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SINGULAR PERTURBATION OF A TIME-DEPENDENT
CAUCHY PROBLEM IN A HILBERT SPACE

L. E. BOBISUD AND JAMES CALVERT

Let A be a self-adjoint operator, not necessarily bounded,
in the Hubert space H, with resolution of the identity Eλ.

Define h(t, A) = \ h(t, λ)dEλ. It is shown that as ε -» 0 +
J-co

the solution of the abstract problem εU'e
f + bU'ε + h(t, A)Uε =

0, ί/e(0) = x0, ϋ"e(0) = %! tends in the norm of H to the solution
of bUΌ +h(t, A)U0 = 0, C/o(O) = cc0 for data x0, #i in a dense
subset of H.

Let A be a (possibly unbounded) self-adjoint operator in a Hubert
space iϊ, and let Eλ be the resolution of the identity for A, so that

r oo

Ax = XdE}x

for £ G D(A) c JBΓ. Let λ(ί, λ) defined on [0, oo) x ( - oo, oo) be a Borel
measurable function of λ for fixed t and a continuous function of t
for fixed real λ. Then an operator h(t, A) can be defined by

h(t, A)x = h(t, X)dEλx
J-oo

for x e D(h(t, A)), where

D(h(t, A)) = ίxeH: Γ \h(t, X)\2d\\Eλx\\2 <

We shall be concerned with the behavior as ε —> 0 + of the
solution of the problem

( 1 ) εU'a' + bUf

ε + h(t, A)Uε - 0, 17.(0) = x0, U's(0) - x, ,

where b is a positive constant. It seems reasonable to expect that
Uε —> UQ as ε —* 0, where Uo solves the problem

( 2 ) bU'Q + h(t, A)UQ - 0, UQ(0) = xQ .

We prove this convergence, as well as Uε —> Uό, in the norm of H for
data xQ, xλ restricted to a certain dense subset of H.

Several abstract singular perturbation problems of this nature
have been considered before. Kisyήski [5] considered the case
h(t, A) = A where A is positive as well as self-ad joint; in addition, he
considered the inhomogeneous problem. Smoller [9, 10], Latil [6],
Friedman [4] and the authors [1] have extended his results to higher-
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order equations and have removed the restriction that A be positive.
The use of the resolution of the identity for A and estimates for the
special case H = L2(—ooy oo), A — a real parameter λ is central to all
these treatments, as well as to the present study. Singular pertur-
bations in Banach spaces have been studied by Bobisud and Hersh
[2], Sova [11], and Schoene [8].

Time-dependent equations of the form

εp(t)U'/ + q(t)U'ε + AUε = 0

and higher-order generalizations have been considered by Friedman
[4]. The only previous study of a nonf actorable time-variable operator
h(t, A) which is known to the authors is that of Nur [7], who con-
siders the case h(t, λ) = ext, so h(t, A) is a semigroup with generator
A. The result of Nur is contained in the theorems to follow.

As mentioned above, we begin by examining in part 1 the special
case H = L\—ooj oo) and show that ue(t, X)—>uo(t, λ), where

(3) GU" + bu[ + h(t, X)uε = 0, us(0, λ) = x09 u'(0, λ) = x, ,

( 4 ) buΌ + h(t, X)uQ = 0 , uQ(0, λ) = xQ .

We also establish for this case certain estimates to be used in treating
the Hubert space problem in part 2.

1* The problem on the real line* Since the problems (3), (4)
are linear, we may write

uε(t, λ) = pe(t, X)x0 + qe(t, X)xλ ,

uo(t, λ) = po(t, X)x0

for certain functions pε9 qe, p0. Regarding a solution of (3) for fixed
ε as a solution of the equation GU" + bu[ = —h(t, X)uε(t), we find that
ue(t, λ) satisfies the following integral equation:

uε(t, X) = xo+ ±[1 - e-wfa

( 5 ) ]
A Γ e~ib/ε)it-s)]uε(s, X)ds ._ A. Γ h(s,
0 Jo

Similarly, for u0 we obtain the integral equation

1 f*
(6) uo(t, λ) = α?0 — — I h(8, X)uo(s, X)ds

0 Jo

thus for the difference we have
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u.(t, λ) - uo(t, λ) = ±[1 - e-»i'»]xι
0

( 7) - 1 [his, λ)[«.(8, λ) - MO(S, λ)]<fe
6 Jo

For convenience we define

MT{X) = 1 + iie1/6Jof

6

Observe that Mt(X) ^ 2 exp {2 V\h(s, X)\ds\ since α:eα ^ β2α.
I Jo j

LEMMA 1. For t e [0, T]

Proof. From (5) we obtain

|w e(ί,λ)| S |a?0| + 41^1 + χ
6 b Jo

GronwalΓs lemma [3, p. 37] then implies that

(8) \u,(t, λ ) i ^

The first two statements of the lemma follow on setting x0 = l9xί =
0 and x0 = 0, xλ = 1, respectively. The last statement follows in the
same manner from (6).

T H E O R E M 1. For any T > 0 and any fixed λ, pε(t, X) —> pQ(t, X)
and qε(t, X) —• 0 as ε—>0 + , uniformly in te[O, T].

Proof. That qε(t, X) —> 0 is obvious from Lemma 1. Setting α̂  =
0, x0 = 1 in (7) yields

\pε(t, X) — pQ(t, λ ) | ^ — I \h(s, λ ) | |^ ε (s, λ) — ^>0(s, λ ) |d s
6 Jo

+ —i¥"Γ(λ) I I Ms, λ)!e~ ( 6 / ε ) ( ί~ s )ds .
δ Jo

For any δ > 0 we have
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S t fmax(έ-δ,0) Γt

\h(s, X)\e~iblε){t~s)ds ^ \ I Ms> X)\e~{b^ε){t~'s)ds + 1 \h(s,X)\ds
0 Jo Jmax(ί--<5,0)

£ e-{bίε)δ Γ |h(s, X)\ds + δ sup |h(t, λ) |
Jo ogίgr

Thus

| P β ( * , λ ) - p o ( ί , λ ) | ^ 4 - Λ

0

+ —I I/t(s, λ) | |pe(s, λ) — pQ(s, X)\ds
6 Jo

application of GronwalΓs lemma yields the inequality

1

I Pe(t, X) ~ Pott, X) ί ^ "

Here the right-hand side can be made arbitrarily small by first choosing
δ > 0 small and then requiring ε to be sufficiently small.

LEMMA 2. For te [0, T],

\p[(t, λ) | ̂ ZLe*^^"™*8 ,
ε

Proof. Differentiating (5), taking absolute values, and using the
estimate (8), we get

( 9 ) \u's(t, λ ) | £ \Xl\ + — [ l ^ o i +-^\xi
SO

setting in turn xQ — 1, xt = 0 and a;0 = 0, ̂  = 1, and using the inequality
a(l + α:βα) ̂  2e2a for α > 0, yields the result.

LEMMA 3. For te [0, Γ],

λ ) | ^ —
β 2

)| g f— + — m&x\h(t,
V ε 6 [o,n

λ)| S —fmax
6 \ [0,Γ]

Proof. The proof follows easily by using the differential equations
(3), (4) themselves and the estimates contained in (9) and Lemma 1.
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THEOREM 2. For any 0 < τ < T, p'ε(t, X) -> pj(ί, λ) uniformly for
t e [0, Γ] <md gβ'(ί, λ) -> 0 uniformly for t e [τ, T\.

Proof. Differentiation of (5) and (6) yields the equations

p't(t, λ) = - — [his, X)e-{blεHt-8)pεis, X)ds ,
e Jo

Poit, X) = —-rrh{t, X)Poitf X) ,

q\(t, X) = e~{blε)t - A- [his, X)e-
{b!εnt-8)qεis, X)ds .

e Jo

From the last of these equations we obtain, using Lemma 1,

1 f *
~~ 5 Jo

in the proof of Theorem 1 this integral was shown to approach zero,
uniformly in ίe[0, T], as e-*0. Since e-

{blε)t-+Q uniformly for te
[τ, Ί], the second statement of theorem follows.

We turn to the first statement, writing for any fixed δ > 0

- pj(ί, λ) = - 1
6 Jo

— (' h(s, X)e-ίb/ε)(t-')ps(s, X)ds
S Jmax(ί-δ,0)

l-h(t, λ)pβ(ίf λ jΞί + J ^ J , .
t>

Since λe' ' ^ e~amx, we have the estimate

where the final quantity tends to zero with e. Also, since

t-δ e

we have that

[ β-<6/.)(«-.>|Λ(β λ ) | | P ( s > λ ) _ p o ( s
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Setting μ£(X, T) = sup ί e [ 0,Γ ] | p,(t, λ) - po(t, λ) |, v(X, T) = suptβ[OfΓ]|M*, λ ) I
we get that

I b(J2 + J3) I ^ e-bδ/εv(X, T) sup | po(t, X) |
teίθ,TJ

+ j".(λ, T)v(x, T)(l - e"6*/£)

the right-hand side tends to zero with ε by Theorem 1.

2* The problem in a Hubert space. Let £Γbe a Hubert space,
Ex the resolution of the identity for the self-adjoint operator A, and
define operators Pε, Po, Qε on H by

.(ί) - Γ P.&

J-oo

J—oo

let Γ > 0 be a fixed number. Let D denote the (dense) domain of
the operator

(1+ A + max | Λ(ί, A) |) exp {2 Γ| h(s, A) \ ds\
[0,Γ] I Jo J

defined as

then

Γ (l + λ + max \h(t,
J-oo\ [0,Π

l + λ + max|λ(ί, \
[0,Γ]

D is contained in the domains of Pe, Po, Qε, because for xe D

\\Pε(t)x\\> = Γ |p.(t, X)| 2d(^^, a?) ̂  Γ [ikΓr(λ)]2d(£/A a?)
J-00 J-00

^ f ^ J o l*( i ) l < " d ( ^ > * ) < 00
Jco

similar calculations are valid for Po, Qo. Also, if cc e D, then P£cc,
Qεα; 6 D(A), as is shown by calculations like the following for Pεx:

Γ
j—0

- Γ X2d Eλ Γ pβ(ί, μ)dEμ
j—00 j—00

= 4 Γ λVSβiK
J-00
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Defining Ue(t) = Pε(t)x0 + i for ε > 0 and U0(t) = PQ(t)xQ, we

have

LEMMA 4. Ue(t), U0(t) solve the problems (1), (2), respectively, on

[0, T\.

Proof. We shall prove only the statement concerning Uε; that Uo

solves (2) is proved similarly. In view of the fact that pB(t, λ) and
qe(t, λ) satisfy the differential equation (3), it is enough to show that
the first and second derivatives of Pε, Qε can be taken under the
integral sign; that is, for x e D,

we present a proof of the statement for Pε. By the mean value
theorem we have that

h)x - Pε(t)x] =

for some £' between ί and t + h. Now

d r [°° d
)-oo dt * J ' λ J-co d^ ε '

S~°° rl fl

—~—V W \) ———V (t /
-oo dt ε ' dt

t\ X)dEλx

d\\Eλx\\>,

so the desired result is a consequence of the Lebesgue dominated
convergence theorem if we show that the integrand of the last integral
is bounded by a function integrable with respect to the measure
ϋ-E^II2. To this end restrict h to be small enough that 0 <£ t + h fg
Γ. Then from Lemma 2

dt dt

which is integrable for each fixed ε > 0. The proof of the case v =
2 is similar but uses Lemma 3 instead of Lemma 2.

LEMMA 5. The solutions of the problems (1), (2) are unique.

Proof. We shall show that Pε(t)x0 is the only solution of (1)
with xλ — 0; the omitted cases are similar. Let hn(t, A) for any integer
n be the bounded operator
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K(t, A) = [ h(t, X)dEλ = {En - E.n)h(t, A) .

Suppose Bs(t) is a solution of (1) with xx = 0, and set ze(t) — Pε(t)x0 —
R£(t). Set «,,»(«) - (En - E-n)zt(t); then

ez[\n + 6 < Λ + ft,Λ(ί, A)zε>n

and ^,^(0) = 0, ^ε',Λ(0) = 0. If we show that z£>n = 0, we will have
0 = lim^^ zε>n(t) — zε(t), as desired. Now zε,n satisfies the integral
equation

whence

Γ||M
0 Jo

and ^ε>% ΞΞ 0 follows in standard fashion.

T H E O R E M 3 . For xQ, xλeD we have

lim||J7.(ί)-ϋo(ί)|| = O
ε->0+

uniformly for t e [0, t], α^ώ /or α^τ/ τ > 0, r < T,

- 0

uniformly for te [τ, T],

Proof. It is necessary to show that

lim Γ \pβ(t, λ) - po(ί, λ)|2d||£7 ;α;0 | |
a - 0 ,

ε-*0+ J-oo

l imΓ \q.(t, X)|2d|| JSA[|2 = 0,
ε-»0-r J—oo

lim Γ |p,'(ί, λ) - pί(ί, λ) | d I|^α;β ||« = 0 ,
ε-»0+ J-oo

limΓ |?:(ίf XJI'dll^xJ^ 0.
ε->0+ J-co

Since, by Lemma 1,

\P.(t, λ) - 3>0(i, λ) | 2 ^ 2|pβ(ί, λ) | 2 + 2|2>0(ί, ^)i2

the first result follows from Theorem 1 and the Lebesgue dominated
convergence theorem. The remaining statements follow in a similar
manner.
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