ON THE IMPOSSIBILITY OF OBTAINING $S^{2} \times S^{1}$ BY ELEMENTARY SURGERY ALONG A KNOT

Louise E. Moser

Abstract

Elementary surgery along a knot has been used in an attempt to construct a counterexample to the Poincaré Conjecture. Certain classes of knots have been examined, but no counterexample has yet been found. Another, and perhaps as interesting a question, is whether $S^{2} \times S^{1}$ can be obtained by elementary surgery along a knot. In this paper the question is answered in the negative for knots with nontrivial Alexander polynomial, for composite knots, and for a large class of knots with trivial Alexander polynomial-the simply doubled knots.

By a knot we will mean a polygonal simple closed curve in the 3 -sphere S^{3}. A solid torus T is a 3 -manifold homeomorphic to $S^{1} \times D^{2}$. The boundary of T is a torus, a 2 -manifold homeomorphic to $S^{1} \times S^{1}$. A meridian of T is a simple closed curve on $\mathrm{Bd} T$ which bounds a disk in T but is not homologous to zero on $\mathrm{Bd} T$. A meridianal disk of T is a disk D in T such that $D \cap \mathrm{Bd} T=\operatorname{Bd} D$, and $\mathrm{Bd} D$ is a meridian of T. A longitude of T is a simple closed curve on $\mathrm{Bd} T$ which is transverse to a meridian of T and is null-homologous in $\overline{S^{3}-T}$.

The basic construction, elementary surgery along a knot, is now described: Let N be a regular neighborhood of a knot K, m an oriented meridianal curve on $\mathrm{Bd} N$, and l an oriented curve on $\mathrm{Bd} N$ which is transverse to m and bounds an orientable surface in $\bar{S}^{3}-N$. Let T be a solid torus and let $h: T \rightarrow N$ be a homeomorphism. Then S^{3} is homeomorphic to $\overline{S^{3}-N} \cup_{h \mid \mathrm{Ba} T} T$. Now let $h_{1}: \operatorname{Bd} T \rightarrow \operatorname{Bd} N$ be a homeomorphism with the property that $h^{-1} \cdot h_{1}: \mathrm{Bd} T \rightarrow \mathrm{Bd} T$ does not extend to a homeomorphism of T onto T. Let $M^{3}=\overline{S^{3}-N} \cup_{h_{1}} T$, then we say that M^{3} is obtained from S^{3} by performing an elementary surgery along K.

Consider now the fundamental group of the complement of the knot $\pi_{1} \overline{\left(S^{3}-N\right)}$ with base point $m \cap l$, where m and l are considered as elements of $\pi_{1} \overline{\left(S^{3}-N\right)}=G$. Then the coset $\bar{m}=m G^{\prime}$ generates the commutator quotient group $G / G^{\prime}=H_{1}\left(S^{3}-N\right)$, and the longitude l is in the second commutator subgroup $G^{\prime \prime}$. The fundamental group of M^{3} is obtained by adjoining the relation $l^{p}=m^{q}$ to $\pi_{1} \overline{\left(S^{3}-N\right)}$ where $p l-q m$ is the image under h_{1} of the boundary of a meridianal disk of T, p and q are relatively prime, and $p>0$. The first homology group of M^{3} is generated by \bar{m} with the relation $\bar{m}^{q}=1$.

Thus if M^{3} is homeomorphic to $S^{2} \times S^{1}$, then $\pi_{1}\left(M^{3}\right) \simeq H_{1}\left(M^{3}\right) \simeq Z$. Hence, $q=0$ and $p=1$; that is, a longitudinal surgery is performed in which the image of the boundary of a meridianal disk is a longitude. It should be noted that a longitudinal surgery along a trivial knot does yield $S^{2} \times S^{1}$. In the following theorem we give a necessary condition that a surgered manifold be homeomorphic to $S^{2} \times S^{1}$.

Theorem 1. If a manifold homeomorphic to $S^{2} \times S^{1}$ results from elementary surgery along a knot K, then the Alexander polynomial of K is trivial.

Proof. If a surgered manifold M^{3} is homeomorphic to $S^{2} \times S^{1}$, then a longitudinal surgery must have been performed. The fundamental group of M^{3} is obtained by adding the relation $l=1$ to $\pi_{1}\left(\overline{S^{3}-N}\right)=G$. In other words, $\pi_{1}\left(M^{3}\right)$ is the quotient group of G by the normal closure of the subgroup generated by l; denote this subgroup by ($l)^{c}$. Now since $l \in G^{\prime \prime}$ and $G^{\prime \prime}$ is a characteristic subgroup of G^{\prime}, it follows that $(l)^{c} \leqq G^{\prime \prime} \leqq G^{\prime}$. Thus if $G^{\prime \prime}$ is a proper subgroup of G^{\prime}, then $\pi_{1}\left(M^{3}\right) \neq Z$ and M^{3} is not homeomorphic to $S^{2} \times S^{1}$. But $G^{\prime \prime}$ is a proper subgroup of G^{\prime} if and only if the Alexander polynomial of K is nontrivial [1]. This establishes Theorem 1.

So now we consider a large class of nontrivial knots with trivial Alexander polynomial-the simply doubled knots. A simply doubled knot or a doubled knot without twists is defined as follows: Let T_{0} be a standardly embedded solid torus in S^{3} with meridian m_{0} and longitude l_{0}. Let J be a self-linking simple closed curve in T_{0} (as shown in Figure 1 for the trefoil) and let T_{1} be a regular neighborhood of J in T_{0} with meridian m_{1} and longitude l_{1}. Let K be a nontrivial knot in $S^{3}, N(K)$ a regular neighborhood of K with meridian m and longitude l which bounds an orientable surface in $\overline{S^{3}-N(K)}$. Let $f: T_{0} \rightarrow N(K)$ be a homeomorphism with the property that $f\left(m_{0}\right)=m$ and $f\left(l_{0}\right)=l$, then we say that K is simply doubled to obtain $f(J)$.

Figure 1.

The doubled knot $f(J)$ we will denote by $d K$.
Consider now the fundamental group of $\overline{T_{0}-T_{1}}$ with base point $m_{0} \cap l_{0}$; let $G_{1}=\pi_{1}\left(\overline{T_{0}-T_{1}}\right)$ and let $G(K)=\pi_{1}\left(\overline{S^{3}-N(K}\right)$). By van Kampen's theorem, the group of the double of $K, G(d K)=$ $\pi_{1}\left(\overline{S^{3}-N(d K}\right)$), is the free product with amalgamation $G(K) * G_{1}$ with the identification of subgroups (l, m) of $G(K)$ and $\left(l_{0}, m_{0}\right)$ of G_{1} determined by $l=l_{0}$ and $m=m_{0}$. Furthermore, G_{1} is generated by l_{0} and m_{1} subject to the relation $\left[l_{0}, m_{0}\right]=1$ where $[x, y]=x y x^{-1} y^{-1}$, $m_{0}=\left[l_{0}^{-1}, m_{1}\right]\left[l_{0}^{-1}, m_{1}^{-1}\right]$, and $l_{1}=\left[m_{1}^{-1}, l_{0}\right]\left[m_{1}^{-1}, l_{0}^{-1}\right]$. See [2].

Theorem 2. Elementary surgery along a doubled knot does not yield $S^{2} \times S^{1}$.

Proof. Perform a longitudinal surgery along $d K$ by replacing the regular neighborhood $f\left(T_{1}\right)$ of $d K$ by a solid torus T_{2} to obtain $M^{3}=\overline{S^{3}-f\left(T_{1}\right)} \cup_{h} T_{2}$ where $h: \mathrm{Bd} T_{2} \rightarrow \mathrm{Bd} f\left(T_{1}\right)$ is a homeomorphism which takes a meridian of T_{2} to the longitude $f\left(l_{1}\right)$ of $f\left(T_{1}\right)$.

Figure 2.
Now instead of first replacing $N(K)$ by T_{0} and then replacing $N(d K)=f\left(T_{1}\right)$ by T_{2}, first replace T_{1} by T_{2} and then replace $N(K)$ by T_{0}. Then by van Kampen's theorem, the fundamental group of M^{3} is the free product with amalgamation $G(K) * G_{2}$ with the identification of subgroups (l, m) of $G(K)$ and $\left(l_{0}, m_{0}\right)$ of G_{2} where G_{2} is obtained from G_{1} by adding the relation $l_{1}=1$. The group G_{2} has the following presentation: $\quad G_{2}=\left(l_{0}, m_{1} \mid\left[l_{0}, m_{0}\right]=1, \quad m_{0}=\left[l_{0}^{-1}, m_{1}\right]\left[l_{0}^{-1}, m_{1}^{-1}\right], \quad l_{1}=\right.$ $\left[m_{1}^{-1}, l_{0}\right]\left[m_{1}^{-1}, l_{0}^{-1}\right]=1$). If we add the relation $m_{1} l_{0}=l_{0}^{-1} m_{1}$ to G_{2}, then $m_{1}^{-1} l_{0}=l_{0}^{-1} m_{1}^{-1}$, and it follows that $m_{0}=l_{0}^{-1} m_{1} l_{0} m_{1}^{-1} l_{0}^{-1} m_{1}^{-1} l_{0} m_{1}=l_{0}^{-4}$ and $l_{1}=m_{1}^{-1} l_{0} m_{1} l_{0}^{-1} m_{1}^{-1} l_{0}^{-1} m_{1} l_{0}=1$. Thus the relations $\left[l_{0}, m_{0}\right]=1$ and $l_{1}=1$ are consequences of the relation $m_{1} l_{0}=l_{0}^{-1} m_{1}$, and the group $\bar{G}_{2}=$ $\left(\bar{l}_{0}, \bar{m}_{1} \mid \bar{m}_{1} \bar{l}_{0}=\bar{l}_{0}^{-1} \bar{m}_{1}\right)$ is a quotient group of G_{2}. Now the properties of \bar{G}_{2} are well-known: \bar{G}_{2} is torsion-free and $\bar{l}_{0} \neq 1$. Hence, $\bar{m}_{0}=\bar{l}_{0}^{-4} \neq 1$ in $\bar{G}_{2}, m_{0} \neq 1$ in G_{2}, and $m_{0} \neq 1$ in $\pi_{1}\left(M^{3}\right)$. But $m_{0}=\left[l_{0}^{-1}, m_{1}\right]\left[l_{0}^{-1}, m_{1}^{-1}\right]$.

Thus $\pi_{1}\left(M^{3}\right)$ is not abelian, and M^{3} is not homeomorphic to $S^{2} \times S^{1}$. This completes the proof of Theorem 2.

Finally we consider composite knots. A knot K is a composite of nontrivial knots K_{1} and K_{2} if there is a 2 -sphere S^{2} and an arc α in S^{2} such that (1) $S^{2} \cap K=\{x, y\}(x \neq y)$ (2) α is an arc from x to y (3) $\left(\left(\operatorname{Int} S^{2}\right) \cap K\right) \cup \alpha$ is a knot of the same type as $K_{1}(4)\left(\left(\operatorname{Ext} S^{2}\right) \cap K\right) \cup \alpha$ is a knot of the same type as K_{2}. The composite knot K is denoted by $K_{1} \# K_{2}$.

If m_{i} is a meridian of K_{i} and l_{i} is a longitude of $K_{i}(i=1,2)$, then the group of the composite knot, $G\left(K_{1} \# K_{2}\right)=\pi_{1}\left(\overline{S^{3}-N(K)}\right)$, is the free product with amalgamation $G\left(K_{1}\right) * G\left(K_{2}\right)$ with the identification of subgroups (m_{1}) of $G\left(K_{1}\right)$ and $\left(m_{2}\right)$ of $G\left(K_{2}\right)$ determined by $m_{1}=m_{2}$. A longitude for $K_{1} \# K_{2}$ is $l=l_{1} l_{2}$. See [3]. By Theorem 1 it suffices to consider composite knots with trivial Alexander polynomial. Such a knot is the composite of two knots each with trivial Alexander polynomial. The following theorem will be proved, however, for arbitrary composite knots.

Theorem 3. Elementary surgery along a composite knot does not yield $S^{2} \times S^{1}$.

Proof. Perform a longitudinal surgery along $K_{1} \# K_{2}$. The fundamental group of the surgered manifold M^{3} is obtained by adding the relation $l=1$ or $l_{1}=l_{2}^{-1}$ to $G\left(K_{1} \# K_{2}\right)$. Thus $\pi_{1}\left(M^{3}\right)$ can be considered as the free product with amalgamation $G\left(K_{1}\right) * G\left(K_{2}\right)$ with the identification of subgroups $\left(l_{1}, m_{1}\right)$ of $G\left(K_{1}\right)$ and $\left(l_{2}, m_{2}\right)$ of $G\left(K_{2}\right)$ determined by $l_{1}=l_{2}^{-1}$ and $m_{1}=m_{2}$. Since K_{i} is nontrivial, $l_{i} \neq 1$ in $G\left(K_{i}\right)$, and so $l_{i} \neq 1$ in $\pi_{1}\left(M^{3}\right)$. But l_{i} is in the commutator subgroup of $G\left(K_{i}\right)$, so also in the commutator subgroup of $\pi_{1}\left(M^{3}\right)$. Hence $\pi_{1}\left(M^{3}\right)$ is nonabelian, and M^{3} is not homeomorphic to $S^{2} \times S^{1}$. This establishes Theorem 3.

We conclude with the following conjecture: $S^{2} \times S^{1}$ cannot be obtained by elementary surgery along any nontrivial knot. The proof of this conjecture like the proof of the conjecture, that elementary surgery along a nontrivial knot does not yield a counterexample to the Poincaré Conjecture, seems very difficult.

References

1. R. Crowell, The group $G^{\prime} / G^{\prime \prime}$ of a knot group G, Duke Math. J., 30 (1963), 349-354. 2. The annihilator of a knot module, Proc. Amer. Math. Soc., 15 (1960), 696-700.
2. L. Neuwirth, Knot Groups, Ann. Math. Stud. 56, Princeton: Princeton Univ. Press, 1965.
3. M. H. A. Newman and J. H. C. Whitehead, On the group of a certain linkage, Quart. J. Math., 8 (1937), 14-21.
4. Dieter Noga, Über den Aussenraum von Produktknoten und die Bedeutung der Fixgruppen, Math. Zeitschr., 101 (1967), 131-141.
5. J. H. C. Whitehead, On doubled knots, J. London Math. Soc., 12 (1937), 63-71.

Received April 19, 1974.
California State University, Hayward

