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LINEAR OPERATORS FOR WHICH T * Γ AND
7 7 * COMMUTE (II)

STEPHEN L. CAMPBELL

Let (BN) denote the class of all bounded linear opera-
tors on a Hubert space such that T*T and TT* commute.
Let (BN)+ be those Te(BN) which are hyponormal. Embry
has observed that if Te(BN), then OeW(T) or T is normal.
This is used to show that if Te(BN), then (T+2I)£(BN)
unless Tis normal. It is also shown that if Te(BN)+, then
Tn is hyponormal for n^l. An example of a Te(BN)+

such that T2 0 {BN) is given. Paranormality of operators
in (BN) is shown to be equivalent to hyponormality. The
relationship between T being in (BN) and T being centered
is discussed. Finally, all 3 x 3 matrices in (BN) are charac-
terized.

This paper is a continuation of [3]. In that paper we studied
bounded linear operators T acting on a separable Hubert space /C
such that T*T and TT* commute. Such operators are called
bi-normal and the class of all such operators is denoted (BN). This
paper will explore some of the properties of hyponormal bi-normal
operators. In addition, we will show that no translate of a non-
normal bi-normal operator is bi-normal and characterize all 2x2
and 3 x 3 bi-normal matrices.

It has been pointed out to the author that the term bi-normal
has been used earlier by Brown [2]. However, his usage does not
appear to be in the current literature so we will continue to use
bi-normal for operators in (BN).

l All shifts, weighted and unweighted, bilateral and unilateral,
are in (BN). Further, operators in (BN), if completely nonnormal,
have a tendency to be "shift-like". Our first result, due to Embry,
is an example of this.

THEOREM 1. // Te(BN), then either T is normal or zero is
in the interior of the numerical range of T, W(T).

Proof. Embry has shown that if Te (BN) and T is not normal,
then OeW(T) [7, Theorem 1]. She has also shown that if Te(BN)
and T + T* ^ 0, then T is normal [5, Theorem 2]. Thus if 0 were
on the boundary of W(T), by a suitable choice of α, \a\ = 1, we
could consider T, = aT where T,e(BN) and Tx+ 2\* ^ 0 . Then
T would be normal.

355



356 STEPHEN L. CAMPBELL

An interesting consequence of Theorem 1 is that no translate of
a bi-normal operator can be bi-normal unless the original operator
was normal.

For bounded linear operators X and Y let [X, Y] = XY — YX.

THEOREM 2. Suppose that Te (BN). Then T + XIe (BN), some
complex λ Φ 0, if and only if T is normal.

Proof. Suppose Te(BN). Let λ Φ 0 be real. Then

\(T + λ/)*(Γ + λ/), (T + Xl)(T + λl)*] = 0

is equivalent to [[T*, T], T + T*] = 0. Thus if T + Xle(BN) for
some real λ Φ 0, then T + λ le (J3AΓ) for all real λ. But 0$ TΓ(Γ+ λJ)
for λ sufficiently large so Γ would be normal by Theorem 1. The
case when λ is complex easily reduces to the one when λ is real.

2* One reason that the class (BN) is of interest is that it
includes many of the weighted translated operators of Parrott [10],
and nonanalytic composition operators, such as those studied by
Ridge [12]. In particular, (BN) includes the Bishop operator [10,
p. 2] for which the question of invariant subspaces is still open.

The Bishop operator actually falls into the following class which
is more restrictive than (BN).

DEFINITION 1. A bounded linear operator T is called centered
if the set {TnT*n, T*nTn}n=0 consists of pairwise commuting operators.

Centered operators have been studied by Muhly [9] and Morrell
[8]. Muhly has shown that centered operators with zero kernels
and dense ranges are the direct sums of weighted translation
operators [9]. Parrott has asked (in a private communication)
whether the same is true for operators in (BN). We answer this
in the negative by exhibiting a Te(BN) such that T2$(BN), and
T is invertible.

EXAMPLE 1. Let T = 1 1 0

T is invertible.

Ό 0 1
Then Te(BN), T^(BN), and

3. Powers of hyponormal or bi-normal operators need not be
hyponormal or bi-normal. Operators which are both hyponormal
and bi-normal are somewhat "nicer". Let (BN)+ denote the hypo-
normal bi-normal operators.
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THEOREM 3. Suppose that Te(BN)+. Then Tn is hyponormal
for n ̂  1.

Proof. If C, D are positive operators such that C ̂  D ̂  0,
then TCT* ^ 27) Γ* ^ 0 and T*CT ̂  T*J9T ^ 0 for any bounded
operator T. Suppose now that Te(BN)+. Since T * T ^ T Γ * , we
have τ*2T2^{T*Tf and (?T*)2 ^ T2T*2. But τ*T^TT* and
[Γ*Γ, 2T*] = 0 implies that (T*T) 2 ^ (TT*)2. Hence τ*2T2^(T*T)2^
TZT*2 and Γ2 is hyponormal. Suppose then that T**Γ% ^ (T*T)n ^
(2Ύ*)n ^ Twr*% for some integer n ̂  2. Then T**T* ^ (ry*)^
implies that τ*n+1Tn+1 ^ (Γ*Γ)%+1 and (T*2y ^ r y* implies that
(yy*j»+i ^ y»+iΓ*»+i# β u t ( T * y ^ + i ^ ( y y ^ + i t τ h e ^eorem now

follows by induction.

4* The assumption that Te (BN) is hyponormal can be weakened
to Te(BN) is paranormal but no added generality is achieved as
the next result shows. Recall that T is paranormal if || T2φ || || φ \\ 2ί
| | JΓ^ | | 2 for all φeά. See for example [1]. Hyponormal operators
are paranormal.

THEOREM 4. Suppose that Te(BN). If T is also paranormal,
then it is hyponormal.

Proof. Suppose that T is paranormal. Then AB2A — 2XA2 +
λ 2 / ^ 0 for every λ > 0 where A = (TTψ2 and B = (T*T)112 [1].
Suppose that Te(BN). The condition for paranormality becomes

( * ) A2J52 - 2λA2 + λ 2 l ^ 0 for every λ > 0.

Since [A2, B2] - 0, there exists a spectral measure E( ) such that

A2 = [ f(t)dE(t) and B2 = f g(t)dE(t) .

Substituting these integrals into (*) gives

(f(t)g(t) - 2Xf(t) + X2)dE(t) ^ 0 .

Let θ = {(x, y):x^0, y ̂  0 and xy - 2λx + λ2 ̂  0 for all λ > 0}.
Then (f(t), g(t)) e θ almost everywhere dE. We will show now that
actually θ = {(x, y):x^0,y^ 0, and 2/ ̂  »}. Then flr(ί) ̂  f(t) almost
everywhere dί; and Γ * T ^ Γϊ 7* as desired. To see that θ = {(x, y):
%^0,y^0 and y ̂  a;}, observe that xy — 2Xx + λ2 = 0, λ > 0,
defines the curve y = &*(#) = 2λ — X2/x in the first quadrant. The
line y = x is tangent to /^(#) at x = X. Since /^(#) is everywhere
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concave down we have that it lies entirely on or below y = x. But
θ consists of those points in the first quadrant lying above the graph
of hλ for every λ > 0, that is, above the line y = x.

An immediate corollary to Theorem 4 which might save time in
the construction of examples is the following.

COROLLARY 1. There are no weighted shifts which are para-
normal and not hyponormal.

5* Under certain conditions T being in (BN) does imply T is
centered. We give two.

THEOREM 5. Suppose that \\ T\\ ̂  1. If y*Γ =/(TΓ*) and
TT* = g(T*T) where f and g are continuous functions from [0, 1]
into [0, 1], then T is centered.

Proof. If T*T = f(TT*), then

( * ) T*2T2 = τ*f{TT*)T = f(T*T)T*T = f(f(TT*))f(TT*) = f2(TT*)

where f2 is a continuous function from [0, 1] into [0, 1]. The second
equality of (*) is trivially valid if / is a polynomial. By taking
uniform limits of polynomials it can be seen that it is true for all
continuous functions /. From (*) and an induction argument, we
get that T*nTn = fn(TT*) and TnT*n = gn(T*T) for continuous
functions fn9 gn mapping [0, 1] into [0, 1], n ^ 1. Hence [T*jT*,

TiT*η = o for aii integers ί, j ^ 0.
The assumption that /, g are continuous can be considerably

weakened. If h, k are bounded measurable functions from [0, 1]
into [0, 1], then let (h®k)(x) = h(k(x))k(x). Set ht = h and define
hn =z (hn_1 ® h) for n ;> 2. Then the theorem is true if fn and gn

are well-defined dE measurable functions for every integer n ^ 1.
dE is the spectral measure of the *-algebra generated by J, T*T
and TT*. Clearly the assumption || T\\ ̂  1 is not restrictive.

5. K. Parrott has proven the following result (private com-
munication).

THEOREM 6. If Te(BN) and T*T has a cyclic vector, then T
is unitarily equivalent to a weighted translation operator.

6. The operator T = i }\ acting on C2 shows that Theorem
6 is not valid for an arbitrary Te(BN). Our next example shows
it is also not true for Te(BN)+.
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EXAMPLE 2. Let

ΓO 0 V~2g{n + 1)"

359

g(n) g(n)

g(n) -g(n)

0

0

^ 1,

where g{n) is a strictly increasing sequence of positive numbers
converging to 1. Let

A =

0 0 0

ΓJ 0

0 T2 0

acting on A. where /C is a countable number of copies of C3. Then
Ae(BN)+, but A^ίJSiNΓ). Ae(£Λ0 since A*A and AA* are
diagonal. A e (BN)+ since T:+ίTn+1 ^ T%T*, w ̂  1. So show A2 $ {BN)9

one need only show t h a t [{Tn+ιTn){Tn+ιTn)\ (Tn+sTn+2)*(Tn+3Tn+2)] Φ 0

for some n ^ 1. Picking n — 1 and ^(1) = 0 makes the calculation
easier.

It is easy to modify Example 2 to get an invertible A such
that Ae(BN)+ and A2£(BN). This is done by picking a sequence
M )̂}~=-co such that g(n) < #O + 1), l i m ^ g(n) = 1, and l i m ^ ^ g(n) =
c > 0. Define A to be a matrix weighted bilateral shift with
weights Tn, Tn as in Example 2.

There remains then the problem of determining what types of
operators are in (BN)+.

In the process of proving Theorem 1 of [3] we proved the
following result which could be helpful.

If C is self-ad joint, let Eo( ) be the spectral measure of C.

PROPOSITION 1. If Te(BN)+, then Eτ*τ([b, \\ T\\])<c is an in-
variant subspace of T for every b > 0. Furthermore, Eτ*τ([0, b)) ^
Eττ*W, &)) for every b > 0.

By considering weighted shifts in (BN)+ it is easy to see that
the subspaces need never be reducing and [&, || Γ||] cannot be replaced
by a noninterval or by an interval without || Γ| | as an end point.

7 The presence of a large number of examples is useful both
in making conjectures and in finding counterexamples. There has
also been some interest in the condition (BN) when dim/si < °o [4].
For these reasons we will now characterize all operators in (BN)
when dim ^ — 2 and dim /C = 3.
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DEFINITION 2. If {̂ J is an orthonormal basis, D is a diagonal
matrix with respect to this basis, and U is a permutation of the
basis, then T ~ UD is called a weighted permutation.

We say that a matrix A is a form for T if T is unitarily
equivalent to a scalar multiple of either A or A*.

THEOREM 7. If Te(BN) and d i m ^ = 2, then the possible forms

are:

(11) Q I a an arbitrary complex number.

(12) [J _ J ] , δ > 0.
(13) π , cm arbitrary.[_a ΌJ

THEOREM 8. If Te (BN) and dim ά = 3, ίfeew, ίfce possible forms

are:

(III)
c 0 0"
0 where X is (12), c an arbitrary complex number.

(112) A weighted permutation.
ΓO b - 1 1

(113)

(114)

0 1 b
0 0 0.

: o o

, δ > 0 .

0
where a > 0 21 ^ 2 2 y

31 ^ 3 2 J
is unitary.

Proof. Theorem 7 is easy. Form (113) is best developed from
the form developed in [4] for matrices T such that [TrT, TTr] = 0
where Γτ is the generalized inverse of T. If Γ e (J5JV), then [Γ f Γ, ΓΓT] =
0. Form (114) is best developed by looking at the polar form and
determining possible unitary parts of T.

Example 1 was found by considering an operator of form (114).
The blocks in Example 2 are also (114) forms.

In looking for (BN) matrices the following matrix version of
Theorem 6 is useful.

THEOREM 9. Suppose that Te(BN) and that dim^c = n < oo.
If T*T has n different eigenvalues, then T is a weighted per-
mutation.

Theorem 9 can be given a simple matrix proof by observing
that if T= C/(Γ*Γ)1/2 and Te (BN), then U(T*T) = (TT*)ί7 and T*T
and TT* may be simultaneously diagonalized. Furthermore, T * Γ a n d
TT* have the same spectrum. It is then easy to see that the only
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possible U are permutations of the basis that diagonalizes T*T and

It is easy to verify that in all of the forms in Theorem 7 and
Theorem 8, except possibly (114), that zero is in the convex hull of
σ(T). Is this always true when n = dim ά < oo? Is it true when
clinic is infinite? If it is not always true, for what dimensions is
it true?

8. All of the two-dimensional bi-normal operators have a square
which is normal. Such operators are automatically bi-normal (though
never nontrivially hyponormal). This result was proved in [4] and
observed independently by Embry in a private communication.

Operators such that T2 is normal have been studied by Embry
[6] and completely characterized by Radjavi and Rosenthal [11].

The author would like to thank Mary Embry and S. K. Parrott
for their helpful comments.
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