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ALMOST CHEBYSHEV SUBSPACES OF L'(y; E)

EDWARD ROZEMA

This paper studies the set of points which have a unique
best approximation from a set M in a Banach space X. The
ideal is for every element of X to have a unique best approx-
imation (M is then called Chebyshev). Unfortunately, finite
dimensional subspaces of L![0, 1] fail to have this property.
To remedy this problem and a similar situation in C(7T), A. L.
Garkavi introduced almost Chebyshev subspaces as those for
which the set of elements of X which do not have unique best
approximations from M is of the first category.

A class of subsets is determined, containing all finite dimen-
sional subspaces of L!(y; E) where £ is a non-atomic measure
and F is a Banach space, which, though not Chebyshev, are
almost Chebyshev.

Next characterizations are given of the finite dimensional
almost Chebyshev subspaces of L!(y; R) when g is arbitrary.
Finally, these results are applied to C(7T)*, the Banach space
of bounded Borel measures on a compact Hausdorff space 7,
determining the finite dimensional almost Chebyshev subspaces
of C(T)*. Scattered throughout the paper are results on the
existence (or nonexistence, as the case may be) of continuous
selections for the metric projections, including a characteri-
zation of the finite dimensional subspaces of C(T)* which
support lower semi-continuous metric projections.

1. Introduction and definitions. Let M be a nonempty subset
of a Banach space X. For any z in X, we say that y in M is a best
approximation to x from M if

| —yll =inf {[|& — m||; m in M} .

We are interested in examining the uniqueness of the best approx-
imation of functions in X = L'(; E), the Bochner integrable functions
from a measure space (2, 2, ¢ into a Banach space E. In particular,
for a given subset, M, we are interested in the set of points which
have a unique best approximation from M. It is well-known that
if M is a finite dimensional subspace of L'(¢; R) and £ is non-atomic,
then there always exist functions which have more than one best
approximation (see, e.g. [8]). The question arises whether this bad
behavior is, in some sense, pathological.

A. L. Garkavi, aware of this problem and a similar one in C(T),
defined a subset M of a Banach space X to be almost Chebyshev if
the set of points of X which do not have a unique best approximation
in M is of first category. (A set is, of course, Chebyshev if every
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point of X has a unique best approximation.) In [1], he showed that
there exist almost Chebyshev subspaces of any finite dimension in
every separable Banach space. In [2], he characterized the finite
dimensional almost Chebyshev subspaces of C(T'), where T is a compact
metric space. S. B. Stechkin [13] had previously shown that any
closed subset of a uniformly rotund Banach space is almost Chebyshev.
See also [11], in which we show that ¢, has no finite dimensional
almost Chebyshev subspaces except those which are actually Chebyshev.
The following lemma is very useful:

LEMMA A. Let X be a Banach space, M a norm-separable, weak-
sequentially boundedly compact subset of X. If the set of elements

which have a unique best approxvimation is dense, then M is almost
Chebyshev.

Garkavi proves this result [1, p. 171] under the assumption that
X is separable and M is a reflexive subspace of X, but a slight
modification of his argument yields Lemma A.

Another problem of best approximation that we treat has to do
with the continuity of the metric projection P, the set-valued map
which assigns to each 2 in X, the set Py(x) of best approximations
to @ from M. The map is called lower semi-continuous (l.s.c.) if, for
every open set U of X,

{x in X; Py(x) N U = O}

is open in X. Otherwise said, P, is l.s.c. iff, for every closed set K
of X,

{z in X; Py(x) C K}

is closed. A continuous selection for Py is a continuous map s: X— M
such that s(x) is in Py(x) for every x in X. It is clear that if M is
almost Chebyshev there is at most one continuous selection for the
metric projection.

We first show that there is no finite dimensional Chebyshev
subspace of L'(#; E) (# non-atomic). We then show that every finite
dimensional subspace is almost Chebyshev. We also show that no
such subspace has a continuous selection, generalizing a result of
Lazar, Wulbert, and Morris in L'(¢; R) ([7]). Finally, we characterize
the almost Chebyshev finite dimensional subspaces of L'(#; R) when
o is arbitrary. A few conclusions are also made concerning the space
of Borel measures on some compact Hausdorff set.

We define L'(#; E) in the following way: Let (2,23, ) be a
measure space and E a Banach space with norm denoted by |- |.
The vector space of all Bochner integrable functions is denoted by
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Fp; E); it is endowed with the topology induced by the semi-norm

1711 =, 176) o) -

The associated Hausdorff space is denoted by L'(y; E).

In order to realize the dual of L'(y; E), we define the space
L=(¢; £*) in the following manner: A function @: 2 — E* is called
weakly-measurable if, for any 2z in E, the real-valued function defined
on 2 by s {z, P(s)) is measurable. We denote by <~=(¢; E*) the
vector space of weakly-measurable functions from 2 into E for which
the essential supremum of | ®(s) | on 2 is bounded; this quantity defines
a semi-norm ‘on F=(¢: E*). Let L>(y#; E*) denote the associated
Hausdorff space. It is well-known that L'(x¢; E) and L>(¢; E*) are
complete.

In order to identify L=(¢t; E*) with L'(#; E)* we proceed as
follows: For f in L E) and @ in L=(y; E*) we define a duality
<+, °> by

2> = | F6), P drs) -

For fixed ®#, the map from L'(¢; E) into R defined by fi—{f, ) is
a continuous linear functional. The norm of this functional can be
shown to be the same as that of . Hence we have an isometry of
L=(y¢; E*) into L'(¢; E)*. When p is o-finite, it can be shown that,
for any Banach space E, the map given above is onto [3, p. 93]. For
this reason, in the remainder of this paper, we will assume that
L B)* = L1 B*).

For any function f on 2, set Z(f) = {s in 2; f(s) = 0}, supp (f) =
Z(f);; if ® in L=(¢; E*), then

S(P) ={s in 2 |P(s)[ <[l Pll} -

If fis in LY (¢ E) and @ is in L=(y¢; E*), we define f, by fu(s) =
{f(s), (s)). (Note that f, is in L'(¢; R).) If B is in X, then J,
denotes the characteristic function of B. For any Banach space X,
let S(X) = {x in X;||2|| =1} and @ be its zero element.

2. Non-Chebyshev subsets of L'(#; E). The concept of a thin
subset of L'(¢; R) was introduced by J. F. C. Kingman and A. P.
Robertson in their study of Lyapunov’s theorem [4]. This idea
leads us to a large class of sets in L'(#; E) which fail to be Chebyshev.
We begin with the definition.

DEFINITION. A set M c L'Y(#; R) is said to be thin if, for every
S in ¥ with (S) > 0, there exists a nonzero ¢ in M* whose support
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is in S. The set of all such ¢ will be denoted by M*(S).

REMARKS. The closed linear span of M is thin iff M is thin,
and any subset of a thin set is thin. If there is an atom A in Y
on which some element g in M is nonzero, it is easy to see that M*(A)
is empty; consequently, in the remainder of this section, (2, X, t) will
be assumed non-atomic.

ExaMPLE 1. Any subset of a finite dimensional subspace M of
L(¢; R) is thin. This example was given and proved by Kingman
and Robertson.

ExamMpPLE 2. Kingman and Robertson give the following example
of an infinite dimensional, thin subspace of L‘(y; R): Let 2 be par-
titioned into a disjoint sequence of sets S, of positive measure and
let M be the subset of L'(#4 R) of functions constant on each S,.
Then M is thin.

ExAMPLE 3. Since we are trying to connect thinness with approx-
imation properties, it may be worthwhile to note that the above
example leads us to a thin, closed, non-proximinal subspace: Since
M in the above is not reflexive, there exists a non-proximinal hyper-
plane M, of M. Clearly M, is thin and closed.

The importance of thin subspaces is highlighted in the following
version of the Lyapunov theorem.

THEOREM A (Kingman-Robertson). If M s thin, then the map
from X into RY defined by Sn—>(g fday fin M) has convexr and
N
compact range in RY.

In order to make maximum use of this theorem, we introduce
another related property in L'(¢4; E). It is clear that the definition
of thin would be applicable in L'(¢#; E), but we find the following
more useful.

DEFINITION. A subset M of L'(y; F) is called pseudo-thin if there
exist distinet f and ¢ in M and ® in S(L=(¢; E*)) such that

(i) <f—9, 9 =If—gll and

(ii) M, = {hy; h in M} is a thin subset of L'(#; R).

It is not difficult to verify the next example.

EXAMPLE 4. Any thin set M of L'(#; R) with more than one
point is pseudo-thin.

It is also easy to give an example of a pseudo-thin set which is
not thin.
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ExAMPLE 5. Let S be a measurable subset of 2 such that
HS)> 0 and #(S°) > 0. Let L'(S) be the set of all functions in
L'(¢#; R) whose support is in S, and let N be a thin subspace of
LY(S). Finally, set M = N + L'(S°). Then M*(S°) = {f} so that M is
not thin, but it is pseudo-thin (for f;, 6 in N and @ = sgnjf, satisfy
the conditions of the definition).

ExaMpPLE 6. If M is a finite dimensional subspace of L'(y; E),
then M is pseudo-thin.

Proof. Let f be a nonzero element of M and @ be in S(L=(¢; E*))
with {f, #> = || f|l (here g of the definition is zero). It is clear
than M, is finite dimensional and, therefore, thin. Consequently, M
is pseudo-thin.

ExAMPLE 4. Let X be a subspace of E and suppose (2) = 1.
Define M to be the set of all functions f: 2 — E such that f(s) =«
for some # in X and all s in 2. Then M is pseudo-thin.

Proof. For fin M, pick z* in S(E*) such that {f(s), *> = || z]l.
Then @ in L=(#; E*) defined by ®(s) = #* is such that {f, @) = || ||
(again, g of the definition is 6). Since M, is just the set of constants
in L'(#; R), it is thin. Thus M is pseudo-thin.

We can now prove our major negative result. The ideas are
closely related to those of R. R. Phelps [8] (and his referee, Henry
Dye) who proved that finite dimensional subspaces of L'(; R) (2 non-
atomic, of course) fail to be Chebyshev. The result we give enlarges
both the type of subset treated and the range of the functions
involved.

THEOREM 2.1. Any pseudo-thin subset M of L'(; E) fails to be
Chebyshev.

Proof. Pick f, g, and @ as in the definition of pseudo-thin. Since
M, is thin, by Theorem A there is a B in ¥ with

SB (s), Pls)y = % Sg(h(s), P(s)> for all h in M.

Define @ = )3 — X5c and k = a(f — g) + f. Note that a® is in S(M*).
Also, since {f — g,?> = || f — gll, we may conclude that
(= 9)s), PN =1(f — 9s) ] a.e.

We now prove that {f, g} is contained in P,(k). First, let k be in
M. Then
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[k — Rl = | {(k — h)(s), a(s)P(s)>
<k(s), als)P(s))

S
S
g(a(S)(f — 9)(s) — [(s), a(s)P(s)y
S

Il

(F = 9)s), P(s)

=f—-qll.
When we have shown that || f — gl = ||k — F|| =k — g]| we will,
therefore, be done. But clearly ||k — f|| =||f — ¢gll. As for g, we

have
Ik =gl =lla(f —0) + (f — 9l
=2 SBIf ~g|
—2| « — 9, 26
= |« = 9@, 2 =117 = g1l

3. On EF subspaces. Frequently proofs of properties concerning
finite dimensional subspaces require only that the sets Py(f) be finite
dimensional (and nonempty). For this reason the following definition
has been made: A subset M of a normed linear space X is called
an EF subset if Py(f) is nonempty and finite dimensional for each f
in X. We now show that every thin, infinite dimensional subspace
of L'(y; R) fails to be EF. We begin with a general result (in the
spirit of Ivan Singer’s characterizations of k-Chebyshev sets, i.e., sets
such that P,(f) is nonempty and of dimension <k [12, p. 126]) and
apply it to L(#; R).

THEOREM 3.1. Let M be a subset of a mormed linear space X.
If M is an EF set, then (i) M is proximinal and (i) there does not
exist @ ¢ in S(M*), an fin X, and {9;¢ =1,2, ---} linearly inde-
pendent elements in M such that {f,®> =|fll=Ilf—gl,7=1,
2, ---. If M is a subspace, then the converse holds.

’

Proof. Suppose M is a subset of X and there exist elements
f, P 0,0, -+, as above. Let g be in M. Then ||f —gl|l = {f —
g, ?> = {f, ®> = || f|| which shows {g.} is contained in Py(f), so that
M is not EF.

On the other hand, suppose M is a proximinal subspace which is
not EF. Then there is an fin X such that ¢ is in Py(f) and Py(f)
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is not finite dimensional, say {g9.;7 =1, 2, ---} is an infinite set of
linearly independent elements of P,(f). By the Hahn-Banach theorem,
there ‘exists a ® in S(M*) such that <f, ®> =||f|l =||f — 9] for
all 4.

THEOREM 3.2. Let M be a subspace of L'(¢; R). Then M is EF
i M is proximinal and there does mot exist a ® in S(L~(¢; R))
and linearly independent elements {g;;1 =1,2, ---} in M such that
5 Pgdt=0 for all g in M, and |9(s)| =1 almost everywhere on Z(g,)°
for each <.

Proof. Suppose the conditions fail to hold; we show that M
is not EF. By multiplying ¢, by (2*|/g:]])™", if necessary, we may
assume that ||g;|| =27". Define f= @3 |g;|. Then [|f|| < T |g:]| < o,
so fis in LY(¢; R). It is relatively easy to verify the violation of
(ii) in the previous theorem. Hence M is not EF. Conversely suppose
M is not EF, but is proximinal. Then by Theorem 3.1, there exists
fin L' R), # in L=(¢ R), # in S(M*), and {g,} linearly independent
elements of M such that (f,?) =||fll=1||f — g:.ll. So

[ = @9 = 17 - 926

and
[17@1 = 7626 .
Consequently, up to a set of measure zero,
{s in & |P(s)| =1} D Z(g.)* U Z(f — 9:)° > Z(9.)°
which is what we wanted to show.

COROLLARY 3.1. If M is a thin and infinite dimenstonal subspace
of L*(¢; R), then M is not EF.

Proof. Since M is thin, there exists a subset B of X such that
Lfdp = 1/2 ngd,u for all fin M. Let ® = %5 — %s-. Then @ is in

S(M*) and | p(s)| = La.e. on Z(f) for all fin M. We may, therefore,
apply the previous result.

4. Almost Chebyshev subspaces of L'(¢#; E). We are going
to prove in this section that every finite dimensional subspace of
L'(¢#; E) (¢ non-atomic) is almost Chebyshev. In order to do this,
we utilize a characterization of best approximations due to B. Kripke
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and T. J. Rivlin [5] formulatd originally in L'(#; C). To formulate
this result in the more general setting, we write, for 2 and y in E,

—EmllE iyl =zl
d(x,y)—ltllnol , ’

the right-hand derivative of the norm at x in the direction y (since
the norm is a convex function, the existence of this limit is guaran-
teed). If f and g are in L'(¢; E), we define d(f, 9)(s) = d(f(s), 9(s)),

| F16s) =1f(s)|, and R(f) = Z(f)°. We may now state the generalized
version of Kripke and Rivlin’s result.

THEOREM 4.1. Let M be a subset of L'y E) where [ is an
arbitrary measure and E is any Banach space. Consider the following
statements for f in L\(; E):

[1] 9o in Py(f)

[2] ~SR(f—ao) Adf — 9w 9) = S lgl

Z(f—90)

for all g in g, — M.

We have the following conclusions:

A. For any set M, [2] implies [1]; if M is convex, then [2] is
equivalent to [1].

B. For any set M, if strict inequality holds in [2] for all nonzero
g in g, — M, then {g} = P,(f).

C. Suppose M is convex, ¢, and g in P,(f). Then

Af — 9 9o — 9) = lg — gl -

SR(f—oo) Sz(f*go)

The proof is similar to the one in [5], so we will omit it. We
wish to write lequation [2] in a simpler form for smooth Banach
spaces E. In this case, it is well-known that for « in E, x # 0, if
0(x) denotes the unique element of norm 1 in E* such that <=, d(x)) =
|x], then d(z, y) = {y, d(x)). For f in L'(#; E), choose ¢ of norm 1
in L>(¢; E*) for which {f, ®) = || f|l.- It is easy to see that this
implies {f(s), P(s)) = | £(s)| almost everywhere, i.e., P(s) = 9(f(s)) for
almost all s in 2 with f(s) #0. We may therefore define 0f = PXsuppis)
as the unique element of norm 1 in L=(%; E*) such that {f, of) = || f |
and supp (3) = supp (f).

COROLLARY 4.1. If ¢ 4s an arbitrary measure, E a smooth
Banach space, and M o convew subset of L'(¢; E), then the following
are equivalent for f in L' (¢ E):
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[1] 9, 1 Py(f)

|, @0 ey =, 196)]
for every g in g, — M.

[2]

If strict inequality holds in [2] for every nonzero element of g, — M,
then {g,} = Py(f).

If E=C, then df(2) =sgn f(z) = f(2)/| f(2)| and we recover the
result proved by Kripke and Rivlin.

We have found the following idea of some use in our study.

DEFINITION. A set M in L'(¢ E) is called swvelte if for every
0 > 0, there exists a measurable subset B of 2 for which 0 < ¢(B) <

and SBlgl > 0 for every nonzero element g in the linear span of M.

It was first revealed in [7] that finite dimensional subspaces of
L'(¢#; R) are svelte whenever p is non-atomic. Their (inductive)
proof of this fact may be used without any changes for finite dimen-
sional subspaces of L'(; F) when, again, ¢ is non-atomic. Another
example in non-atomic spaces are subspaces all of whose nonzero
elements have the same support (e.g., smooth subspaces of L'(; R)
as shown in [14, p. 385]). We also mention that the Kingman-
Robertson example of an infinite dimensional thin subspace of L'(%; R)
(Example 2) can easily be shown to be svelte. As with thin subsets,
any subset of a svelte set is svelte.

LeMMA 4.1. Let ¢ and E be arbitrary and M a subset of
L (#; E). Suppose B is in X, f s in L'( E), and g, is in Py(f).
Define f* = fipe + 9Xs. Then g€ Py(f*) C Py(f).

Proof. For any g in M,

17 =gl ={, 17 =01 ={ 17 -al
<|1r-a1=1 17 -al
=\ 1r=g1+[{10-a1-{17-0]
=117 = gll.

Hence g, is in Py(f*). If g is not in Py(f), then the first inequality
is strict, so Pu(f*) < Py(f).

B

LEMMA 4.2, Let ¢ and E be arbitrary, M a svelte subset of
L' E), f in L'(¢t; E), and g, in Py(f). For every € >0, there exists
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an f. such that || f —f. || <e, 9, € Pu(f.) < Py(f), and Sz(f_g) lg—g,| >0
for all g im M, g = g,. ’

Proof. Using the absolute continuity of integrals, we have
for every >0, a &> 0 such that, if #(B) < 5, then g |F = g,] <e.

Choose B as in the definition of svelte for the set g, — M; define f.
as f* in the above lemma. Then B C {sc 2;f.(s) = g,(s)} a.e.; hence

[, le—al>0. alollf=£ll={|f—al<ec Therestof the
Z(fe—1, B
lemma,0 follows from the lemma above.

LEMMA 4.3. Let M be a non-atomic measure and E an arbitrary
Banach space. Let M be a finite dimensional convex subset of
L E), f in L' (4 E), and g, in Py(f). Then, for every e > 0, there
exists an f* in L't E) such that || f — f* || <e and {9} = Pu(f™).

Proof. Since the subset hypothesized are svelte, by Lemma 4.2
we may assume

(1) lg —g,] >0

Sz(f—go)
for all g in g, — M, g # g,. Since P,(f) is convex and finite dimen-
sional, the set P,(f) and its relative interior have the same dimension,
say m. (See, for example, [10, Theorem 6.2, p. 45].) If m = 0, then
{g9:} = Py(f) and we are done. Let {g9,;¢ =1, 2, ---} be dense in P,(f).
From Theorem 4.1.C and the assumption (1) above, it follows that
2, ={s in 2; f(s) # 9,(s) and d((f — 9.)(s), (9, — 9:)(s)) < 0} has positive
measure for each ¢ =1, 2, ---. By the absolute continuity of integrals,
pick ¢ > 0 so that p(B) < ¢ implies that

SBlf—gol<€m‘l.

Now choose B, 2, with 0 < /(B,) <¢27". Set B, =U B,; then
tB,) < 9. Define f; = )zt + )5, for ¢ = %,1,2, ... From Lemma
4.1, it follows that g,€ Py(f.) C Pu(f)) © Py(f) for 1 =1,2, --., and
If — f«ll <e. But from Theorem 4.1.A and the definition of B, it
follows that

_S )d(fz — Yo, 9o — 94)
R(f;—4g¢

—-[0,, ar-ga-a-{ dr-a0u-0]



ALMOST CHEBYSHEV SUBSPACES OF Li(y; E) 595

=Sz<f—g0)lg°—g"|+ Lid(f“go, go_gi)<s 19 — 9:]

Z(f—g¢p)

<

- SZ(f,;—go)

It follows, therefore, from Theorem 4.1.C that g, ¢ Py(f;). Hence
9:.¢ Py(f*)fori =1,2, --.. Since Py(f*) © Py(f) and we have shown
that P,(f*) contains no relatively open subsets of Py(f), we may
conclude that dim P,(f*) < dim P,(f). By applying the process given
above to f* we may find an f** such that

Lf* = 1 <em™, goe Pu(f**) € Pu(f™)

190 — 9] .

and
dim P,(f**) < dim Py(f*) < dim Py(f) .

After at most m steps, therefore, we obtain a point, say f,, so that
9.€ Py(f), 1 — fill <e, and dim P,(f;) = 0. We conclude that {g,} =
Py(f,) and we are finished.

It i1s now easy to deduce the main theorems.

THEOREM 4.1. Any finite dimensional convex subset of L'(tt; E)
18 almost Chebyshev, provided that pt is nmon-atomic.

Proof. The previous lemma shows that the set of elements with
a unique best approximation is dense. Now apply Lemma A of the
introduction.

THEOREM 4.2. The metric projection onto a finite dimensional
non-singleton convex subset of L'(¢t; E) admits no continuous selections
if ¢ is mon-atomic.

Proof. Let feL'(#; E) have two best approximations, say g,
and ¢ (such points exist by Theorem 2.1). Then by Lemma 4.3,
there exist two sequences, {f,} and {h,}, converging to f for which
{90} = Py(f.) and {g;} = Py(h,). Hence no selection can be continuous.

If we are willing to assume that E is a smooth Banach space,
then it is possible to acheive somewhat stronger results. In particular,
in Lemma 4.3, we need only assume that M is convex, svelte and
quasi-thin (i.e., for every f e L'(t E), M,; = {9,5; g € M} is thin, where
9a7(s) = <9(s), df(s)>. If E = R, then any thin set is quasi-thin).
Modifications of the two theorems are then made accordingly.

We now give a necessary condition for the lower semi-continuity
of the metric projections onto subspaces of L'(#; E) where both z
and F are arbitrary. This result is necessarily only a partial generali-
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zation of the result in [7] (which presents necessary and sufficient
conditions in L'(#4; R)) because, in the presence of an atom, the nature
of the range space predominates. Our result is stronger, however,
in that M is not assumed to be finite dimensional.

If M is a subspace of L'(#; E) we denote by F(M) (or F when
no confusion can arise) the subspace of M consisting of functions
whose support is a finite union of atoms. Let M’ be the set of all
x€ X such that 6 e Py(x).

THEOREM 4.3. Let E be a Banach space, and let tt satisfy, as
always, L'(¢; E)* = L>(¢; E*). Suppose M 1s a proviminal, non-
Chebyshev subspace of L't E) such that F(M) = {0}. Then Py is
not 1.s.c.

Proof. Since M is proximinal, convex, and non-Chebyshev, there
exists an fe L'(¢; E) such that Py(f) contains a line segment. By
translating the midpoint of this line segment to 4, if necessary, we
may assume that fe M’ and there is a nonzero g,€ M with g, and
—¢, in P,(f). By the Hahn-Banach theorem there is a ®e S(M*)
with {f, ) = || f||. Since g, ¢ F, there exists a sequence of disjoint
measurable subsets B, Csupp (g,) such that p(B;) >0, 352 || f1s; /| — 0
and {g,(s), #(s)) has constant sign on B,. For any ¢ satisfying 0 <
t <1, we have

1F = to.ll = 11711 = | <£ ) = o), 20

which, in turn, implies
{f(8) = tgu(s), P(s)> = | f(s) — tgu(s) |

for almost all se 2. By passing to a subsequence, if necessary, we
may assume the sign of {g.(s), P(s)) is either (a) =0 on each B, or
(b) <0 on each B,. If (b) holds we replace g, by —g. so that we
may assume (a). Define 4, = Uz B; and f; = fyx.. Then f;—f and,
by Lemma 4.1, we see that

Py(f)D - D Py(fu)2 -+ 2 {0} .

We claim Py(f)) N {g; 9 =g, 0 <t <1} = @ so that Pu(f) & Pu(f)-
If this is so, then P,(f) is a closed set such that D = {ve L(#; E);
Py(x) © Py(£)} is not closed (since f,e D for ¢ =1,2, .-+, but f¢D),
whence P, is not l.s.c. So we must prove the claim. Put 4 = A4,
and 0 <t <1. Then
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1= tall = 1r=ta] + | Ita]

[ <76 — to), 26> + | 1t

= [ @ 26 - [[, - | ¢, 2] + | 1ta.l
§
)

FE, 2 + | <o), 2@ + ¢t | 4]
GORZO

5. Almost Chebyshev subspaces of L'(¢; R). For the purposes
of comparison, and because we do use it a few times, let us state the
result of [7]. Recall that S(®) = {se 2; |2(s)| < || P|]}-

THEOREM 5.1. (Lazar, Wulbert, and Morris). Let M be an n-
dimensional subspace of L'(t4; R). The metric projection onto M 1is
l.s.c. iff there does mot exist a nonzero ge M and nonzero @ S(M*)
satisfying (i) S(®) is purely atomic and contains at most n—1 atoms,
(i) Z(9) > S(®), and (iii) g¢ F.

We may restate this result as follows:

COROLLARY 5.1. A finite dimensional subspace M of L'(#; R)
supports a l.s.c. metric projection 1ff Py(f) CF for every fe M°.

This corollary is for comparison purposes only, and so we shall
not prove it (though it follows rather easily from the theorem).

The first characterization of almost Chebyshev subspaces of
L'(¢#; R) is similar in style to the above corollary. It reduces the
search for an open set to looking for a single element.

THEOREM 5.2. A finite dimensional subspace M of L't R) fails
to be almost Chebyshev iff there exists an element f,€ M’ with more
than one best approximation such that Py(f,) C F(M).

Proof. First suppose that M is almost Chebyshev and f, is as
in the theorem. Then there exists f,—f, and z,€ M such that
{x.} = Py(f,) for n = 1. Since {z,} is a bounded subset of M we may
assume that z,— 2, and x,€ Py(f,). Since z,€ M, it follows that
Py(fu — %) = Py(fs) — v, C F(M) for n =0,1,2, ---. Thus Py(f. —
%) = Pp(f,, — x,) for n =0, 1,2, ---. However, by Theorem 5.1, P,
is l.s.c. Since each set P.(f, — «,) is a single point for n =1, it
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follows that the limit set P,(f, — x,) is also a single point. But
Po(fy — x) = Py(f, — #,) which contains more than one point by
hypothesis.

To prove the converse, assume that for each fe M’ either P,(f)
is a single point or there is a g€ Py(f) whose support does not consist
of a finite number of atoms. We will show that M is almost Chebyshev.
It is sufficient to show that for any f e MY’ there exist f,e L', f.—f
such that Py(f,) is a single point. If P,(f) is a single point, we are
done. Otherwise, there is a g,€ Py(f) which has support not con-
sisting of a finite number of atoms. Hence either {s€ 2; g,(s) > 0}
or {se2; g,(s) < 0} has this same property; call the relevant set C.
Using the absolute continuity of the integral and the fact that Py(f)
has finite dimension, say ¢, we can find, for any ¢ > 0, a set BcC

for whichS |f —g]l <eq™ for all ge Py(f). It is an easy set-
theoretic aréument that there exists a subset 4 of B, #(4)>0, for
which |f—rg,| is not a constant for 0 <» <1. Hence 9(g9) =
) | f— 3[ is a convex function which attains its maximum only on

the relative boundary of P,(f) (see [10, p. 342]). Let g,€ Py(f) be
a point where the maximum of @ is attained. Define f* = f) 4 + ¢ X4
Then || f— f*|l <eq ' and g, € Py(f*) C Py(f) by Lemma 4.1. Let g
be in the relative interior of P,(f). The fact that @(g) < &(g,) can
then by used to show that || /™ — g.|| <||f* — ¢l||. Hence P,(f*) is
contained in the relative boundary of P,(f). Since P,(f*) is convex,
it follows that the dimension of P,(f*) < g. Continuing in this way
we find a point, say f,, such that ||f— £, ]| <e and dim Py(f;) = 0.
Thus P,(f,) consists of a single point and we are done.

The next characterization, though more complicated than the
former, has the virtue of being more quantitative in character (like
Theorem 5.1) and hence more readily applied to particular cases.

THEOREM 5.3. An n-dimensional subspace M of L't R) fails
to be almost Chebyshev iff there exists a e S(M') and a monzero
g.€ F(M) such that () S(®) s purely atomic and contains at most
n — 1 atoms, (ii) Z(g,) contains S(®), and (iii) for every ge M\F, if
Z(g) contains S(p), then

MZ(9)) N {s; g(s)P(s) > 0}) > 0.

Proof. Suppose there exists ¢ and ¢, as in the theorem. Set
f=olg.|; so fe L' and it can be shown, as in Theorem 2.1, that ¢
and g, are in Py(f). If we can show P,(f) C F then, by Theorem 5.2,
we will be finished. Suppose ge Py (f), ¢ F. If n(S(®)n Z(g)°) >0,
then
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1F=gli={ Ielal-gl
- gsw)lgl + SS(,{,)J@[QII — gl
> st)l’;’llg[ + st)cl¢2lgll - 99 |

gg lyll—g Pg
2 Q2

:S lg1|
2

=[£I
and so g¢ Py(f). Thus Z(g9) contains S(»). Note that

S Hgll—svgl>§ l9.] — g
2 Q

for, if equality, then |g,| — @9 =0 or |g,| = @g a.e. So, #(Z(g,) N
{s; (s)g(s) < 0}) = 0, contrary to hypothesis (iii). We therefore find

that
I =gl = 1210l - gl

=Sgllgll—¢gl
>§lgll—g¢g

=1l
so that g¢ Py(f).

To prove the converse, suppose M is not almost Chebyshev. Then
there is an element f in M’ with more than one best approximation
such that Py(f) C F. Pick g,€ Py(f), 9, 0, and define f, = fYsupptay-
By Lemma 4.1 both 6 and g, are in Py(f,) which is in P,(f) which
is in F, and Z(f,) D Z(g9,). Now we alter f, so that the zeros will be
the same. Since supp (f,) consists of a finite number of atoms, we
may choose 7, 0 < r < 1, so that

r max |[g(¢)| < inf | fi(?)].
iesupp(fy) 1esupp(fg)

Define f* = f, — rg, and g, = —rg,. Then
(a) Fo Py(f*)> {0, 91}
(b) (1) = Zg,)

Now via an argument of Phelps [9], there exists # € S(M*), such that
S 9 =1l F*ll, S(p) < Z(g,), and S(p) consists of at most n — 1
atoms. Thus we have @ and ¢, as in (i) and (ii). It remains to prove
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(iii). Suppose ge M\F and S(®)  Z(g). Since {f* ®) = | f*| and
[lell =1 it follows that f*(s)@(s) =|sf*(s)|; so S(®) < Z(f*) and
S(p) c Z(f* — rg) for all real ». If (iii) fails to hold, then Z(g,) c
{se 2; g(s)P(s) < 0}. Choose » > 0 so small that
r max |g(1)| < inf [f*(9)]|.
2esupp(f*; 1esupp(f*)

Since Z(f*) = Z(g,), then r9(s)g(s) <0 whenever f*(s) =0; thus
| F(s)| = ro(s)g(s) for all se 2. Thus

Lr* = rgll = {17 = 7]

lpl1f* —rgl

Il

|pf* — rpg |

1l

W —S%Dg

S
|
[11771 = roa|
S
|

A
=1

Hence rge P,(f*) ¢ F which contradicts the assumption that ge M\F.
Thus (iii) holds, and we are finished.

For non-atomic measure, we were also able to conclude that there
were no continuous selections for the metric projection. Lazar [6],
however, has characterized those onedimensional subspaces of I' which
have continuous selections, and we therefore can exhibit an almost
Chebyshev, non-Chebyshev subspace of ' which has a continuous
selection; namely, the span of (1/2,1/4,1/8, ---). We know this is
almost Chebyshev by the above theorem; it fails to be Chebyshev
by a theorem of Phelps [9, Theorem 1] and Lazar’s result implies it
has a continuous selection. We now know, of course, that there is at
most one continuous selection.

The previous theorem can be used to verify the following ex-
amples in [I'. Let ¢'=(,1,0,0,0,---), ¢°=(1,1,1/2,1/4,1/8, ---),
¢=0(@,1/2,1/4,1/8, --.), and ¢*=(1, —1,1/2,1/4, ---). Then (a) M =
span of {g*, ¢°} is not almost Chebyshev, (b) M = span of {g', ¢} is
almost Chebyshev but not Chebyshev, and (¢) M = span of {g', g%} is
Chebyshev. We are also able to give an example of a three dimen-
sional subspace of I' which is neither almost Chebyshev nor able to
support a l.s.c. metric projection. Let ¢*=(0,1,1,0,0, ---), g* =
@/2,1,1,0,---),and ¢* = (1, 1/4,1/8, —1, 1, 1/16,1/32, ---, 1/2"72 ...),

ll
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Let us sketch a proof of this last example: Apply Theorem 5.1 to
show that M = span of {g’, g%, ¢°} does not have a l.s.c. metric pro-
jection: Let ¢ =(0, —1,1,1, ---) and g = 2¢g* — ¢°. A simple check
verifies the conditions of Theorem 5.1. To show M is not almost
Chebyshev, let ® be as above and consider g'. Clearly g'¢ F, p € S(M*)
and (i) and (ii) of Theorem 5.8 hold. For (iii), suppose g€ M\F and
S(@) c Z(g). So ¢g(1) =0. We want to show Z(g") N {s; 9(s)p(s) >
0} = @. But Z(g") ={1,4,5, ---} and {s: g(s)P(s) < 0} contains 4 or 5
but not both. Thus M fails to be almost Chebyshev.

6. Applications to C(T)*. We will now apply the results of
the previous section on almost Chebyshev subspaces and l.s.c. metric
projections to subspaces of C(T)* where T is a compact Hausdorff
space. We will identify C(T)* with the Banach space of regular
Borel measures on T. The set M will be an n-dimensional subspace
genereated by p,, ---, #t,. For ve C(T)*, put g, = |y |+ ||+ -+ +
|t,| and let J, be the isometry of L'(o,; R) into C(T)* defined by

(LNE) = S fdo,. Note that J, maps onto the space to measures \
E

absolutely continuous with respect to o, (written A <0,). If A <o,
then J;'(\) = d\/do,, the Radon-Nykodym derivative of )\ with respect
to 0,. Now set M, = [du./do,, +--, dtt,/do,]. Many of the ideas used
in this section were used by R. R. Phelps in [9].

LEMMA 6.1. M c C(T)* is almost Chebyshev iff M, c L'(o,; R) 1is
almost Chebyshev for every ve C(T)*.

Proof. Suppose M fails to be almost Chebyshev. Let U be an
open, nonempty, subset of C(T)* all of whose elements have more
than one best approximation. Let ve U. Clearly J;(U) is an open,
nonempty subset of L'(g,; R) each element of which has more than
one best approximation out of MM,.

Conversely, suppose M, is not almost Chebyshev for some v in
C(T)*. For each ne C(T)*, let » = A, + N, be the Lebesgue decom-
position of A with respect to o, (so \, € ¢, and \, L g,); then ||1]| =
[INa]] + [|Xs]]. Suppose U is an open nonempty subset of Li(o,; R)
each element of which has more than one best approximation. Then
Ne C(T)*; J;'(v) € U} is a nonempty open subset of C(T)* each ele-
ment of which has more than one best approximation.

This leads us to the following theorem.

THEOREM 6.1. An n-dimensional subspace M of C(T)* fails to
be almost Chebyshev iff there exists a Borel measurable function @ on
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T and a nonzero measure tt,€ M such that (i) Supp(t,) consists of
finite number of atoms A, --+, A, () |P@¢)| =1 for every t in T,

(iii) S(®) contains at most n — 1 points t,, «++, tn, (iv) S ody =0 for
T

all e M, (v) |t (S(®)) =0, and (vi) if e M has support not con-
sisting of a finite number of atoms and | ]| (S(®)) =0, then there is

a Borel set Ec T\supp (1) with § pd > 0.
E

Before proving this rather formidable-looking theorem, we present
a rather brief corollary.

COROLLARY. If pt,, «--, tt, are all non-atomic, then M = span of
{tt,, -, .} is almost Chebyshev.

Proof. Since no nonzero measure in M can satisfy (i) of the above
theorem, it follows that M is almost Chebyshev.

REMARK. Corollary 2 of [9] teaches us that such subspaces are
not Chebyshev.

Proof of Theorem 6.1. Suppose that M is not almost Chebyshev.
By the lemma, there exists a ve C(T)* for which M, is a non-almost
Chebyshev subspace of L'o,; R). By Theorem 5.3, there exists a
@e L~(0,; R) and a ¢, in M,, g, 6, such that (i") supp (g,) is a finite
number of og-atoms, (i) | ()| <1 for te T, (iii") S(®) contains at
most n — 1 points, (iv') pe M}, (V') Z(9,) D S(®) and (vi’) if ge M,
has support not consisting of a finite number of g-atoms and o[S(®) N
Z(g)°] = 0 then o[Z(g,) N {s€ T} g(s)P(s) > 0}] # 0. By defining ¢, = J.g,
conditions (i)-(v) of the theorem follow readily from the corre-
sponding conditions (i')-(v'). To prove (vi), let # satisfy the conditions
given in (vi) and set g = J;'(#). Then ¢ satisfies the conditions of
(vi"), and the conclusion of (vi’) may be used to get the conclusion
of (vi).

To prove the converse, we suppose the conditions of the theorem
hold, prove that M, c L'(X | ¢ |; R) fails to be almost Chebyshev, and
apply Lemma 6.1. In fact, ¢ as given yields a ¢,€ M} and f, yields
g, = dp/dX | 1| € M, which have all the properties of Theorem 5.3.

Using the methods developed above, we can use the result of
[7] on lower semi-continuity of the metric projection in L'(¢; R) to
prove results in C(T)*. In fact, we have the following lemma and
theorem.

LEMMA 6.2. The metric projection onto M = span of {4, -+, .}
is l.s.c. iff the metric projection of M, in L'(c,; R) is l.s.c. for each
v in C(T)*.
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THEOREM 6.2. The metric projection onto the n-dimensional sub-
space M of C(T)* fails to be l.s.c. iff there exists a Borel measurable
Sunction @ on T and a p,e M satisfying (i) |9@)| <1 for te T, (ii)
S(p) contains at most m — 1 points, (iii) supp (&) s not the union of

a finite number of atoms, (iv) | 4, |(S(®)) = 0, and (V) STgvdp =0 for
each e M.

The proofs of the above assertions are straightforward applica-
tions of the techniques already used in the previous theorem.

Note added in proof. In a recent paper S. Ja. Havinson and Z. S.
Romanova have proven Theorem 4.1 in the special case of finite
dimensional subspaces of L'(; R). See Approximation properties of
finite dimensional subspaces in L,. Mat. Sbornik, 89 (131) (1972),
3-15 (translated in Math USSR Sbornik, 18 (1972), 1-14).
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