## MONOTONE MAPPINGS OF A TWO-DISK ONTO ITSELF WHICH FIX THE DISK'S BOUNDARY CAN BE CANONICALLY APPROXIMATED BY HOMEOMORPHISMS

## WILLIAM E. HAVER

## The theorem stated in the title is proven. As a corollary it is shown that the space of all such monotone mappings is an absolute retract.

1. Introduction. Let  $D^*$  denote the standard *n*-ball of radius one in  $E^*$  and  $H(D^*)$  the space of all homeomorphisms of  $D^*$  onto itself which equal the identity on the boundary of  $D^*$ . Let  $\overline{H(D^*)}$  denote the space of all mappings of  $D^*$  onto itself which can be approximated arbitrarily closely by elements of  $H(D^*)$ . Under the supremum topology,  $H(D^*)$  and  $\overline{H(D^*)}$  are separable metric spaces;  $\overline{H(D^*)}$  is complete under the supremum metric. It is known that  $\overline{H(D^*)}$  is locally contractible  $[7], \overline{H(D^*)} \times l_2 \approx \overline{H(D^*)}$  [4],  $\overline{H(D^*)}$  is homogeneous [7], and that  $\overline{H(D^1)} \approx l_2$  [3]. In this paper we shall be concerned with the case n = 2, and to simplify notation we shall write D for  $D^*$ . It is wellknown (cf. [8]) that  $\overline{H(D)}$  is the space of all monotone mappings of D onto itself which equal the identity when restricted to the boundary of D.

We shall show [Theorem 1] that the elements of H(D) can be "canonically approximated" by elements of H(D) and [Theorem 2] that  $\overline{H(D)}$  is an absolute retract. The work of this paper depends heavily on W. K. Mason's paper, "The space of all self-homeomorphisms of a two-cell which fix the cell's boundary is an absolute retract", [9]. The crux of Mason's paper is the definition of a basis for H(D) which can be shown to possess some particularly nice properties. We shall review the definition of this basis in the following section and then define a basis for  $\overline{H(D)}$ . Familiarity will be assumed with the notation and basic definitions of [9].

2. Mason's basis for H(D). Consider D to be a rectangle in  $\mathbb{R}^2$  with horizontal and vertical sides. A grating, P, on D consists of a finite number of spanning segments (crosscuts) across D, parallel to its sides, with the same number of horizontal and vertical crosscuts. Let  $P_1, P_2, \cdots$  be a sequence of gratings on D such that (a) the mesh of  $P_i$  approaches 0 as i increases and (b) if l is a crosscut of  $P_i$  and  $j \geq i$ , then l is a crosscut of  $P_j$ .

Let  $\mathcal{H}$  be the collection of all polyhedral disks H contained in D

such that Bd (H) is the union of a vertical segment in the left side of Bd (D), a vertical segment in the right side of Bd (D), a polygonal spanning arc of D,  $H^{T}$ , that is contained in the closure of the same component of H(D) - H as the top of Bd (D), and a polygonal spanning arc of D,  $H^{s}$ , that is contained in the closure of the same component of H(D) - H as the bottom of Bd (D). Let  $\mathscr{V}$  be the collection of all polyhedral disks V contained in D such that Bd (V) is the union of a horizontal segment in the top of Bd (D), a horizontal segment in the bottom of Bd (D), a polygonal spanning arc of D,  $V^{L}$ , that is contained in the closure of the same component of H(D) - V as the left side of Bd (D) and a polygonal spanning arc of D,  $V^{R}$ , that is contained in the closure of the same component of H(D) - V as the right side of Bd (D).

Let  $P_j$  be a grating from the sequence  $P_1, P_2, \cdots$ . Let  $\{l_1, \cdots, l_n\}$  be the set of horizontal crosscuts of  $P_j$  and  $\{m_1, \cdots, m_n\}$  the set of vertical crosscuts. Let  $\{H_1, \cdots, H_n\} \subset \mathscr{H}$  satisfy  $H_i \cap H_j = \emptyset$  if  $i \neq j$  and  $\{V_1, \cdots, V_n\} \subset \mathscr{V}$  satisfy  $V_i \cap V_j = \emptyset$  if  $i \neq j$ . Then define

$$egin{aligned} O(P_j; H_1, \ \cdots, \ H_n; \ V_1, \ \cdots, \ V_n) \ &= \{f \in H(D) \mid f(l_i) \subset H_i - \{\operatorname{Cl} (D - H_i)\} ext{ and } \ f(m_i) \subset V_i - \{\operatorname{Cl} (D - V_i)\} ext{ for } 1 \leq i \leq n\} \ . \end{aligned}$$

Then the basis for H(D), which Mason denotes HVT, is the collection of all such open sets.

3. A Basis for  $\overline{H(D)}$ . In this section we define a basis,  $\beta$ , for  $\overline{H(D)}$  and demonstrate that it possesses some nice properties. Let  $P_j$ ,  $\{H_1, \dots, H_n\}$  and  $\{V_1, \dots, V_n\}$  be as in the definition of HVT. The basis,  $\beta$ , will consist of all sets of the following form:

$$egin{aligned} &B(P_i;\,H_1,\,\cdots,\,H_n;\,V_1,\,\cdots,\,V_n)\ &=\{f\in\overline{H(D)}\mid f^{-1}(l_i)\subset H_i-\{\operatorname{Cl}\,(D\,-\,H_i)\}\,\, ext{and}\ &f^{-1}(m_i)\subset V_i-\{\operatorname{Cl}\,(D\,-\,V_i)\},\,\, ext{for}\,\,1\leq i\leq n\}\;. \end{aligned}$$

We note that  $f \in B(P_j; H_1, \dots, H_n; V_1, \dots, V_n) \cap H(D)$  if and only if  $f^{-1} \in O(P_j; H_1, \dots, H_n; V_1, \dots, V_n)$ . To see that the elements of  $\beta$ are open subsets of  $\overline{H(D)}$ , let f be an arbitrary element of  $B(P_j; H_1, \dots, H_n; V_1, \dots, V_n)$ . Then let

$$arepsilon = \min_{1 \leq i \leq n} \left\{ d(f(H_i^{ \mathrm{\scriptscriptstyle T}} \cup H_i^{ \mathrm{\scriptscriptstyle B}}), igcup_{j=1}^n l_j), \, d(f(V_i^{ \mathrm{\scriptscriptstyle L}} \cup V_i^{ \mathrm{\scriptscriptstyle R}}), igcup_{j=1}^n m_j) 
ight\} \, .$$

Let g be an arbitrary element of  $\overline{H(D)}$  satisfying  $d(f, g) < \varepsilon$ . Suppose that  $g \notin B(P_j; H_1, \dots, H_n; V_1, \dots, V_n)$ . Then, without loss of generality, we can assume that there exists an integer i such that  $g^{-1}(l_i)$ 

is not contained in  $H_i - \operatorname{Cl}(D - H_i)$ . Since (i)  $g^{-1}(l_i) \cap (\operatorname{Bd} D) = f^{-1}(l_i) \cap (\operatorname{Bd} D) \subset H_i - \operatorname{Cl}(D - H_i)$ , (ii)  $g^{-1}(l_i)$  is a connected set and (iii)  $H_i^T \cup H_i^B$  separates  $H_i - \operatorname{Cl}(D - H_i)$  from  $D - H_i$ , there is an  $x \in H_i^T \cup H_i^B$  such that  $g(x) \in l_i$ . But this implies that  $d(f(x), g(x)) \geq d(f(H_i^T \cup H_i^B), l_i) \geq \varepsilon$  and hence  $d(f, g) \geq \varepsilon$ .

LEMMA 1.  $\beta$  is a basis for  $\overline{H(D)}$ .

*Proof.* Let  $f \in \overline{H(D)}$  and  $\varepsilon > 0$  be given. We wish to find  $B \in \beta$ such that  $f \in B$  and  $d(f, g) < \varepsilon$  for all  $x \in B$ . Pick a grating,  $P_j$ , such that diam  $|st(x, P_j)| < \varepsilon$  for every  $x \in D$ . Let  $l_i$  be the *i*th crosscut from the top of D. Choose  $H_1^T$  to be a polygonal spanning arc of D with one endpoint in each side of D that separates the top of D from  $f^{-1}(l_1)$ . Choose  $H_1^B$  to be a polygonal spanning arc of D that separates  $f^{-1}(l_1)$  from  $f^{-1}(l_2)$ . The polyhedral disk  $H_1$  is thus uniquely defined. Assume inductively that disks  $H_1, \dots, H_{i-1}$  have been defined in such a manner that  $H_i \cap H_k = \oslash$  if  $1 \leq j \leq i-1, 1 \leq k \leq i-1$ , and  $j \neq k$ and that for each  $j, 1 \leq j \leq i-1$ ,  $H_j^{T}$  separates  $H_{j-1}^{B}$  from  $f^{-1}(l_j)$  and  $H_i^{\scriptscriptstyle B}$  separates  $f^{-1}(l_j)$  from  $f^{-1}(l_{j+1})$ . Choose  $H_i^{\scriptscriptstyle T}$  to be a polygonal spanning arc of D that separates  $H_{i-1}^{\scriptscriptstyle B}$  from  $f^{-1}(l_i)$ . Finally choose  $H_i^{\scriptscriptstyle B}$  to be a pylygonal spanning arc of D that separates  $f^{-1}(l_i)$  from  $f^{-1}(l_{i+1})$  (or from the bottom of D if i = n). We have thus uniquely defined  $H_i$  in such a way that the inductive hypothesis is satisfied. Define  $V_1, \dots, V_n$  in a similar manner. Now, by construction  $f \in B(P_j; H_1, \dots, H_n; V_1, \dots, V_n)$  and if  $g \in B(P_j; H_1, \dots, H_n; V_1, \dots, V_n)$  $V_n$ ) then  $d(f, g) < \varepsilon$ .

LEMMA 2. Let  $B_1, \dots, B_j$  be elements of  $\beta$ . Then  $B = \bigcap_{k=1}^{j} B_k$  is an element of  $\beta$ .

*Proof.* Assume  $B \neq \emptyset$  and that  $P_k$  is the grating associated with  $B_k, 1 \leq k \leq j$ . Hence for any  $k, 1 \leq k \leq j$ , every crosscut of  $P_k$  is a crosscut of  $P_j$ . Let  $l_1$  be the first horizontal crosscut of  $P_j$ . For each  $k, 1 \leq k \leq j$ , let  $H_{1,k}$  be the element of  $\mathscr{H}$  associated with  $l_1$  and  $B_k$  (if there is one). Let  $H_1$  be the component of  $D - (\bigcup_{k=1}^j H_{1,k}^T \cup \bigcup_{k=1}^j H_{1,k}^B)$  that contains  $f^{-1}(l_1)$ . Define in an analogous manner  $H_2, \dots, H_n$  and  $V_1, \dots, V_n$ . It is clear that  $B(P_j; H_1, \dots, H_n; V_1, \dots, V_n) = \bigcap_{k=1}^j B_k$ . The elements of  $\{H_1, \dots, H_n\}$  are pairwise disjoint since each  $H_i$  is contained in  $H_{i,n}$  and the elements of  $\{H_{1,j}, \dots, H_{n,j}\}$  are pairwise disjoint.

Lemma 3 will follow as a corollary to the following theorem of Mason. (The proof of this theorem constitutes the bulk of [9].)

THEOREM (Mason). Let U be an element of HVT and K a finite

dimensional compact subset of U. Then there is an embedding  $\psi$  of the cone over K into U such that  $\psi(f, 0) = f$ , for all  $f \in K$ .

LEMMA 3. Let  $B = B(P_j; H_1, \dots, H_n; V_1, \dots, V_n)$  be an element of  $\beta$  and K a finite dimensional compact subset of  $B \cap H(D)$ . Then there is an embedding  $\lambda$  of the cone over K into  $B \cap H(D)$  such that  $\psi(f, 0) = f$ , for all  $f \in K$ .

Proof. Since H(D) is a topological group, the function  $G: H(D) \rightarrow H(D)$  defined by  $G(f) = f^{-1}$  is a homeomorphism. Therefore, by the note following the definition of  $\beta$ , G(K) is a finite dimensional compact subset of  $U(P_j; H_1, \dots, H_n; V_1, \dots, V_n)$ . Hence by Mason's theorem there is an embedding  $\psi$  of the cone over G(K) into  $U(P_j; H_1, \dots, H_n; V_1, \dots, V_n)$ ,  $H_n; V_1, \dots, V_n$  such that  $\psi(f, 0) = f$ , for all  $f \in G(K)$ . Define  $\lambda: K \times I \rightarrow B \cap H(D)$  by  $\lambda(k, t) = G^{-1}(\psi(G(k), t))$ .

4. The main results. The following theorem shows that the elements of  $\overline{H(D)}$  can be canonically approximated by elements of H(D).

THEOREM 1. Let  $\alpha$  be an open cover of  $\overline{H(D)}$ . Then there exists a locally finite polyhedron,  $\mathscr{P}$ , and maps  $b: \overline{H(D)} \to \mathscr{P}, \psi: \mathscr{P} \to H(D)$ , and  $\theta: \overline{H(D)} \times I \to \overline{H(D)}$  such that

(a) for each  $f \in \overline{H(D)}$ , there is an element,  $U_f$ , of  $\alpha$  such that  $\theta(f, t) \in U_f$ , for each  $t \in I$ ,

- (b)  $\theta(f, 1) = f$ , for each  $f \in \overline{H(D)}$ ,
- (c)  $\theta(f, 0) = \psi b(f)$ , for each  $f \in \overline{H(D)}$ ,
- (d)  $\theta(f, t) \in H(D)$  for each  $f \in \overline{H(D)}$  and  $t \in [0, 1)$ .

*Proof.* Let  $\alpha'$  be an open barycentric refinement  $\alpha$  (i.e., if  $f \in \overline{H(D)}$ ,  $|st(f, \alpha')|$  is contained in some element of  $\alpha$ ). For each positive integer, k, let  $\alpha_k$  be an open cover of  $\overline{H(D)}$  such that

- (i)  $\alpha_k$  is a refinement of  $\alpha'$ ,
- (ii) if  $V \in \alpha_k$ , diam V < 1/k,
- (iii) if  $V \in \alpha_k$ , then  $V \in \beta$ .

We next define an open cover,  $\eta$ , of  $\overline{H(D)} \times [0, 1)$ .

Let 
$$\eta = \{V imes [0, 1/2) \mid V \in lpha_1\} \cup igcup_{k=2}^{\infty} \Big\{ V imes \Big( rac{2^k-3}{2^k}, rac{2^k-1}{2^k} \Big) \Big| V \in lpha_k \Big\}$$
 .

Let  $\gamma$  be a countable refinement of  $\eta$  such that

(a) if  $h \in \gamma$ , st(h, r) is a finite set,

(b) if  $h \in \gamma$ , then there is an element of  $\eta$ ,  $V \times J$ , such that  $|st(h, \gamma)| \subset V \times J$ .

Let  $\mathscr{P}$  be the nerve of  $\gamma$  and  $B: \overline{H(D)} \times [0, 1) \to \mathscr{P}$  be the standard

barycentric map. Order the element of  $\gamma$ , and for each  $h_i \in \gamma$ , let  $V_i \times J_i$  be an element of  $\eta$  such that  $|st(h_i, \gamma)| \subset V_i \times J_i$ . Note that  $V_i \in \beta$ .

We shall define a map  $\psi: \mathscr{P} \to H(D)$  by induction on the skeletons of  $\mathscr{P}$ . For each vertex  $(h_i)$  of  $\mathscr{P}$ , let  $\psi^{\circ}((h_i))$  be an arbitrary element of H(D) intersected with the projection of  $h_i$  onto  $\overline{H(D)}$ .

Now assume that for  $m = 1, 2, \dots, n$  we have defined  $\psi^m : \mathscr{I}^{\mathfrak{m}} \to H(D)$  such that  $\psi^m$  extends  $\psi^{m-1}$  and for each simplex  $\sigma^m = (h_{\lambda_0}, \dots, h_{\lambda_m})$ :

(a)  $\psi^{m}(\sigma^{m})$  is finite dimensional,

(b)  $\psi^{m}(\sigma^{m}) \subset H(D) \cap \{V_{i} \mid h_{i} \subset \bigcap_{j=0}^{m} st(h_{\lambda_{j}}, \gamma)\}.$ 

Now let  $\sigma^{n+1} = \langle h_0, \cdots, h_{n+1} \rangle$  be any simplex of  $\mathscr{P}^{n+1}$ . Let

$$U = igcap \left\{ V_i \, | \, h_i \subset igcap_{j=0}^{n+1} st(h_j, \, \gamma) 
ight\} \, .$$

Since each  $V_i$  is an element of  $\beta$ , by Lemma 2,  $U \in \beta$ . By the inductive hypothesis the image under  $\psi^n$  of the boundary of  $\sigma^{n+1}$  is a finite dimensional compact subset of  $U \cap H(D)$ , denoted K. By Lemma 3 there is an embedding

$$\lambda : \subset (K) \to U \cap H(D)$$

such that  $\lambda(f, 0) = f$  for all  $f \in K$ . We consider  $\sigma^{n+1}$  to be the cone over its boundary, and so for  $(x, t) \in \sigma^{n+1}$ , let  $\psi^{n+1}(x, t) = \lambda(\psi^n(x), t)$ .

Extending over each n+1 simplex in this manner gives  $\psi^{n+1}: \mathscr{P}^{n+1} \to H(D)$  and completes the induction. Hence  $\lim_{n\to\infty} \psi^n = \psi: \mathscr{P} \to H(D)$  is continuous by the continuity of each  $\psi^n$  and the local finiteness of  $\mathscr{P}$ .

Let  $b: \overline{H(D)} \to \mathscr{P}$  be defined by b(f) = B((f, 0)).

We next define the homotopy  $\theta: \overline{H(D)} \times I \to \overline{H(D)}$  in the following manner:

$$heta(f,\,t) = egin{cases} \psi(B(f,\,t)), & t
eq 1 \ f,\,t=1 \;. \end{cases}$$

Conditions (b), (c), and (d) are obviously satisfied. We show simultaneously that  $\theta$  is continuous and that for each  $f \in \overline{H(D)}$  there is an element  $U_f$  of  $\alpha$  such that for each  $t \in I$ ,  $\theta(f, t) \in U_f$ .

Suppose that  $(f, t) \in \overline{H(D)} \times [0, 1)$  and that  $(2^k - 3)/2^k < t < (2^k - 1)/2^k$ . Let  $h_0$  be any element of  $\gamma$  which contains (f, t). By the definition of  $\psi$ ,  $\psi B(f, t) \in V_0$ . But  $V_0 \in \alpha_{k-1} \cup \alpha_k \cup \alpha_{k+1}$  and therefore the diameter of  $V_0$  is less than 1/(k-1) which implies that  $d(\psi B(f, t), f) < 1/(k-1)$  and thereby that  $\theta$  is continuous. Since each  $\alpha_k$  is a refinement of  $\alpha'$ , there exists an element of  $\alpha'$ ,  $U_{(f,t)}$ , such that  $\{f\} \cup \{\psi B(f, t)\} \subset V_0 \subset U_{(f,t)}$ . Since  $\alpha'$  is a barycentric refinement of  $\alpha$ , there is some element,  $U_f$ , of  $\alpha$  such that  $\bigcup_{t \in [0,1)} U_{(f,t)} \subset U_f$  and hence  $\theta(f, t) \in U_f$ , for each  $t \in I$ .

The following result is an immediate corollary of Theorem 1 and a theorem of Hanner [5] which states that a metric space X is an ANR if given an arbitrary cover,  $\alpha$ , of X there exists a locally finite polyhedron  $\mathscr{P}$ , maps  $b: X \to \mathscr{P}, \psi: \mathscr{P} \to X$ , and  $\theta: X \times I \to X$  such that  $\theta(x, 0) = \psi b(x)$  for all  $x \in X, \theta(x, 1) = x$  for all  $x \in X$  and for each  $x \in X$ there is an element U of  $\alpha$  such that  $\theta(x, t) \in U$  for all  $t \in [0, 1]$ .

THEOREM 2.  $\overline{H(D)}$  is an absolute retract.

*Proof.* By the preceding comments,  $\overline{H(D)}$  is an ANR. But  $\overline{H(D)}$  is contractible by the Alexander isotopy [1] applied to  $\overline{H(D)}$ . The theorem follows since every contractible absolute neighborhood retract is an absolute retract.

5. Applications. (a) The author has shown [6] that  $\overline{H(M)}$ , the space of all mappings of a compact manifold onto itself which can be approximated arbitrarily closely by homeomorphisms, is weakly locally contractible. Theorem 1 can be used [7] to show that for any compact 2-manifold,  $M^2$ ,  $\overline{H(M^2)}$  is locally contractible.

(b) A problem of current interest is whether H(D) is homeomorphic to  $l_2$ ; it can easily by shown using a result of Anderson [2] that if  $\overline{H(D)}$  is homeomorphic to  $l_2$ , then H(D) is homeomorphic to  $l_2$ . Perhaps the results of this paper and the fact that  $\overline{H(D)}$  is complete under the usual metric will be helpful in showing that  $\overline{H(D)}$  is homeomorphic to  $l_2$ .

(c) L. C. Siebenmann [10] has asked whether the inclusion map  $i: H(M) \to \overline{H(M)}$  is a homotopy equivalence. Theorem 1 provides an affirmative answer to the question for the special case  $i: H(D) \to \overline{H(D)}$ .

Added in proof. Recent work of Torunczyk ("Absolute retracts as factors of normed linear spaces," Fund. Math., to appear) implies that since  $\overline{H(D)}$  is an AR and  $H(D) \times l_2 \approx \overline{H(D)}, \overline{H(D)}$  is in fact homeomorphic to  $l_2$ .

## References

<sup>1.</sup> J. W. Alexander, On the deformation of an n-cell, Proc. Nat. Acad. Sci., U.S.A., 9 (1923), 406-407.

<sup>2.</sup> R. D. Anderson, Strongly negligible sets in Frechet manifolds, Bull. Amer. Math. Soc., 75 (1969), 64-67.

<sup>3.</sup> R. Geoghegan, On spaces of homeomorphisms, embeddings, and functions I, Topology, 11 (1972), 159-177.

4. R. Geoghegan and D. W. Henderson, Stable function spaces, to appear.

5. O. Hanner, Some Theorems on Absolute Neighborhood Retracts, Arkiv Fur Matematik, 1 (1951), 389-408.

6. W. Haver, Homeomorphisms and  $UV^{\infty}$  maps, Proc. of SUNY Bingh. Conf. on Monotone Mappings and Open Mappings, (1970), 112-121.

7. \_\_\_\_, The Closure of the Space of Homeomorphisms on a Manifold, Trans. Amer. Math. Soc., to appear.

8. J. Hocking, Approximations to monotone mappings on noncompact two-dimensional manifolds, Duke Math. J., **21** (1954), 639-651.

9. W. K. Mason, The space of all self-homeomorphisms of a 2-cell which fix the cell's boundary is an absolute retract, Trans. Amer. Math. Soc., 161 (1971), 185-206.

10. L. C. Siebenmann, Approximating cellular maps by homeomorphisms, Topology, **11** (1972), 271-294.

Received September 6, 1972. Research partially supported by NSF Grant GP. 33872.

UNIVERSITY OF TENNESSEE