_{11}(1,1)+\right.$ $\left.a_{o 1}(1, \sigma)+a_{o 1}(\sigma, 1)+a_{\sigma o}(\sigma, \sigma)\right)=a_{1 \sigma} /\left(a_{11}+a_{1 \sigma}\right)$ and $\gamma(x)=(1-x)(1,1)+$ $x(1, \sigma)+x(\sigma, 1)-x(\sigma, \sigma)$ define maps $Z(k, \pi) \rightarrow k_{4}$ and $k_{4} \rightarrow Z(k, \pi)$ respectively. Note that $\alpha \gamma$ is the identity, while $(\gamma \alpha) \nu=\nu / \varepsilon(\nu)$.

Proposition 12. γ and α are homomorphisms.
Proof. The computation for γ is routine. For α, we need ($a_{10} c_{11}+$ $\left.a_{11} c_{1 \sigma}+a_{\sigma 1} c_{\sigma \sigma}+a_{\sigma \sigma} c_{o 1}\right) / \varepsilon(\nu) \varepsilon(\mu)=\left(a_{1 \sigma} / \varepsilon(\nu)\right)+\left(c_{1 \sigma} / \varepsilon(\mu)\right)-\left(4 a_{1 \sigma} c_{1 \sigma} / \varepsilon(\nu) \varepsilon(\mu)\right)$. Putting the right-hand side over the common denominator $\varepsilon(\nu) \varepsilon(\mu)$ and using $\varepsilon(\mu)=c_{11}+c_{1 \sigma}, \varepsilon(\nu)=a_{11}+a_{1 \sigma}, a_{1 \sigma}=-a_{\sigma \sigma}, c_{1 \sigma}=-c_{\sigma \sigma}$ to compute the resulting numerator, we arrive at the left-hand side.

Corollary 13. α and γ are inverse isomorphisms, $k_{4} \cong N Z(k, \pi)$.
Proof. $\operatorname{Im} \gamma \subseteq N Z(k, \pi)$ and $\gamma \alpha$ is the identity on $N Z(k, \pi)$.
Proposition 14. If $x \in \psi\left(k_{2}\right), \gamma(x) \in N B(k, \pi)$.
Proof. If $x=b(1-b),(1-2 b) \in U(k)$, put $c_{1}=-b /(1-2 b)$ and $c_{\sigma}=(1-b) /(1-2 b)$. Then $\left(c_{1}+c_{\sigma} \sigma\right)(b+(1-b) \sigma)=1$, so $\mu=b+$ $(1-b) \sigma \in U(k \Pi)$, and $d^{1} \mu=\gamma x$.

Proposition 15. If $\nu=a_{11}(1,1)+a_{1 o}(1, \sigma)+a_{o 1}(\sigma, 1)+a_{o \sigma}(\sigma, \sigma)$ is a coboundary then $\alpha(\nu) \in \psi\left(k_{2}\right)$.

Proof. Choose $\mu=\left(a_{1}+a_{a} \sigma\right) \in U(k \pi)$ so that $d^{1} \mu=\nu$. Then $\alpha(\nu)=a_{1 \sigma} / \varepsilon=a_{1} a_{\sigma} / \varepsilon^{2}$ where $\varepsilon=\varepsilon(\mu)=\varepsilon(\nu)$. Now $a_{1} a_{\sigma} / \varepsilon^{2}=\left(a_{1} / \varepsilon\right)\left(1-\left(a_{1} / \varepsilon\right)\right)$, so we have only to check that $1-\left(2 a_{1} / \varepsilon\right) \in U(k)$, or equivalently that $\varepsilon-2 a_{1}=a_{\sigma}-a_{1}$ is a unit. Mimicking the proof of Proposition 10, let $\left(b_{1}+b_{\sigma} \sigma\right)=\mu^{-1}$, then $\left(a_{\sigma}-a_{1}\right)\left(b_{\sigma}-b_{1}\right)=1$.

COROLLARY 16. α and γ restrict to inverse isomorphisms $\psi\left(k_{2}\right) \cong$ $N B(k, \pi)$, and they induce inverse isomorphisms $R(k) \cong H^{2}(k, \pi)$.

Proof. The first statement follows from Propositions 13, 14, and 15. For the second we need, in addition to the definitions, the fact that $Z(k, \pi) / B(k, \pi) \cong N Z(k, \pi) / N B(k, \pi)$. This follows because units of k are always coboundaries: $d^{1} u=u(1,1)$ for any $u \in U(k)$, so that any cocycle ν represents the same element of $H^{2}(k, \pi)$ as the normalized cocycle $\nu / \varepsilon(\nu)$.

It is worth noting that the proof of Proposition 14 provides an isomorphism between k_{2} and the group of normalized units of $k \pi$:

Corollary 17. $\lambda(x)=(1-x)+x \sigma$ defines a homomorphism $\lambda: k_{2} \rightarrow U(k \pi)$, and the resulting sequence

$$
0 \longrightarrow k_{2} \xrightarrow{\lambda} U(k \pi) \xrightarrow{\varepsilon} U(k) \longrightarrow 1
$$

is split exact.
Proof. The argument which proves Proposition 14 shows that λ maps k_{2} to $U(k \pi)$. It is obviously a homomorphism, and the exactness is easily checked.

By definition, d^{0} is the trivial map $U(k) \rightarrow U(k \pi)$, so that $H^{1}(k, \pi)=$ $\operatorname{ker} d^{1} / \operatorname{Im} d^{0}=\operatorname{ker} d^{1}$. The resulting exact sequence can be normalized (i.e., restricted to the augmentation 1 part) to yield the bottom row of a commutative diagram

in which the rows are exact and the verticals are all isomorphisms. In fact $N H^{1}(k, \pi)=H^{1}(k, \pi)$ because d^{1} commutes with ε by Proposition 7 (ii), so we have proved:

Corollary 18. λ induces an isomorphism $I(k) \rightarrow H^{1}(k, \pi)$, and in particular k is connected \Leftrightarrow the inclusion of π in $k \pi$ is an isomorphism $\pi \rightarrow H^{1}(k, \pi)$.

Lifting the description $k_{2} \cong N U(k \pi)$ of normalized units to arbitrary ones yields the following criterion, whose proof is left as an easy exercise:

Corollary 19. Let $\mu=(a+b \sigma) \in k \pi$, then $\mu \in U(k \pi) \leftrightarrow$ $a^{2}-b^{2} \in U(k)$.

Finally, it should be pointed out that $\beta \alpha: H^{2}(, \pi) \rightarrow R \rightarrow Q_{N B}$ is the isomorphism of [2], [4]. Thus the cocycle $(\varepsilon(\nu)-x)(1,1)+x(1, \sigma)+$ $x(\sigma, 1)-x(\sigma, \sigma)$ corresponds to the quadratic extension $A=k w \oplus k w^{\prime}$, described by

$$
\left\{\begin{array}{l}
w^{2}=(\varepsilon(\nu)-x) w-x w^{\prime} \\
w w^{\prime}=x w+x w^{\prime}=w^{\prime} w \\
\left(w^{\prime}\right)^{2}=-x w+(\varepsilon(\nu)-x) w^{\prime} \\
w^{\prime}=\sigma w, w=\sigma w^{\prime}
\end{array}\right.
$$

Note that $\left(w+w^{\prime}\right) / \varepsilon(\nu)=1$ in A, and consequently $\operatorname{tr}(w)=\varepsilon(\nu)$. Thus the fact, noted in proving Corollary 16, that every cohomology class can be represented by a normalized cocycle, corresponds precisely to the fact (used in proving the converse part of Theorem 3) that any normal basis $\{w, \sigma w\}$ can be replaced by one with $\operatorname{tr}(w)=1$.

References

1. S. U. Chase, D. K. Harrison, and A. Rosenberg, Galois Theory and Galois Cohomology of Commutative Rings, Amer. Math. Soc., Memoir \#52, 1965, 15-33.
2. S. U. Chase and A. Rosenberg, A theorem of Harrison, Kummer theory, and Galois algebras, Nagoya Math. J., 27 (1966), 663-685.
3. A. Micali and O. Villamayor, Sur les Algèbres de Clifford, Ann. Sci. de l'E.N.S. 1 (1968), 271-304.
4. M. Orzech, A cohomological description of abelian Galois extensions, Trans. Amer. Math. Soc., 137 (1969), 481-499.
5. C. Small, The group of quadratic extensions, J. Pure Appl. Algebra, 2 (1972), 83105 and 395.

Received September 26, 1972.
Queen's University

[^0]: ${ }^{1}$ The reader will have no trouble completing the definition to make $k \mapsto k_{y}$ a functor.

[^1]: ${ }^{2}$ The rule $A \mapsto \operatorname{ker}(\operatorname{tr})$ is a homomorphism $Q(k) \rightarrow \operatorname{Pic}(k)$, and $Q(k) / Q_{F}(k)$ is embedded in this way as a subgroup, usually quite a small one, of the Picard group. See [5, Theorem 4] for the precise statement.

