A NOTE ON THE ATIYAH-BOTT FIXED POINT FORMULA

L. M. Sibner and R. J. Sibner

Abstract

Let f be a holomorphic self map of a compact complex analytic manifold X. The differential of f commutes with $\bar{\partial}$ and, hence, induces an endomorphism of the $\overline{\bar{\delta}}$-complex of X. If f has isolated simple fixed points, the Lefschetz formula of Atiyah-Bott expresses the Lefschetz number of this endomorphism in terms of local data involving only the map f near the fixed points. For example, if X is a curve, this Lefschetz number is the sum of the residues of $(z-f(z))^{-1}$ at the fixed points.

Using a well-known technique of Atiyah-Bott for computing trace formulas, we shall, in this note, give a direct analytic derivation of the Lefschetz number as a residue formula. The formula is valid for holomorphic maps having isolated, but not necessarily simple fixed points.

1. Let E be the $\bar{\partial}$-complex of a compact complex analytic manifold X of dimension n.

$$
E: 0 \longrightarrow \Gamma\left(\Lambda^{0,0}\right) \xrightarrow{\bar{\partial}} \Gamma\left(\Lambda^{0,1}\right) \longrightarrow \cdots \xrightarrow{\partial} \Gamma\left(\Lambda^{0, n}\right) \longrightarrow 0 .
$$

Since E is elliptic, $H^{i}(X)=\operatorname{ker} \bar{\partial}_{i} / i m \bar{\partial}_{i-1}$ is finite dimensional. Denote by $T=\left\{T_{i}\right\}$ the endomorphism induced on E by the holomorphic map f, and by $H^{j} T$ the resulting endomorphism on $H^{i}(X)$.

The Lefschetz number of f is then defined by

$$
L(f)=\sum_{i=0}^{n}(-1)^{i} \operatorname{tr} H^{i} T
$$

and the finite dimensionality of the spaces $H^{i}(X)$ insures that this number is finite.

The Atiyah-Bott method of computing trace formulas reduces the problem of calculating $L(f)$ to that of finding a good parametrix for the $\bar{\partial}$-operator. In fact, let us suppose we can find operators $P_{i}: \Gamma\left(\Lambda^{0, i}\right) \rightarrow \Gamma\left(\Lambda^{0, i-1}\right), i=1, \cdots, n$, having the property that

$$
\begin{equation*}
P_{i+1} \bar{\partial}_{i}+\bar{\partial}_{i-1} P_{i}=I-S_{i} \tag{1}
\end{equation*}
$$

where $S_{i}: \Gamma\left(\Lambda^{0, i}\right) \rightarrow \Gamma\left(\Lambda^{0, i}\right)$ are integral operators with sufficiently smooth kernels. Observe that if $\omega \in \Gamma\left(\Lambda^{0, i}\right)$ is in the kernel of $\bar{\partial}_{i}$, then the left-hand side of (1) is a co-boundary. Hence, $H^{i} I-H^{i} S$ is the zero-endomorphism on homology. Similarly, since T commutes
with $\bar{\partial}$

$$
T_{i}\left(P_{i+1} \bar{\partial}_{i}+\bar{\partial}_{i-1} P_{i}\right)=T_{i} P_{i+1} \bar{\partial}_{i}+\bar{\partial}_{i-1} T_{i-1} P_{\imath}=T_{i}-T_{i} S_{\imath}
$$

so that $H^{i} T=H^{i} T S$. Therefore,

$$
\begin{equation*}
L(f)=\sum_{i=0}^{n}(-1)_{i} \operatorname{tr} H^{i}(T S) \tag{2}
\end{equation*}
$$

The generalized alternating sum formula of Atiyah-Bott says that the alternating sum of traces is the same on the chain level as on the homology level; that is,

$$
\begin{equation*}
L(f)=\sum_{i=0}^{n}(-1)^{i} t r H^{i} T S=\sum_{i=0}^{n}(-1)^{i} \operatorname{tr} T_{i} S_{i} \tag{3}
\end{equation*}
$$

provided the right-hand side is finite. This will be the case if the kernels of the operators S_{i} are sufficiently smooth along the graph of f.

To carry out the above procedure and evaluate $L(f)$ we make an explicit choice of the operators P_{i}.
2. The most natural way to choose a parametrix on X is to glue together the local fundamental solutions of the $\bar{\partial}$-operator using partitions of unity. Given any finite open covering $\left\{U_{\alpha}\right\}$ of X, there are, in each U_{α}, integral operators $Q_{\alpha, 2}: \Gamma\left(\Lambda^{0, i}\left(U_{\alpha}\right)\right) \rightarrow \Gamma\left(\Lambda^{0, i-1}\left(U_{\alpha}\right)\right)$ $i=1, \cdots, n$ such that for $\omega \in C_{0}^{\infty}\left(U_{\alpha}\right)$

$$
\begin{equation*}
\bar{\partial} Q_{\alpha, i}(\omega)=\omega-Q_{\alpha, i+1}(\bar{\partial} \omega) \tag{4a}
\end{equation*}
$$

$$
\begin{equation*}
\left(Q_{\alpha, i} \omega\right)\left(z^{\alpha}\right)=\int_{U_{\alpha}} \omega\left(\zeta^{\alpha}\right) \wedge \Omega_{i}\left(z^{\alpha}, \zeta^{\alpha}\right) \tag{4b}
\end{equation*}
$$

where $\Omega_{i}\left(z^{\alpha}, \zeta^{\alpha}\right) \in \Gamma\left(\Lambda^{0, i-1}\left(U_{\alpha}\right) \otimes \Lambda^{n, n-i}\left(U_{\alpha}\right)\right)$ is a C^{∞}-section off the diaganal and has an absolutely integrable singularity.

Let $\Omega\left(z^{\alpha}, \zeta^{\alpha}\right)=\sum_{i=1}^{n}(-1)^{i} \Omega_{i}\left(z^{\alpha}, \zeta^{\alpha}\right)$. This is an $(n, n-1)$ form on $U_{\alpha} \times U_{\alpha}$ satisfying

$$
\begin{equation*}
\bar{\partial} \Omega=0 \tag{4c}
\end{equation*}
$$

For a detailed study of Cauchy-Fantappié forms see Koppelman [2], Lieb [3], Øvrelid [4]. An explicit expression for Ω appears near the end of $\S 3$.

Suppose f has m isolated fixed points, P_{1}, \cdots, P_{m}. Let U_{k} be a coordinate neighborhood containing P_{k}, chosen so that the sets U_{k} are mutually disjoint. Let N_{k} be a neighborhood of P_{k}, sufficiently small so that $f^{-1}\left(N_{k}\right) \subset U_{k}$ (f is continuous and $f\left(P_{k}\right)=P_{k}$). The collection U_{1}, \cdots, U_{m} can be extended to a covering $\left\{U_{\alpha}\right\}$ and a partition of unity $\left\{\lambda_{\alpha}\right\}$ subordinate to this covering can be chosen such
that (for $k=1, \cdots, m$)
(i) $\operatorname{supp} \lambda_{k} \subset N_{k}$
(ii) $\lambda_{k}=1$ in a neighborhood of P_{k}.

Then supp $\lambda_{k} \circ f \subset f^{-1}\left(N_{k}\right) \subset U_{k}$ and $\lambda_{k} \circ f=1$ in some (other) neighborhood of P_{k}.

Now choose nonnegative functions $\sigma_{\alpha} \in C_{0}^{\infty}\left(U_{\alpha}\right)$ such that
(iii) $\sigma_{\alpha}=1$ on $\operatorname{supp} \lambda_{\alpha} \alpha \neq 1, \cdots, m$
(iv) $\sigma_{\alpha}=1$ on $\left\{\operatorname{supp} \lambda_{\alpha}\right\} \cup\left\{\operatorname{supp} \lambda_{\alpha} \circ f\right\} \alpha=1, \cdots, m$.

Define $P_{i}: \Gamma\left(\Lambda^{0, i}\right) \rightarrow \Gamma\left(\Lambda^{0, i-1}\right)$ by

$$
\begin{array}{ll}
P_{i} \omega & =\sum_{\alpha} \lambda_{\alpha} Q_{\alpha, i}\left(\alpha_{\alpha} \omega\right) \tag{5}\\
P_{0} \omega & =0
\end{array}
$$

From (4a) we obtain

$$
\begin{align*}
& \bar{\partial} P_{i} \omega+P_{i+1} \bar{\partial} \omega=\omega+\sum_{\alpha} \bar{\partial} \lambda_{\alpha} Q_{\alpha, i}\left(\sigma_{\alpha} \omega\right)-\sum_{\alpha} \lambda_{\alpha} Q_{\alpha, i+1}\left(\bar{\partial} \sigma_{\alpha} \wedge \omega\right) \tag{6}\\
& =\omega-S_{i} \omega \quad i=0, \cdots, n
\end{align*}
$$

where

$$
\begin{aligned}
& S_{i} \omega(z)=-\sum_{\alpha} \bar{\partial} \lambda_{\alpha}(z) \int_{U_{\alpha}} \sigma_{\alpha}(\zeta) \omega(\zeta) \wedge \Omega_{i}(z, \zeta) \\
& \quad+\sum_{\alpha} \lambda_{\alpha}(z) \int_{U_{\alpha}} \bar{\partial} \sigma_{\alpha}(\zeta) \wedge \omega(\zeta) \wedge \Omega_{i+1}(z, \zeta)
\end{aligned}
$$

(We consistently suppress the coordinate superscript when possible: writing, for example, $\sigma_{\alpha}(\zeta)$ for $\sigma_{\alpha}\left(\zeta^{\alpha}\right)$.)
3. Because of the construction of the covering and the patching functions, the kernel of S_{i} is smooth in a neighborhood of the graph of f. In fact, if $\alpha>m$, then f has no fixed points in U_{α} and therefore, $\zeta-f(\zeta)$ is bounded away from zero so that $\Omega_{i}(f(\zeta), \zeta)$ is a C^{∞}-function in U_{α}. Furthermore, in $U_{k}, k \leqq m$, we have chosen λ_{k} so that $\lambda_{k}(f(\zeta)) \equiv 1$ in a neighborhood of P_{k}. Then, $\bar{\partial} \lambda_{k}(f(\zeta))=0$ near $\zeta=f(\zeta)$. Also, since $\sigma_{k}(\zeta) \equiv 1$ on the support of $\lambda_{k}(f(\zeta))$, we have $\bar{\partial} \sigma_{\alpha}(\zeta)=0$ near $\zeta=f(\zeta)$. Thus, the kernel of S_{i} may be evaluated along the graph of f to obtain:

$$
\begin{aligned}
\sum_{0}^{n}(-1)^{i} \operatorname{tr}\left(T_{i} S_{i}\right)= & \sum_{\alpha}\left\{\sum_{1}^{n}(-1)^{i+1} \int_{U_{\alpha}} \bar{\partial} \lambda_{\alpha}(f(\zeta)) \wedge \sigma_{\alpha}(\zeta) \Omega_{i}(f(\zeta), \zeta)\right\} \\
& +\sum_{\alpha}\left\{\sum_{0}^{n-1}(-1)^{i} \int_{U_{\alpha}} \lambda_{\alpha}(f(\zeta)) \bar{\partial} \sigma_{\alpha}(\zeta) \wedge \Omega_{i+1}(f(\zeta), \zeta)\right\} \\
= & -\sum_{\alpha} \int_{U_{\alpha}} \bar{\partial}\left\{\lambda_{\alpha}(f(\zeta)) \sigma_{\alpha}(\zeta)\right\} \wedge \sum_{1}^{n}(-1)^{i} \Omega_{i}\left(f\left(\zeta^{\alpha}\right), \zeta^{\alpha}\right)
\end{aligned}
$$

from which

$$
\begin{equation*}
L(f)=-\sum_{\alpha} \int_{U_{\alpha}} \bar{\partial}\left\{\lambda_{\alpha}(f(\zeta)) \sigma_{\alpha}(\zeta)\right\} \wedge \Omega(f(\zeta), \zeta) \tag{7}
\end{equation*}
$$

In U_{α}, for $\alpha>\dot{m}, f$ has no fixed points. Using (4c), integrating by parts, and making use of the fact that σ_{α} has compact support in U_{α}, we have

$$
\begin{aligned}
\int_{U_{\alpha}} \bar{\partial}\left\{\lambda_{\alpha}(f(\zeta)) \sigma_{\alpha}(\zeta)\right\} \wedge \Omega(f(\zeta), \zeta) & =\int_{U_{\alpha}} \bar{\partial}\left\{\lambda_{\alpha}(f(\zeta)) \sigma_{\alpha}(\zeta) \Omega(f(\zeta), \zeta)\right\} \\
& =\int_{\partial U_{\alpha}} \lambda_{\alpha}(f(\zeta)) \sigma_{\alpha}(\zeta) \Omega(f(\zeta), \zeta) \equiv 0
\end{aligned}
$$

For $\alpha=k \leqq m$, let B_{k} be a ball around P_{k} on which $\lambda_{k}(f(\zeta)) \equiv 1$. Since $\sigma_{k}(\zeta) \equiv 1$ on the support of $\lambda_{k}(f(\zeta))$,

$$
\begin{align*}
L(f)=-\sum_{k=1}^{m} \int_{U_{k}-B_{k}} \bar{\partial}\left\{\lambda_{k}(f(\zeta)) \Omega(f(\zeta), \zeta)\right\} & =\sum_{k=1}^{m} \int_{\partial B_{k}} \lambda_{k}(f(\zeta)) \Omega(f(\zeta), \zeta) \tag{8}\\
& =\sum_{k=1}^{m} \int_{\partial B_{k}} \Omega(f(\zeta), \zeta)
\end{align*}
$$

Using local coordinates in B_{k}, let $g_{i}\left(\zeta^{k}\right)=\zeta_{i}^{k}-f_{i}\left(\zeta^{k}\right), i=1, \cdots, n$. Then, for $n>1$,

$$
\Omega\left(z^{k}, \zeta^{k}\right)=\frac{(n-1)!}{(2 \pi i)^{n}}\left|\zeta^{k}-z^{k}\right|^{-2 n} \sum_{i=1}^{n}(-1)^{i+1} \overline{\zeta_{i}^{k}-z_{i}^{k}} \bigwedge_{\substack{j=1 \\ j \neq i}}^{n} \overline{d \zeta_{j}^{k}}-\overline{d z_{j}^{k}} \bigwedge_{i=1}^{n} d \zeta_{l}^{k}
$$

and

$$
\begin{equation*}
L(f)=\frac{(n-1)!}{(2 \pi i)^{n}} \sum_{k=1}^{m} \int_{\partial B_{k}}\left(\Sigma\left|g_{i}^{k}\right|^{2}\right)^{-n} \sum_{i=1}^{n}(-1)^{i+1} \overline{g_{i}^{k}} \bigwedge_{\substack{j=1 \\ j \neq i}}^{n} \overline{d g_{j}^{k}} \bigwedge_{i=1}^{n} d \zeta_{l}^{k} \tag{9}
\end{equation*}
$$

which is the desired formula.
For $n=1, \Omega\left(z^{k}, \zeta^{k}\right)=(1 / 2 \pi i)\left(d \zeta^{k} / \zeta^{k}-z^{k}\right)$ and

$$
L(f)=\frac{1}{2 \pi i} \sum_{k=1}^{m} \int_{\partial B_{k}} \frac{d \zeta^{k}}{\zeta^{k}-f\left(\zeta^{k}\right)}=\sum_{f(\zeta)=\zeta} \operatorname{Res}(\zeta-f(\zeta))^{-1}
$$

Note. Other proofs of this result have recently been given by Toledo [5] and Tong [6] using different techniques.

References

1. M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes, I and II, Annals of Math., 86 (1967), 374-407; 88 (1968), 451-491.
2. Walter Koppelman, The Cauchy integral for differential forms; Bull. Amer. Math. Soc., 73 (1967), 554-556.
3. Ingo Lieb, Die Cauchy-Riemannschen Differentialgleichungen auf streng pseudokonvexen Gebieten, Math. Ann., 190 (1970), 6-44.
4. Nils Øvrelid, Integral representation formulas and L^{p}-estimates for the $\dot{\hat{\alpha}}$-equation, preprint.
5. Domingo Toledo, On the Atiyah-Bott formula for isolated fixed points, J. Differential Geometry, 8 (1973), 401-436.
6. Yue Lin L. Tong, de Rham's integrals and Lefschetz fixed point formula for $d^{\prime \prime}$ cohomology, Bull. Amer. Math. Soc., 78 (1972), 420-422.

Received May 29, 1973. The first author was supported in part by National Science Foundation grant GP-27960. The second author was supported in part by National Science Foundation grant GP-7952X3.

The Institute for Advanced Study
Current addresses: L. M. Sibner
Polytechnic Institute of New York
Brooklyn, NY 11201
R. J. Sibner

City University of New York
Brooklyn College
Brooklyn, NY 11210

