A NOTE ON STARSHAPED SETS, (k)-EXTREME POINTS AND THE HALF RAY PROPERTY

N. Stavrakas

Let S be a compact subset of $R^{d}, d \geqq 2 . \quad S$ is said to have the half-ray property if for each point x of the complement of S there exists a half line with x as vertex having empty intersection with S. It is proven that S is starshaped iff S has the half-ray property and the intersection of the stars of the ($d-2$)-extreme points is not empty.

Let $S \subset R^{d}$. We say $x \in S$ is a (k)-extreme point of S provided for every $k+1$ dimensional simplex $D \subset S, x \notin$ relint D where relint D denotes the interior of D relative to the $k+1$ dimensional space D generates. If $y \in S$ the symbol $S(y)$ is defined as $S(y)=\{z \mid z \in S$ and $[y z] \subset S\}$, where $[y z]$ denotes the closed line segment from y to z. The symbol $E(S)$ denotes the set of all ($d-2$)-extreme points of S. We say S is starshaped if $\operatorname{Ker} S \neq \varnothing$, where $\operatorname{Ker} S=\bigcap_{y \in S} S(y)$. In [1] the following is proved:

Theorem 1. Let $S \subset R^{d}, d \geqq 2$, be compact and starshaped. Then $\operatorname{Ker} S=\bigcap_{x \in E(S)} S(x)$.

Theorem 1 certainly yields information about the structure of a starshaped set but at the same time raises several questions. First, has Theorem 1 a converse? Specifically, given that $\bigcap_{x \in E(S)} S(x) \neq \varnothing$, under what hypothesis will S be starshaped? Secondly, can the hypothesis of starshaped be replaced with a seemingly more general hypothesis? We answer the latter question in Theorem 2.

Definition 1. Let $S \subset R^{d}$ and let S^{\sim} be the complement of S. We say S has the half-ray property if and only if for every $x \in S^{\sim}$ there exists a half line l with x as vertex such that $l \cap S=\varnothing$.

Theorem 2. Let $S \subset R^{d}, d \geqq 2$, be compact and suppose $\bigcap_{x \in E(S)} S(x) \neq \varnothing$. Then the following are equivalent:
(1) S has the half-ray property.
(2) $\operatorname{Ker} S=\bigcap_{x \in E(S)} S(x)$.

Since for any starshaped set S, S has the half-ray property and $\bigcap_{x \in E(S)} S(x) \neq \varnothing$, the implication $(1) \Rightarrow(2)$ generalizes Theorem 1. Further, the implication $(1) \Rightarrow(2)$ is a type of converse since we assume $\bigcap_{x \in E(S)} S(x)=\varnothing$ and obtain as a conclusion, rather than a hypothesis, that S is starshaped. As a corollary to Theorem 2,
we obtain a new characterization for starshaped sets.
Corollary 1. Let $S \subset R^{d}, d \geqq 2$, be compact. Then the following are equivalent:
(1) S is starshaped.
(2) $\bigcap_{x \in E(S)} S(x) \neq \varnothing$ and S has the half-ray property.
2. Proof of Theorem 2. In the proof the symbol || || denotes the Euclidean norm and the symbol $\left[a b_{\infty}\right.$) denotes the half line determined by the points a and b with a as vertex.
$(2) \Rightarrow(1)$. This follows immediately since any starshaped set has the half-ray property.
$(1) \Rightarrow(2)$ Let $y \in \bigcap_{x \in E(S)} S(x)$ and we show $y \in \operatorname{Ker} S$. Suppose $y \notin \operatorname{Ker} S$. Then there exists $z \in S$ such that $[y z] \not \subset S$. Let $a \in[y z] \sim S$. Without loss of generality, suppose a is the origin, O_{v}. By hypothesis there exists a half line $l=\left[0_{v} b_{\infty}\right)$ with $\left[0_{v} b_{\infty}\right) \cap S=\varnothing$. Let Q be the two dimensional subspace spanned by y and b. Now rotate l in Q so that the angle between l and $\left[0_{v} z_{\infty}\right.$) (which is already less than π) decreases. Cease the rotation when S is intersected and let the rotated half line be l^{*}. Note $l^{*} \cap S$ is compact and hence $\theta=$ $\sup \left\{\|x\| \mid x \in l^{*} \cap S\right\}$ exists. Let $x \in l^{*} \cap S$ be such that $\|x\|=\theta$. We claim $x \in E(S)$. Suppose not. Then $x \in \operatorname{relint} D$ where D is a $d-1$ dimensional simplex in S. Since $x \in D \cap Q, \operatorname{dim}(D \cap Q) \geqq 1$. For each $z \in D, z \neq x$ let $\left[z x_{\infty}\right) \cap D$ be $\left[z e_{z}\right]$ and note $x \in\left(z e_{z}\right)$. Let $w \in D \cap Q, w \neq x$. Note $\left[w e_{w}\right] \subset Q$. Now, if $\left[w e_{w}\right] \subset l^{*}$, we contradict the definition of x since $x \in\left(w e_{w}\right)$ and if $\left[w e_{w}\right] \not \subset l^{*}$, we contradict the definition of l^{*}. Thus, $x \in E(S)$. Then $[x y] \subset S$ and this contradicts the definition of l^{*}. Thus, $y \in \operatorname{Ker} S$ and we are done.

In conclusion, we remark that a triangle in E^{2} is an example of a nonstarshaped set for which $\bigcap_{x \in E(S)} S(x) \neq \varnothing$ and which does not have the half-ray property. The latter shows that in the implication (1) $\Rightarrow(2)$ of Theorem 2 the hypothesis of S having the half-ray property cannot be deleted.

The author wishes to thank the referee for many helpful suggestions.

Reference

1. J. W. Kenelly, W. R. Hare et. al., Convex components, extreme points, and the convex kernel, Proc. Amer. Math. Soc., 21 (1969), 83-87.

Received November 9, 1973.
University of North Carolina at Charlotte

