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NORMAL BASES FOR QUADRATIC EXTENSIONS

CHARLES SMALL

This note complements the author's paper in Journal of
Pure and Applied Algebra, 2 (1972), in which a computation
is made of the functor which associates to each commu-
tative ring k its group Q(k) of quadratic extensions, where
"quadratic extension of k" means "Galois extension of k with
respect to a group of order two". In general, quadratic
extensions are rank two projective /c-modules; the free ones
form a subgroup QF(k) of Q(k). Among the free ones are some
which admit a normal basis (definition recalled below); these
form a subgroup QNB{k). This paper studies the filtration
0 £ QNB £ QF £ Q.

The starting point for the computation in [5] was the construction
of a functor & and a natural monomorphism β: &(k)—+ Q(k) (defi-
nitions recalled below). Our first observation here is that β is an
isomorphism &{k) —> QF(k) and that the subfunctor R of & which
corresponds to QNB (via β) is one studied by Micali and Villamayor in
[3]. These results, which follow without difficulty from the work in
[5], allow us to find simple necessary and sufficient conditions for
QNB(^) = Qί (̂ )> a n ( i at the other extreme to produce an infinite family
of k for which 0 = QNB(k) Φ QF{k)

Now it is known that QNβ is isomorphic to the Harrison coho-
mology functor H\ ,17) where Π is the group of order two. (See
[2] and [4] for the following more general result: The group of normal-
basis extensions of k with Galois group G is naturally isomorphic to
H\k, G) for any abelian group G.) In § 2 we establish directly, by
a series of simple calculations, an isomorphism a: H2( , Π)—>R. (In
fact βa turns out to be the isomorphism H\ , Π) —> QNB of [2] and
[4].) This provides a new proof of the isomorphism H\ , Π) — QNB

and also, in our opinion, sheds new light on it by identifying the
functor in question with that of Micali-Villamayor. The isomorphism
QNB = H2( , Π) generalizes nicely, as indicated above; on the other
hand, for quadratic extensions the description in terms of Harrison
cohomology is unnecessarily complicated and R is considerably easier
to compute with.

Thanks are due to L. N. Childs and M. Orzech for (respectively)
raising and discussing the question.

!_• Identification of R <Ξ & with QNB g QF. Throughout, k is
an arbitrary commutative ring (with 1) and Π is the group of order
two. We will associate various groups with k, using the same symbol
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* for the operation in each; our results relate the groups in such a
way that, among other things, this ambiguity of notation is rendered
harmless.

By a quadratic extension of k we mean a (commutative) Λ -algebra
which is a Galois extension of k with respect to 77, in the sense of
[1]. If A and B are quadratic extensions of k then so is A*B, the
subring of elements of A ® k B left fixed by σA (x) σB (where σA generates
the Galois group of Ajk, etc.). Indeed, * makes the set of isomorphism
classes of quadratic extensions of k into an abelian group of exponent
<̂  2 (see [5]). This group we denote Q(k). Q is a functor: k—*K
induces Q(k) -> Q(K) by A H* A φ * K.

In general, quadratic extensions of k are protective of rank two
as A -modules ([1], Lemma 4.1). The free ones form a subgroup QF(k)
of Q(k). Among the free quadratic extensions are some which admit
a normal basis, that is, a basis of the form {w, σw) where σ generates
the Galois group. These form a subgroup QNB(k) of QF(k).

We now recall the construction of the groups &(k) and R(k),
referring to [5] for the proofs. Let U(k) denote the multiplicative
group of units of k. If / : R —• k is a homomorphism from a commu-
tative ring R to k and we fix an element y e R, the set

ky = {xek\(l- f(y)x) e U{k)}

becomes an abelian group under the operation x1*x2 = x1 + x2 — f(y)%i%21-
In particular we get a group kn for each n e Z from the unique homo-
morphism Z—>fc. Write *, or *w where necessary, for the group
operation in kn.

PROPOSITION 1. ψ(x) = x(l — x) defines a natural homomorphism
ψ: k2—*k4 whose kernel is the group I(k) of idempotents of k.

Proof. We have first to show that xek2 implies x(l — x) e k4 and
that f(xλ *2 x2) = (ψXi) *4 (ψx2)- Both are trivial. The statement
about the kernel just says x(l — x) = 0 =̂> x = x2.

Now define R(k) = coker (ψ), so that the sequence

0 > I(k) > k2 - ^ k4 > R(k) > 0

is exact. Note that xek± implies that x*4x = 2#(1 — 2x) is in ψ(k2).
This shows that R(k), with the operation * induced by *4, is a group
of exponent ^ 2. The functor R was first considered in [3, § 7], where
it is called G.

To construct &(k) we consider first the set ^~(k) of triples
1 The reader will have no trouble completing the definition to make & ι—» ky a functor.
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(u, a, x) w h e r e ue U(k) a n d a, xek s a t i s f y a2u + Ax = 1. I f (u, a, x)
and (u\ α', xf) are in ^(k) then so is (u, a, x) * (w', α', a?') = (MM', αα',
x + a?' — 4OT'), and * is commutative and associative and has (1, 1, 0)
as neutral element. Define "(u, a, x) ~ (u'f α', xr) by v, 6" to mean:
v e t/(&), bek, u' = v2u, a'v = a — 26, #'= & 4- 6(α— δ)w. Write (%, α, x) ~
(u\ α', x') iff (u, a, x) ~ (u\ α', xf) by v, b for some v, bek. Then ~ is
an equivalence relation on J7~(k), and is compatible with *. (Again, for
complete proofs see [5].) Hence * induces an operation, again denoted
*, on the set ^~(k)/~ of equivalence classes. In fact ^ (k)/~ with
this operation is a group of exponent ^ 2, since (1,1,0) — (u\ α2, 2x — Ax2)
by V = IL, b = 2x, for any (u, a, x)e^~(k). This group we call &(k).
& is, in the obvious way, a functor.

PROPOSITION 2. The map from k4 to J7~(k) given by XH^(1 — 4x, l,x)
induces a natural injective homomorphism R(k) —•• &{k).

Proof. Immediate from the definitions.

We will identify R(k) with its image in &(k); thus an element
of &{k) is in R(k) iff it has a representative (u, α, a?) with a — 1. It
should be noted that when 2 6 U(k), R{k) = £P(k) ~ U(k)/U(k)2, and
when k has characteristic two, R(k) = &(k) = k+/^(k+), where k+

is the additive group of k and έ^:k+-+k+ is the homomorphism
^(x) = x2 + #. See example (1) below for the equality of R and &
in these extreme cases, and see [5] for the identification with the
group of square classes (resp. ^-classes) of k.

Now, given (u, a, x) e ^{k), let k{u, a, x] denote a free A:-module
ks 0 kt with elements I, st, ts, s2, t2, σs, σt defined by

/1 = as + 2ί

st = ts = 2xs — aut

s2 = ul

f = t - xl

σs = —s

\σt — I — t .

THEOREM 3. The first four equations of (*) (extended linearly)
give k{u, a, %} a well-defined structure of k-algebra with I = 1, whose
isomorphism class depends only on the class of (u, a, x) in &(k). The
map σ given by the remaining two equations (extended linearly) is
an algebra automorphism of order two, and k{u, a, x) is a quadratic
extension ofk with Galois group generated by σ. The map β: &(k)-+Q(k)
induced in this way is an injective homomorphism, natural in k. The
image of β is precisely QF(k); the image of the restriction of β to R(k)
is precisely QNB(k).

(*)
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REMARK. When 2 e U(k), any (u, a, x) e S"(k) is equivalent to
(u\ 1, x') with v! = 1 — 4a?' (see below, Example (1)) and &{%', 1, a?'} is
just k[X]/(X2 — u') with the expected Galois automorphism "σ(X) =
— X". When A: has characteristic two, any (u9 α, x)e^~(k) is equiv-
alent to (1, 1, x') (again, see Example (1) below) and k{l9 1, x'} is
&[X]/(X2 + X + a;') with the expected Galois automorphism "σ(X) —
X + 1". See [5] for the proofs.

Proof. For everything except the last sentence, and for a basis-
free description of k{u, a, x}, we refer to [5, Theorem 2]. If A is a
quadratic extension of k, the ^-linear trace map tr : A —> k given by
tr (a;) = σx + x is onto [1, Lemma 1.6] and therefore splits, so that, as
A -modules, A = k($M for some rank one protective, viz. M= ker(tr).
Now A is free if and only if M i s free, for M = Λ\(A). On the other
hand, Theorem 3 of [5] shows that M is free if and only if A is in
the image of β. Hence β is an isomorphism &(k) —* QF(k) as claimed.2

To see that β restricts to an isomorphism R(k)—>QNS(k), suppose
first that the quadratic extension A is in β(R{k)). According to the
first part of the theorem, A has a fc-basis {s, t) with σt = 1 — t and
1 = s + 2t. But then clearly t and σt = s + t form a normal basis for
A. Conversely, suppose that 4 = toφ k(σw) is a normal-basis quad-
ratic extension. Choose an element bw + c(σw) of trace one; then
1 = b tr (w) + c t r (σw) = (b + c) t r w. Hence tr (w) is invertible, and
we can replace w by t = (tr w)~xw to get a normal basis A = Λtf 0 ft((7ί)
with σt = 1 — t. Now let s = σt — t. Then σs = — s, and moreover,
since the trace of an arbitrary element bt + c(σt) is just b -f c, we
have As = ker (tr). Clearly {s, ί} is a basis, and we have 1 = t +
cί = s + 2ί. Since σ(s2) = (σs)2 — s2 we have s2 — u.l for some ue k,
and ^ is a unit by [5, Lemma 3]. Similarly, σ fixes t — t2, so that
f = t — x. 1 for some a? 6 k. Now solving #. 1 = t — t2 = (s + t)t for
st we find si = 2xs + (4a; — l)ί; on the other hand, given an expression
st = bs + ct(b, cek), computing the trace of each side shows that
c — — u. Therefore, st — 2xs — ut and u + 4x = 1, and we are done.

Now define A(k) = {α e k \ 36 e k, (a + 26) e Z7(fc)} and
{aek leek, (a2 + 4c) e U(k)}. Clearly A(/b) g B(k); if α + 26 is a unit
so is (a + 26)2 = α2 + 4(α + 6)6. As a corollary of the theorem we have

COROLLARY 4. The following are equivalent:
( i ) QNB{^) ~ QF(^)J i β., every free quadratic extension ofk admits

a normal basis.

2 The rule A l-> ker (tr) is a homomorphism Q(k) -» Pic (&), and Q(k)/QF(k) is embedded
in this way as a subgroup, usually quite a small one, of the Picard group. See [5,
Theorem 4] for the precise statement.
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(ii) A(k) = B(k).

Proof, (i) is equivalent to R(k) = &(k), i.e., to the property that
every element (u, a, x) of J7~(k) be equivalent to one of the form
(vf, I, x'). It is immediate from the definition of equivalence (~) in

than this is in turn equivalent to (ii).

This arithmetic criterion allows us to list various examples:
(1) If 2 G U(k), or if 2 is in every maximal ideal of k (e.g. if k has

characteristic two), then QNB(k) = QF(k). Proof: When 2 6 U(k), the
equation x + 26 = 1 can always be solved for 6; hence A(k) — k and,
a fortiori, A(k) = B(k). If 2 is in every maximal ideal, the three
conditions α2 + 4c e U(k) for some c, a + 26 e U(k) for some 6, α e Ϊ7(&)
are all equivalent, by Nakayama's lemma. Thus A(k) — U(k) = B(k).

( 2 ) Consequently, when k is local, we have QNB{k) = Q*.(ifc) = Q(ά),
since 2 is either a unit or in the unique maximal ideal. (The same
is true for semilocal k, see [1, Theorem 4.2.c].)

( 3 ) Let k = {(x, y)eZxZ\x = y mod n} where 2 < n = 2 mod 4.

Then (1, n + 1) is in B(k) but not in A(k), so that k has free quadratic
extensions without normal basis. Note that k is connected. This
example, with n — 6, was found (in a different form) by N. Pullman.

A more shocking example is:
(4) Let k be the ring of integers in Q{Λ/D ) where D is square-

free and - 1 > B Ξ 3 mod 4. Then 2 + VD is in B(k) but not in A(k).
Moreover, since U(k) = {±1}, R(k) = 0. This shows that 0 = QNB(k) Φ
QF{k).

( 5) If A; is quadratically closed (every element is a square) then
QNB(k) = QF(k). For, suppose aeB(k): a2 + Ac = ue U(k). Choose 6
so that b2 = —c, then u = (a + 2δ)(α - 26), hence a + 26 6 U(k) and
a e A(k).

REMARK. If 2eU(k), quadratic closure of k implies QF(k) —
U(k)/U(k)2 = 0. If 2 $ U(k), 0 Φ QF{k) is possible even if k is quadrati-
cally closed; for example, k — Z\2Z. Can this happen with 2 outside
some maximal ideal?

( 6 ) Presumably, by a similar argument, QNB(k) = QF(k) whenever
k is von-Neumann regular. (Of course the only case of interest is
when k is not Noetherian and 2 is a zero-divisor lying outside at least
one maximal ideal, for if 2 is in every maximal ideal we have the
result by Example (1); if 2 is not a zero-divisor it is a unit, and again
we have Example (1); and if k is Noetherian it is a finite direct product
of fields, and the result follows because Q, QF, and QNB evidently
commute with finite direct products.)

The above results favor bases {s, t) with tr(s) = 0, tr(ί) = 1. A
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different view of the gap between QNB and QF is obtained by completing
1 to a basis, as follows:

LEMMA 5. If A is a free quadratic extension of k then 1 e A can
be completed to a k-basis {1, d} for A, and writing d2 = δ0 + bxd in this
basis yields bx — 2de U(A), b0 = —N(d) and δx = tr(d). (Here N(d) =
(σd)d, and tr (d) = σd + d as above.)

Proof, k l is a free λ -direct summand of A by [1, Lemma 1.6].
Let M be a complement: A = ft l 0 Af. Then A is free if and only
if M is free since M~ A\(A). This says that A is free if and only
if 1 extends to a basis. Invertibility of δx — 2d follows from /c-separa-
bility of A, since A ~ k[X]/(f(X)) where /(X) = X2 - (60 + MΓ) and
2d - bx is the derivative at X = d of /(X). Finally if 6 = tr (d) then

= (6 — d)d = — δ0 + (δ — fejcϋ gives the rest.

PROPOSITION 6. Let A be a free quadratic extension of k and for
each basis of the form {1, d) use the lemma to define xd, ydek by
(tr(d) — 2d)(xd + ydd) = 1. Then the following are equivalent:

( i ) A admits a normal basis.
(ii) A admits a basis {1, d) with t r (d) invertible.
(iii) A admits a basis {1, d} with xd e A(k).

Proof, (i) =>(ii). If A = kw@kσ(w) we have seen that tr(w) is
invertible. {1, w] generate A as ά-module since any element aw + b(σw)
can be written as 6(tr w) 1 + (a — b)w. It follows that {1, w] is a basis,
either by checking independence directly using invertibility of tr(w),
or by the general fact that any generating set of n elements for a
free (or even just projective) module of rank n is a basis.

(ii) => (iii). The relation (tr (d) - 2d)(xd + ydd) = 1 in A = k @kd
implies tr (d)xd — 2ydb0 — 1 in k. If tr (d) is invertible we can divide
this latter equation by it to see that xd is in A(k).

(iii) =*> (i). Choose bek so that v = xd + 26e U(k). Put 2 =
— (yah + δ&j) e k (where d2 = b0 + ί>id) and put w = 2; + -z cZ e A. Using
σd = &! — d and 2a; + ^δi = δ^^ — 2τ/dδ0 — 1 we find w + σw =1. Now
put u = v~\ a = — uzj and /S = a + % (in &). Then βw + α^w) =
a(w + σw) + ̂ ^ — a + uz -{- d — d. Consequently {w, σw] generate A
as A -module, and therefore form a basis, as before.

2. Comparison with Harrison. In this section we recall (fol-
lowing [2]) the definition of the Harrison cohomology group H2(k, Π)
and prove directly that it is naturally isomorphic to R(k). As in § 1,
k is any commutative ring and Π is the group of order two.

Let 77*' denote the direct product of i copies of 77 and let £77*
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denote its group-ring. We will construct homomorphisms

U(kΠ) - ί U U(kΠ2) — U{kW) ,

omit (as is traditional) the verification that d2dι = 0, and define
H2(k, Π) = ker d2/Im d\

First put JQ(z) = (1, s), 4(s) = (z, z), and A2(z) = (2, 1) for ze/7,
and extend J<(i = 0, 1, 2) to maps kΠ —•• M72 by linearity. Then, for
any α e E7(ft/7), d1^ - Π U t^aO""1*- Similarly for fo, z2) e Π2 define
Λfo, s2) = (1, Si, O , 4(zi, s2) = (*i, 2?i, O, 4(Si, z2) - fo, z2, s2) and Λ(Zi, z2)
— (zl9 z2, 1), and extend At(i = 0, 1, 2, 3) to maps kΠ2—+kΠ3 by
linearity. Then, for any a; e U{kΠ2), d2x = Π<=o (Λ^)"1*- For any i use
ε to denote the augmentation on kΠ\ that is, the ring homomorphism
kΠi —> k given by e(Σ σ̂(7) = Σ α* (both sums over o* e W). Some addi-
tional notation: Z(Jc, Π) = ker d2 = group of cocycles; £(&, 77) = Im d1 =
group of coboundaries; and NG — ker (ε: G —> £/(&)) = subgroup of
normalized elements of G (i.e., elements of augmentation 1), for any
subgroup G of UQcΠ*) (for example, NZ(k, Π) — normalized cocycles,
NB{ky Π) — normalized coboundaries).

PROPOSITION 7. Let μ = ax + aσσe U(kπ), (aίf aσek). Then:
( i ) dιμ = (e(/i) — x)(l, 1) + x(l, σ) + α;(σ, 1) — x(σ, σ) where x =

(ii)

Proof, (ii) follows from (i). By definition we have d1/̂  = («i(l, 1) +
ασ(l, σ))(α,(l, 1) + aσ(σ, l))/(α1(l, 1) + aσ(σ, σ)). Letting /"1 = bλ + 6σo"
we have εί/r1) = (ε(^))"1, α^i + aσbσ = 1, α^,, + αΛ = 0, and dιμ =
(α2(l, 1) + aMl, σ) + α β φ , 1) + a\{σ, ^ ( ^ ( l , 1) + 6σ(σ, σ)). Multiply-
ing this out gives dιμ = cx(l, 1) + c2(l, σ) + cs(σ, 1) + c4(σ, σ) where
<?! = α2δi + albσ, c2 = c3 = ^α^δi + 6σ) = α; and c4 = α26i + a\bσ. Since
α 2 ^ + a2δσ = (a^ + a^Xa, + a,) - a ^ S i + 6σ) = e(μ) — x and alb. + alb, =
(θ! + a^a^ba + ασ6i) — ^^(δ i + bσ) = —x, the proof is complete.

PROPOSITION 8. Let v = αn(l, 1) + α lσ(l, σ) + ασl(σ, 1) + aσσ(σ, σ) e

U{kπ2). Then:

( i ) v is a cocycle <=> αlσ = aσl = — ασσ, and
(ii) v is a coboundary <=> v is a cocycle and lalf aσ e k such that

a, + aσσe U(kπ), alσ = aιaσl{aι + ασ) and an = a, + aσ - alσ.

Proof, (ii) is immediate from (i) and part (i) of Proposition 7.
For (i), d\v) is by definition A/B where A is the product of
(αn(l, 1, 1) + α lσ(l, 1, σ) + ασl(l, σ, 1) + ασσ(l, σ, σ)) and (αu(l, 1, 1) +
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α lσ(l, σ, σ) + aσl(σ, 1,1) + aσσ(σ, σ, σ)) and B is the product of (αn(l, 1,1) +
α lσ(l, 1, σ) + aσι{σ, σ, 1) + ασσ(<7, σ, σ)) and (αu(l, 1, 1) + α lσ(l, σ, 1) +
ασl(o , 1, 1) + aσσ(σ, σ, 1)). Multiplying this out, we see that if αlσ =
aσl = — ασσ, then each coefficient in A equals the corresponding co-
efficient in B, so that v is a cocycle.

The converse is the key point; the proof that follows is implicit
in [2]. Let p1 (resp. p2) be the ά-algebra homomorphism kπ2-+kπ2

induced by the map (x, y) —> (x9 1) (resp. (x, y) —+ (1, 2/)) from π2 to τr2,
let δλ (resp. <?2) be the A -algebra homomorphism kπ'—^kπ2 induced by
the map (x9 y, z) —> (x9 1) (resp. (x, y, z) —> (1, z)) from τr3 to π2, let
ε: kπ2 —> k be the augmentation and let j : k —> άτr2 be the inclusion.

LEMMA 9. With notation as above, we have the following equal-
ities of maps kπ2 —> kπ2:

_ \Pι if i = 1, 2, 3

1 iε i/ i = 0 ,

p2 if ί = 0, 1, 2

^ε ΐ/ i = 3 .

Proo/. Let i; = α u(l, 1) + α]σ(l, σ) + αffl(<7, 1) + ασσ(σ, σ) e kπ2, then
δiΛW— ^i(ttn(l, 1, 1) + α l σ(l, 1, σ) + ασl(cr? σ, 1) + aσσ(σ, σ, σ)) = αn(l,
α lσ(l, 1) + ασl((7, 1) + aaσ{σ, 1) = px(y) and δ^^v) = ^(a1]L(l, 1, ]
a lσ(l, 1, (7) + aσι(l, σ, 1) + aσσ(l, σ, σ)) = (an + alσ + aσl + aσσ)(l, 1) = jε
etc.

We can now finish the proof of Proposition 8. If v is a cocycle
we have A — B where as above A = AQ(v)Δ2{v) and B = Δ^iήΔ^v).
Hence δ^A) = δ^B) and δ2(A) — δ2(B). Using the lemma to compute
we find δL(A) — (δ1z/0(χ;))(δ1z/2(v)) = jε^p^v)^
(Pi(v)Y> δ2(A) = (δ2Δ0(v))(δ2Δ2(v)) = {p2{v)f,
p2(v)(jε(v)). Since v is invertible, pjjή and p2(v) are also invertible,
hence δ^A) = δ^B) yields jε(v) = Pι(v) and δ2(A) = δ2(B) yields jε(v) =
p2(v). But this means that the three elements ε(v)(l, 1), (αu + alσ) (1,1) +
(ασl + aσσ)(σ, 1) and (αn + ασl)(l, 1) + (αlσ + ασσ)(l, σ) of άττ2 are equal.
Hence ασl + ασσ = 0 = alσ + ασσ, and we are done.

PROPOSITION 10. If v = αn(l, 1) + α lσ(l, σ) + ασl(σ, 1) + aaa{σ, σ)
is a cocycle, alσ/ε(v) is in k4.

Proof. We need 1 — (4αlσ/ε(v)) e U(k), for which it suffices to show
ε(v) — 4αlσ G U(k). Since v is a cocycle, ε(j ) — 4αlσ = αn — 3αlσ. Let
v-1 - δu(l, 1) + δlσ(l, σ) + bσl(σ, 1) + δσσ(σ, σ). Then, using 1 = anbn +
^iσbio + ασl6σl + aσσbσσ = anbn + 3αlσ6lσ and 0 = anblσ + alσbn + ασσ6σl +
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aσlbσσ = <hiK + «iAi - 2alσblσ9 we have (α n - 3α l σ )(δ u - 3δ lσ) = l-S(2aloblσ-

alσbn — anblσ) = 1.

PROPOSITION 11. Ifxek4 then v = (l- x)(l, 1) + x(l, σ) + x(σ, 1) -
x(σ, σ) is a unit in kπ2, and therefore is in Z(k, π).

Proof. Let i/ = (1 - 3α)(l, 1) - x(l, σ) - x(σ, 1) + x(σ, σ), then
w' = (1 — ix) (1, 1), which is a unit since a; 6 k4, hence y is a unit
too.

The preceeding propositions show that the rules a(an(l, 1) +
ασ l(l, σ) + aol(σ, 1) + aσσ(σ, σ)) = α lσ/(αu + α1<7) and τ(a?) = (1 - »)(1, 1) +
α?(l, σ) + α?((7, 1) — x{σ, σ) define maps ϋΓ(&, π) —> Λ4 and fc4 —> Z(&, TΓ)
respectively. Note that ay is the identity, while (ΎOC)V = v/e(v).

PROPOSITION 12. 7 emcZ α are homomorphisms.

Proof. The computation for 7 is routine. For α, we need (alσcn +
anclσ + aσlcσσ + aσacσί) / e(v)e(μ) = (aισ/e(v)) + (cίσ/ε(μ))- (ialσclσ/ε(v)ε(μ)).
Putting the right-hand side over the common denominator ε(v)ε(μ) and
using ε(μ) = cn + clσ, ε(v) = α u + α lσ, alσ = —aoσ, clσ = — cσσ to compute
the resulting numerator, we arrive at the left-hand side.

COROLLARY 13. a and 7 are inverse isomorphisms, k4 = NZ(k, π).

Proof. Im 7 S NZ(k, π) and ya is the identity on NZ(k, π).

PROPOSITION 14. // xeψ(k2), j(χ)eNB(kf π).

Proof. If x = 6(1 - 6), (1 - 25) 6 U(k), put c, = -6/(1 - 26) and
cσ = (1 - 6)/(l - 26). Then (c, + cσσ)(b + (1 - δ)σ) = 1, so μ = 6 +
(1 - δ)σ 6 17(fc/7), and d1^ - 7a?.

PROPOSITION 15. // v = α u(l, 1) + α lσ(l, σ) + ασl(<7, 1) + ασσ(σ, σ) is
a coboundary then a(v) e ψ(k2).

Proof. Choose μ — (at + aaσ) e U(kπ) so that d1^ = v. Then
α(v) = αlσ/ε = a^aje2 where ε = ε(μ) = ε(v). Now a&Jε2 = (αx/ε)(l — (ajε)),
so we have only to check that 1 — (2αx/ε) 6 U(k)y or equivalently that
ε — 2αx =t ασ — αx is a unit. Mimicking the proof of Proposition 10, let
(b, + baσ) = μ~\ then (ασ - αOίδ,, - δx) = 1.

COROLLARY 16. a and 7 restrict to inverse isomorphisms ψ(k2) =
NB(k, π)9 and they induce inverse isomorphisms R(k) = H\k, π).
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Proof. The first statement follows from Propositions 13,14, and 15.
For the second we need, in addition to the definitions, the fact that
Z(k9 π)/B(k, π) ~ NZ(k, π)/NB(k, π). This follows because units of k
are always coboundaries: dιu — u(l, 1) for any ue U{k), so that any
cocycle v represents the same element of H2(k, π) as the normalized
cocycle v/e(v).

It is worth noting that the proof of Proposition 14 provides an
isomorphism between k2 and the group of normalized units of kπ:

COROLLARY 17. X(x) = (1 — x) + xσ defines a homomorphism
λ:&2—> U(kπ), and the resulting sequence

is split exact.

Proof. The argument which proves Proposition 14 shows that λ
maps k2 to U(kπ). It is obviously a homomorphism, and the exactness
is easily checked.

By definition, d° is the trivial map U(k) —• U(kπ), so that H\k, π) =
ker dιjlm d° = ker d1. The resulting exact sequence can be normalized
(i.e., restricted to the augmentation 1 part) to yield the bottom row
of a commutative diagram

ψ

0 — NH\k, π) -»NU(kπ) —^ NZ(k, π) — QNB(k) > 0

in which the rows are exact and the verticals are all isomorphisms.
In fact NH](k, π) = H\k, π) because d1 commutes with ε by Propo-
sition 7(ii), so we have proved:

COROLLARY 18. λ induces an isomorphism I(k) —> H\k, π), and in
particular k is connected <=> the inclusion of π in kπ is an isomorphism
π -> H\k, π).

Lifting the description k2 s NU(kπ) of normalized units to arbitrary
ones yields the following criterion, whose proof is left as an easy
exercise:

COROLLARY 19. Let μ = (α + bσ) e kπ, then μ e U{kπ) »
α2 - ¥ e U(k).
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Finally, it should be pointed out that βa\ H2( , π) —> R —»QNB is
the isomorphism of [2], [4]. Thus the cocycle (e(v) — x)(l, 1) + x(l, σ) +
x(σ, 1) — x(σ, σ) corresponds to the quadratic extension A — kw 0 kw',
described by

' w2 = (ε(v) — x)w — xw'

ww' = xw + xw' — w'w

(w')2 = — xw -f (ε{v) — x)wf

w' = σw, w = σw' .

Note that (w +w')/ε(v) = 1 in A, and consequently t r (w) — ε(i ). Thus
the fact, noted in proving Corollary 16, that every cohomology class
can be represented by a normalized cocycle, corresponds precisely to
the fact (used in proving the converse part of Theorem 3) that any
normal basis {w, σw} can be replaced by one with tr(w) — 1.
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