MONOTONE MAPPINGS OF A TWO-DISK ONTO ITSELF WHICH FIX THE DISK'S BOUNDARY CAN BE CANONICALLY APPROXIMATED BY HOMEOMORPHISMS

William E. Haver

Abstract

The theorem stated in the title is proven. As a corollary it is shown that the space of all such monotone mappings is an absolute retract.

1. Introduction. Let D^{n} denote the standard n-ball of radius one in E^{n} and $H\left(D^{n}\right)$ the space of all homeomorphisms of D^{n} onto itself which equal the identity on the boundary of D^{n}. Let $\overline{H\left(D^{n}\right)}$ denote the space of all mappings of D^{n} onto itself which can be approximated arbitrarily closely by elements of $H\left(D^{n}\right)$. Under the supremum topology, $H\left(D^{n}\right)$ and $\overline{H\left(D^{n}\right)}$ are separable metric spaces; $\overline{H\left(D^{n}\right)}$ is complete under the supremum metric. It is known that $\overline{H\left(D^{n}\right)}$ is locally contractible [7], $\overline{H\left(D^{n}\right)} \times l_{2} \approx \overline{H\left(D^{n}\right)}$ [4], $\overline{H\left(D^{n}\right)}$ is homogeneous [7], and that $\overline{H\left(D^{1}\right)} \approx l_{2}$ [3]. In this paper we shall be concerned with the case $n=2$, and to simplify notation we shall write D for D^{2}. It is wellknown (cf. [8]) that $\overline{H(D)}$ is the space of all monotone mappings of D onto itself which equal the identity when restricted to the boundary of D.

We shall show [Theorem 1] that the elements of $\overline{H(D)}$ can be "canonically approximated" by elements of $H(D)$ and [Theorem 2] that $\overline{H(D)}$ is an absolute retract. The work of this paper depends heavily on W. K. Mason's paper, "The space of all self-homeomorphisms of a two-cell which fix the cell's boundary is an absolute retract", [9]. The crux of Mason's paper is the definition of a basis for $H(D)$ which can be shown to possess some particularly nice properties. We shall review the definition of this basis in the following section and then define a basis for $\overline{H(D)}$. Familiarity will be assumed with the notation and basic definitions of [9].
2. Mason's basis for $H(D)$. Consider D to be a rectangle in R^{2} with horizontal and vertical sides. A grating, P, on D consists of a finite number of spanning segments (crosscuts) across D, parallel to its sides, with the same number of horizontal and vertical crosscuts. Let P_{1}, P_{2}, \cdots be a sequence of gratings on D such that (a) the mesh of P_{i} approaches 0 as i increases and (b) if l is a crosscut of P_{i} and $j \geqq i$, then l is a crosscut of P_{j}.

Let \mathscr{H} be the collection of all polyhedral disks H contained in D
such that $\mathrm{Bd}(H)$ is the union of a vertical segment in the left side of $\mathrm{Bd}(D)$, a vertical segment in the right side of $\mathrm{Bd}(D)$, a polygonal spanning arc of D, H^{r}, that is contained in the closure of the same component of $H(D)-H$ as the top of $\mathrm{Bd}(D)$, and a polygonal spanning arc of D, H^{B}, that is contained in the closure of the same component of $H(D)-H$ as the bottom of $\mathrm{Bd}(D)$. Let \mathscr{Y} be the collection of all polyhedral disks V contained in D such that $\mathrm{Bd}(V)$ is the union of a horizontal segment in the top of $\mathrm{Bd}(D)$, a horizontal segment in the bottom of $\mathrm{Bd}(D)$, a polygonal spanning arc of D, V^{L}, that is contained in the closure of the same component of $H(D)-V$ as the left side of $\operatorname{Bd}(D)$ and a polygonal spanning arc of D, V^{R}, that is contained in the closure of the same component of $H(D)-V$ as the right side of $\mathrm{Bd}(D)$.

Let P_{j} be a grating from the sequence P_{1}, P_{2}, \cdots. Let $\left\{l_{1}, \cdots\right.$, $\left.l_{n}\right\}$ be the set of horizontal crosscuts of P_{j} and $\left\{m_{1}, \cdots, m_{n}\right\}$ the set of vertical crosscuts. Let $\left\{H_{1}, \cdots, H_{n}\right\} \subset \mathscr{H}$ satisfy $H_{i} \cap H_{j}=\varnothing$ if $i \neq j$ and $\left\{V_{1}, \cdots, V_{n}\right\} \subset \mathscr{V}$ satisfy $V_{i} \cap V_{j}=\varnothing$ if $i \neq j$. Then define

$$
\begin{aligned}
& O\left(P_{j} ; H_{1}, \cdots, H_{n} ; V_{1}, \cdots, V_{n}\right) \\
& \quad=\left\{f \in H(D) \mid f\left(l_{i}\right) \subset H_{i}-\left\{\mathrm{Cl}\left(D-H_{i}\right)\right\}\right. \text { and } \\
& \left.\quad f\left(m_{i}\right) \subset V_{i}-\left\{\mathrm{Cl}\left(D-V_{i}\right)\right\} \text { for } 1 \leqq i \leqq n\right\} .
\end{aligned}
$$

Then the basis for $H(D)$, which Mason denotes $H V T$, is the collection of all such open sets.
3. A Basis for $\overline{H(D)}$. In this section we define a basis, β, for $\overline{H(D)}$ and demonstrate that it possesses some nice properties. Let P_{j}, $\left\{H_{1}, \cdots, H_{n}\right\}$ and $\left\{V_{1}, \cdots, V_{n}\right\}$ be as in the definition of $H V T$. The basis, β, will consist of all sets of the following form:

$$
\begin{aligned}
& B\left(P_{j} ; H_{1}, \cdots, H_{n} ; V_{1}, \cdots, V_{n}\right) \\
& \quad=\left\{f \in \overline{H(D)} \mid f^{-1}\left(l_{i}\right) \subset H_{i}-\left\{\mathrm{Cl}\left(D-H_{i}\right)\right\}\right. \text { and } \\
& \left.\quad f^{-1}\left(m_{i}\right) \subset V_{i}-\left\{\mathrm{Cl}\left(D-V_{i}\right)\right\}, \text { for } 1 \leqq i \leqq n\right\} .
\end{aligned}
$$

We note that $f \in B\left(P_{j} ; H_{1}, \cdots, H_{n} ; V_{1}, \cdots, V_{n}\right) \cap H(D)$ if and only if $f^{-1} \in O\left(P_{j} ; H_{1}, \cdots, H_{n} ; V_{1}, \cdots, V_{n}\right)$. To see that the elements of β are open subsets of $\overline{H(D)}$, let f be an arbitrary element of $B\left(P_{j} ; H_{1}\right.$, $\left.\cdots, H_{n} ; V_{1}, \cdots, V_{n}\right)$. Then let

$$
\varepsilon=\min _{1 \leqq i \leqq n}\left\{d\left(f\left(H_{i}^{T} \cup H_{i}^{B}\right), \bigcup_{j=1}^{n} l_{j}\right), d\left(f\left(V_{i}^{L} \cup V_{i}^{R}\right), \bigcup_{j=1}^{n} m_{j}\right)\right\} .
$$

Let g be an arbitrary element of $\overline{H(D)}$ satisfying $d(f, g)<\varepsilon$. Suppose that $g \notin B\left(P_{j} ; H_{1}, \cdots, H_{n} ; V_{1}, \cdots, V_{n}\right)$. Then, without loss of generality, we can assume that there exists an integer i such that $g^{-1}\left(l_{i}\right)$
is not contained in $H_{i}-\mathrm{Cl}\left(D-H_{i}\right)$. Since (i) $g^{-1}\left(l_{i}\right) \cap(\operatorname{Bd} D)=$ $f^{-1}\left(l_{i}\right) \cap(\mathrm{Bd} D) \subset H_{i}-\mathrm{Cl}\left(D-H_{i}\right)$, (ii) $g^{-1}\left(l_{i}\right)$ is a connected set and (iii) $H_{i}^{T} \cup H_{i}^{B}$ separates $H_{i}-\mathrm{Cl}\left(D-H_{i}\right)$ from $D-H_{i}$, there is an $x \in H_{i}^{T} \cup H_{i}^{B}$ such that $g(x) \in l_{i}$. But this implies that $d(f(x), g(x)) \geqq$ $d\left(f\left(H_{i}^{T} \cup H_{i}^{B}\right), l_{i}\right) \geqq \varepsilon$ and hence $d(f, g) \geqq \varepsilon$.

Lemma 1. β is a basis for $\overline{H(D)}$.
Proof. Let $f \in \overline{H(D)}$ and $\varepsilon>0$ be given. We wish to find $B \in \beta$ such that $f \in B$ and $d(f, g)<\varepsilon$ for all $x \in B$. Pick a grating, P_{j}, such that diam $\left|\operatorname{st}\left(x, P_{j}\right)\right|<\varepsilon$ for every $x \in D$. Let l_{i} be the i th crosscut from the top of D. Choose H_{1}^{T} to be a polygonal spanning arc of D with one endpoint in each side of D that separates the top of D from $f^{-1}\left(l_{1}\right)$. Choose H_{1}^{B} to be a polygonal spanning arc of D that separates $f^{-1}\left(l_{1}\right)$ from $f^{-1}\left(l_{2}\right)$. The polyhedral disk H_{1} is thus uniquely defined. Assume inductively that disks H_{1}, \cdots, H_{i-1} have been defined in such a manner that $H_{j} \cap H_{k}=\varnothing$ if $1 \leqq j \leqq i-1,1 \leqq k \leqq i-1$, and $j \neq k$ and that for each $j, 1 \leqq j \leqq i-1, H_{j}^{T}$ separates H_{j-1}^{B} from $f^{-1}\left(l_{j}\right)$ and H_{j}^{B} separates $f^{-1}\left(l_{j}\right)$ from $f^{-1}\left(l_{j+1}\right)$. Choose H_{i}^{T} to be a polygonal spanning arc of D that separates H_{i-1}^{B} from $f^{-1}\left(l_{i}\right)$. Finally choose H_{i}^{B} to be a pylygonal spanning arc of D that separates $f^{-1}\left(l_{i}\right)$ from $f^{-1}\left(l_{i+1}\right)$ (or from the bottom of D if $i=n$). We have thus uniquely defined H_{i} in such a way that the inductive hypothesis is satisfied. Define V_{1}, \cdots, V_{n} in a similar manner. Now, by construction $f \in B\left(P_{j} ; H_{1}, \cdots, H_{n} ; V_{1}, \cdots, V_{n}\right)$ and if $g \in B\left(P_{j} ; H_{1}, \cdots, H_{n} ; V_{1}, \cdots\right.$, $\left.V_{n}\right)$ then $d(f, g)<\varepsilon$.

Lemma 2. Let B_{1}, \cdots, B_{j} be elements of β. Then $B=\bigcap_{k=1}^{j} B_{k}$ is an element of β.

Proof. Assume $B \neq \varnothing$ and that P_{k} is the grating associated with $B_{k}, 1 \leqq k \leqq j$. Hence for any $k, 1 \leqq k \leqq j$, every crosscut of P_{k} is a crosscut of P_{j}. Let l_{1} be the first horizontal crosscut of P_{j}. For each $k, 1 \leqq k \leqq j$, let $H_{1, k}$ be the element of \mathscr{H} associated with l_{1} and B_{k} (if there is one). Let H_{1} be the component of $D-\left(\bigcup_{k=1}^{j} H_{1, k}^{T} \cup \bigcup_{k=1}^{j} H_{1, k}^{B}\right)$ that contains $f^{-1}\left(l_{1}\right)$. Define in an analogous manner H_{2}, \cdots, H_{n} and V_{1}, \cdots, V_{n}. It is clear that $B\left(P_{j} ; H_{1}, \cdots, H_{n} ; V_{1}, \cdots, V_{n}\right)=\bigcap_{k=1}^{j} B_{k}$. The elements of $\left\{H_{1}, \cdots, H_{n}\right\}$ are pairwise disjoint since each H_{i} is contained in $H_{i, n}$ and the elements of $\left\{H_{1, j}, \cdots, H_{n, j}\right\}$ are pairwise disjoint.

Lemma 3 will follow as a corollary to the following theorem of Mason. (The proof of this theorem constitutes the bulk of [9].)

Theorem (Mason). Let U be an element of $H V T$ and K a finite
dimensional compact subset of U. Then there is an embedding ψ of the cone over K into U such that $\psi(f, 0)=f$, for all $f \in K$.

Lemma 3. Let $B=B\left(P_{j} ; H_{1}, \cdots, H_{n} ; V_{1}, \cdots, V_{n}\right)$ be an element of β and K a finite dimensional compact subset of $B \cap H(D)$. Then there is an embedding λ of the cone over K into $B \cap H(D)$ such that $\psi(f, 0)=f$, for all $f \in K$.

Proof. Since $H(D)$ is a topological group, the function $G: H(D) \rightarrow$ $H(D)$ defined by $G(f)=f^{-1}$ is a homeomorphism. Therefore, by the note following the definition of $\beta, G(K)$ is a finite dimensional compact subset of $U\left(P_{j} ; H_{1}, \cdots, H_{n} ; V_{1}, \cdots, V_{n}\right)$. Hence by Mason's theorem there is an embedding ψ of the cone over $G(K)$ into $U\left(P_{j} ; H_{1}, \cdots\right.$, $\left.H_{n} ; V_{1}, \cdots, V_{n}\right)$ such that $\psi(f, 0)=f$, for all $f \in G(K)$. Define $\lambda: K \times$ $I \rightarrow B \cap H(D)$ by $\lambda(k, t)=G^{-1}(\psi(G(k), t))$.
4. The main results. The following theorem shows that the elements of $\overline{H(D)}$ can be canonically approximated by elements of $H(D)$.

Theorem 1. Let α be an open cover of $\overline{H(D)}$. Then there exists a locally finite polyhedron, \mathscr{P}, and maps $b: \overline{H(D)} \rightarrow \mathscr{P}, \psi: \mathscr{P} \rightarrow H(D)$, and $\theta: \overline{H(D)} \times I \rightarrow \overline{H(D)}$ such that
(a) for each $f \in \overline{H(D)}$, there is an element, U_{f}, of α such that $\theta(f, t) \in U_{f}$, for each $t \in I$,
(b) $\theta(f, 1)=f$, for each $f \in \overline{H(D)}$,
(c) $\theta(f, 0)=\psi b(f)$, for each $f \in \overline{H(D)}$,
(d) $\theta(f, t) \in H(D)$ for each $f \in \overline{H(D)}$ and $t \in[0,1)$.

Proof. Let α^{\prime} be an open barycentric refinement α (i.e., if $f \in \overline{H(D),}$ $\left|s t\left(f, \alpha^{\prime}\right)\right|$ is contained in some element of α). For each positive integer, k, let α_{k} be an open cover of $\overline{H(D)}$ such that
(i) α_{k} is a refinement of α^{\prime},
(ii) if $V \in \alpha_{k}$, diam $V<1 / k$,
(iii) if $V \in \alpha_{k}$, then $V \in \beta$.

We next define an open cover, η, of $\overline{H(D)} \times[0,1)$.
Let $\eta=\left\{V \times[0,1 / 2) \mid V \in \alpha_{1}\right\} \cup \bigcup_{k=2}^{\infty}\left\{\left.V \times\left(\frac{2^{k}-3}{2^{k}}, \frac{2^{k}-1}{2^{k}}\right) \right\rvert\, V \in \alpha_{k}\right\}$.
Let γ be a countable refinement of η such that
(a) if $h \in \gamma, s t(h, r)$ is a finite set,
(b) if $h \in \gamma$, then there is an element of $\eta, V \times J$, such that $|s t(h, \gamma)| \subset V \times J$.
Let \mathscr{P} be the nerve of γ and $B: \overline{H(D)} \times[0,1) \rightarrow \mathscr{P}$ be the standard
barycentric map. Order the element of γ, and for each $h_{i} \in \gamma$, let $V_{i} \times J_{i}$ be an element of η such that $\left|s t\left(h_{i}, \gamma\right)\right| \subset V_{i} \times J_{i}$. Note that $V_{i} \in \beta$.

We shall define a map $\psi: \mathscr{P} \rightarrow H(D)$ by induction on the skeletons of \mathscr{P}. For each vertex $\left(h_{i}\right)$ of \mathscr{P}, let $\psi^{0}\left(\left(h_{i}\right)\right)$ be an arbitrary element of $H(D)$ intersected with the projection of h_{i} onto $\overline{H(D)}$.

Now assume that for $m=1,2, \cdots, n$ we have defined $\psi^{m}: \mathscr{P}^{m} \rightarrow$ $H(D)$ such that ψ^{m} extends ψ^{m-1} and for each simplex $\sigma^{m}=\left(h_{\lambda_{0}}, \cdots, h_{\lambda_{m}}\right)$:
(a) $\psi^{m}\left(\sigma^{m}\right)$ is finite dimensional,
(b) $\psi^{m}\left(\sigma^{m}\right) \subset H(D) \cap\left\{V_{i} \mid h_{i} \subset \bigcap_{j=0}^{m} s t\left(h_{\lambda_{j}}, \gamma\right)\right\}$.

Now let $\sigma^{n+1}=\left\langle h_{0}, \cdots, h_{n+1}\right\rangle$ be any simplex of \mathscr{P}^{n+1}. Let

$$
U=\bigcap\left\{V_{i} \mid h_{i} \subset \bigcap_{j=0}^{n+1} s t\left(h_{j}, \gamma\right)\right\}
$$

Since each V_{i} is an element of β, by Lemma $2, U \in \beta$. By the inductive hypothesis the image under ψ^{n} of the boundary of σ^{n+1} is a finite dimensional compact subset of $U \cap H(D)$, denoted K. By Lemma 3 there is an embedding

$$
\lambda: \subset(K) \rightarrow U \cap H(D)
$$

such that $\lambda(f, 0)=f$ for all $f \in K$. We consider σ^{n+1} to be the cone over its boundary, and so for $(x, t) \in \sigma^{n+1}$, let $\psi^{n+1}(x, t)=\lambda\left(\psi^{n}(x), t\right)$.

Extending over each $n+1$ simplex in this manner gives $\psi^{n+1}: \mathscr{P}^{n+1} \rightarrow H(D)$ and completes the induction. Hence $\lim _{n \rightarrow \infty} \psi^{n}=$ $\psi: \mathscr{P} \rightarrow H(D)$ is continuous by the continuity of each ψ^{n} and the local finiteness of \mathscr{P}.

Let $b: \overline{H(D)} \rightarrow \mathscr{P}$ be defined by $b(f)=B((f, 0))$.
We next define the homotopy $\theta: \overline{H(D)} \times I \rightarrow \overline{H(D)}$ in the following manner:

$$
\theta(f, t)=\left\{\begin{array}{l}
\psi(B(f, t)), \quad t \neq 1 \\
f, t=1
\end{array}\right.
$$

Conditions (b), (c), and (d) are obviously satisfied. We show simultaneously that θ is continuous and that for each $f \in \overline{H(D)}$ there is an element U_{f} of α such that for each $t \in I, \theta(f, t) \in U_{f}$.

Suppose that $(f, t) \in \overline{H(D)} \times[0,1)$ and that $\left(2^{k}-3\right) / 2^{k}<t<\left(2^{k}-1\right) / 2^{k}$. Let h_{0} be any element of γ which contains (f, t). By the definition of $\psi, \psi B(f, t) \in V_{0}$. But $V_{0} \in \alpha_{k-1} \cup \alpha_{k} \cup \alpha_{k+1}$ and therefore the diameter of V_{0} is less than $1 /(k-1)$ which implies that $d(\psi B(f, t), f)<$ $1 /(k-1)$ and thereby that θ is continuous. Since each α_{k} is a refinement of α^{\prime}, there exists an element of $\alpha^{\prime}, U_{(f, t)}$, such that
$\{f\} \cup\{\psi B(f, t)\} \subset V_{0} \subset U_{(f, t)}$. Since α^{\prime} is a barycentric refinement of α, there is some element, U_{f}, of α such that $\bigcup_{t \in[0,1)} U_{(f, t)} \subset U_{f}$ and hence $\theta(f, t) \in U_{f}$, for each $t \in I$.

The following result is an immediate corollary of Theorem 1 and a theorem of Hanner [5] which states that a metric space X is an $A N R$ if given an arbitrary cover, α, of X there exists a locally finite polyhedron \mathscr{P}, maps $b: X \rightarrow \mathscr{P}, \psi: \mathscr{P} \rightarrow X$, and $\theta: X \times I \rightarrow X$ such that $\theta(x, 0)=\psi b(x)$ for all $x \in X, \theta(x, 1)=x$ for all $x \in X$ and for each $x \in X$ there is an element U of α such that $\theta(x, t) \in U$ for all $t \in[0,1]$.

ThEOREM 2. $\overline{H(D)}$ is an absolute retract.
Proof. By the preceding comments, $\overline{H(D)}$ is an $A N R$. But $\overline{H(D)}$ is contractible by the Alexander isotopy [1] applied to $\overline{H(D)}$. The theorem follows since every contractible absolute neighborhood retract is an absolute retract.
5. Applications. (a) The author has shown [6] that $\overline{H(M)}$, the space of all mappings of a compact manifold onto itself which can be approximated arbitrarily closely by homeomorphisms, is weakly locally contractible. Theorem 1 can be used [7] to show that for any compact 2 -manifold, $M^{2}, \overline{H\left(M^{2}\right)}$ is locally contractible.
(b) A problem of current interest is whether $H(D)$ is homeomorphic to l_{2}; it can easily by shown using a result of Anderson [2] that if $\overline{H(D)}$ is homeomorphic to l_{2}, then $H(D)$ is homeomorphic to l_{2}. Perhaps the results of this paper and the fact that $\overline{H(D)}$ is complete under the usual metric will be helpful in showing that $\overline{H(D)}$ is homeomorphic to l_{2}.
(c) L. C. Siebenmann [10] has asked whether the inclusion map $i: H(M) \rightarrow \overline{H(M)}$ is a homotopy equivalence. Theorem 1 provides an affirmative answer to the question for the special case $i: H(D) \rightarrow \overline{H(D)}$.

Added in proof. Recent work of Torunczyk ("Absolute retracts as factors of normed linear spaces," Fund. Math., to appear) implies that since $\overline{H(D)}$ is an $A R$ and $H(D) \times l_{2} \approx \overline{H(D)}, \overline{H(D)}$ is in fact homeomorphic to l_{2}.

References

1. J. W. Alexander, On the deformation of an n-cell, Proc. Nat. Acad. Sci., U.S.A., 9 (1923), 406-407.
2. R. D. Anderson, Strongly negligible sets in Frechet manifolds, Bull. Amer. Math. Soc., 75 (1969), 64-67.
3. R. Geoghegan, On spaces of homeomorphisms, embeddings, and functions I, Topology, 11 (1972), 159-177.
4. R. Geoghegan and D. W. Henderson, Stable function spaces, to appear.
5. O. Hanner, Some Theorems on Absolute Neighborhood Retracts, Arkiv Fur Matematik, 1 (1951), 389-408.
6. W. Haver, Homeomorphisms and $U V^{\infty}$ maps, Proc. of SUNY Bingh. Conf. on Monotone Mappings and Open Mappings, (1970), 112-121.
7. -, The Closure of the Space of Homeomorphisms on a Manifold, Trans. Amer. Math. Soc., to appear.
8. J. Hocking, Approximations to monotone mappings on noncompact two-dimensional manifolds, Duke Math. J., 21 (1954), 639-651.
9. W. K. Mason, The space of all self-homeomorphisms of a 2-cell which fix the cell's boundary is an absolute retract, Trans. Amer. Math. Soc., 161 (1971), 185-206.
10. L. C. Siebenmann, Approximating cellular maps by homeomorphisms, Topology, 11 (1972), 271-294.

Received September 6, 1972. Research partially supported by NSF Grant GP. 33872.
University of Tennessee

