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OPERATOR VALUED ROOTS OF ABELIAN
ANALYTIC FUNCTIONS

FRANK GILFEATHER

In this paper, all spaces are separable Hubert spaces and
all operators are bounded linear transformations. Questions
involving the structure of an operator for which an analytic
function of it is normal or which satisfies a polynomial with
certain operator coefBcients have been considered and studied
separately. Using von Neumann's reduction theory, a unified
approach to these and similar questions can be given. This
method yields generalizations of the cases which has been
previously investigated, including structure results for n-
normal operators. Through reduction theory of von Neumann
algebras, the study of structural questions for a particular
orerator is reduced to the properties of the often simpler,
reduced operators. In all of the applications presented in
this paper, the reduced operators will simply involve algebraic
operators.

In § 1, we introduce and study analytic functions f (z), defined
on a complex domain & and taking values in a commutative von
Neumann algebra Szf. Such a function will be called an abelian
analytic function; and where there is any question, we shall specify
the algebra Jzf. Using the direct integral decomposition of S/ into
factors, we obtain the decomposition of ψ into a normal family of
scalar valued analytic functions on & indexed by a real variable.
The main results in this section will be to show that the zeros of
the scalar valued analytic functions can be chosen to be Borel func-
tions of the real variable. We shall restrict our attention to a class
of abelian analytic functions, called locally nonzero, so that each
scalar valued analytic function in the corresponding normal family
has no subdomain on which it is identically zero.

An operator T in the commutant Szff of Sf is called a root of
an abelian analytic function ψ, if σ(T), the spectrum of T, is con-
tained in & and φ(T) = 0 where ψ(T) is to be defined in the usual
J3* algebraic manner or in an equivalent way using the direct integral
decomposition of Ssf into factors. Section 2 develops the struc-
ture for roots of locally nonzero abelian analytic functions. The
main result, Theorem 2.1, states that the root of an abelian analytic
function is "piecewise" a spectral operator of finite type. The
structure theorem shows that roots of abelian analytic functions have
hyperinvariant subspaces or are scalar multiples of the identity.

The remaining two sections of this paper are essentially appli-
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cations of the structure theorem for roots of abelian analytic func-
tions to several classes of operators and the further use of reduction
theory in their study. In § 3, our investigation leads to theorems
concerning solutions of

where / is an analytic function on a domain containing o{A) and N
is a normal operator. The use of reduction theory in the study of
(*) was introduced by the author in [9], and solutions of (*) have
been previously studied by many authors with various restrictions
on /, A, or N. The most complete investigation of the solutions of
(*) has been done by C. Apostol in the setting of the theory of
generalized spectral operators, however, his results are of a quite
different nature from those given here [1]. If we set ψ(z) = f(z) — N,
then Ϋ becomes an analytic abelian function and a solution A of (*)
is just a root of ψ. Hence, we may apply our methods and results;
and in doing so, we are able to obtain two structure theorems for
A. If there is no subdomain of on which / is identically zero, then
/ will be called locally nonzero. We show that whenever A is a
solution of (*) where / ' is locally nonzero and, of course, where
σ(A) is contained in sgr, then it follows that A is the direct sum of
two operators; the first, A19 which is algebraic and the second, A2,
which is "piecewise" similar to a normal operator. In the latter
situation, the summand A2 and the corresponding normal operator
have the same spectrum. Under certain conditions, we may conclude
that the solution A of (*) is "piecewise" similar to a normal solution
No of (*) and that A and iVo have the same spectrum. We also
give a decomposition of certain operators satisfying (*) into direct
summands each of which satisfy certain operator valued polynomials.
Thus, we are able to generalize results obtained previously by
C. Apostol, H. Radjavi, and P. Rosenthal and others [1, 10-13, 15,
16, 18].

The structure of operators satisfying certain operator valued
polynomials is studied in § 4. An important class of such operators
are the ^-normal operators (n x n matrices of commuting normal
operators). An ^-normal operator A satisfies a normal valued poly-
nomial of degree n by virtue of the Hamilton-Cay ley Theorem; and
moreover, the coefficients of the polynomial are in the center of the
von Neumann algebra generated by A. N. Dunford has studied these
operators primarily from the viewpoint of when they were spectral
operators [6]. Since operators in a type In von Neumann algebra
are also ^-normal, they naturally occur in the study of operator
algebras. Also the structure and existence of hyperinvariant sub-
spaces for certain ^-normal operators have been investigated by
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various authors [3-5, 12, 13, 15]. We may then apply the theorems
in §1 to ^-normal operators showing that they are "piecewise"
similar to spectral operators and obtaining conditions for similarity
which are compatible to those given in [6]. Whenever an operator
A satisfies a monic polynomial of degree less or equal to two with
coefficients in the center of the von Neumann algebra generated by
A, we can use reduction theory to obtain a complete structure
theorem for it. This result will generalize results in [3, 16] and is
closely connected to the work of A. Brown on binormal operators
(2-normal) [2, 11].

Finally in § 4, we give some sufficient conditions for a root of
an abelian analytic function to be a spectral operator and, more
specifically, a scalar type (similar to a normal operator) operator.
For the ^-normal case, our results complement those given by
N. Dunford [6]. Also, we give some examples based on an example
introduced by J. Stampfli of a 2-normal operator whose square is
normal yet it is not similar to a normal square root of its square
[18].

The essential component of von Neumann reduction theory is the
concept of the direct integral decomposition of an algebra. For the
details of the direct integral decomposition of a von Neumann algebra,
we refer to [17]; however, we shall introduce some basic notations
and results here. Let μ be the completion of a finite positive regular
measure defined on the Borel sets of a separable metric space Λ, and
let en, 1 <L n <Ξ: oo be a collection of disjoint Borel sets of A with union
A. Let Ht £ H2 g £ Hw be a sequence of Hubert spaces, with
Hn having dimension n and H^ being separable. By

H - ( 0 H(X)μ(dX)
J A

we shall denote the space of weakly /^-measurable functions from A

into JSk such that f(X) e Hn, if λ € eΛ, and ί ||/(λ) ||2 μ(dX) < oo. The

space if is a Hubert space, and we shall denote the element feH

determined by the vector valued function f(X) as I φ/(λ)«((Zλ) .

An operator A on H is said to be decomposable if there exists
a /^-measurable operator valued function A(X) so that
A(X)f(X) for feH. The operator A is denoted by

4 = [ 0 A(λ)μ(ώλ) .
A

Furthermore, every von Neumann algebra J^f on a separable space
is spatially isomorphic to an algebra of decomposable operators on a
direct integral of Hubert spaces, such that the von Neumann algebra
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( generated by {A(X)}, where A G J ^ is a factor μ-a.e. Finally,

we use the fact that if A = \ φ A(X)dμ(X) generates J ^ then A(X)
}Λ

generates the von Neumann algebra J^f(X) μ-a.e. Whenever in our
use of this decomposition, there is no confusion over the space Λ,
we shall suppress it.

If A is an operator, we shall denote by R(A), R(A)', and Z(A),
respectively, the von Neumann algebra generated by A, the commu-
tant of R{A) and the center of R{A). N. Suzuki has introduced the
notion of a primary operator. One calls an operator A primary, in
case R(A) is a factor; i.e., Z(A) is just the scalar multiples of the
identity. Let A be defined on a separable Hubert space and let
H = I φ H(X)μ(dX) be the direct integral decomposition of H related
to R(A) for which the algebra R(A)(X) is a factor μ-a.e., then this
decomposition is unique in the sense of [17; I. 6], Thus, the operator

A is decomposed as A = 1 φ A(X)μ(dX), where A(X) is primarily
JΛ

μ-a.e., and we shall refer to this particular decomposition as the
primary decomposition of A. We shall call a projection central for
T if it is in Z(T). Finally, we shall let R(z; A) denote (zl - A)'1.

1* Abelian analytic functions* In this section, we shall develop
the notion of an abelian analytic function and investigate its proper-
ties. Let Szf be an abelian von Neumann algebra and ψ(z), an Jzf
valued analytic function on a domain s& in the complex plane, then ψ
is called an abelian analytic function with domain 3f. For the usual
facts about J5* valued analytic functions, we refer to [7; III, 14].

Given an abelian von Neumann algebra J ^ we may decompose
it into a direct integral of factors. That is, H is unitary equivalent

to a direct integral of Hubert spaces 1 φ H(X)μ(dX), and this induces

a spatial isomorphism between s/ and the diagonal operators on

I φ H(X)μ(dX). Thus, H= ί ®H(X)μ(dX); and for A e sf, there is a

unique g e L^Λ, μ), so that A = \ φ g(X)I(X)μ(dX), where J(λ) is the

identity operator on H(X) [17; I, 2.6].

Let ψ be an abelian analytic function and Sf the corresponding

von Neumann algebra with \ φ H(X)μ(dX) the decomposition of H

given above. Since ψ(z) belongs to J ^ for each z, we have

(1.1) *(*)

where {fz, X) corresponds via the isomorphism mentioned above to
ψ(z). We first give the relationship between the analyticity of ψ(z)
and that of ψ(z, λ).



OPERATOR VALUED ROOTS OF ABELIAN ANALYTIC FUNCTIONS 131

PROPOSITION 1.1. If ψ(z) is an abelian analytic function with
domain £&, then ψ(z, λ), given by (1.1), is analytic on & for almost
all X and \\ ψ(z, λ) j ^ is uniformly bounded on compact subsets of £&.
Conversely, let ψ(z, X) be a family' of functions defined on Si x A,
where £& is a complex domain. If ψ(z, X) is analytic in z for almost
all X on the domain £$ and if ψ(z, λ) e LJ^A, μ) with \\ψ(z, )IL
uniformly bounded on compact subsets of £&, then ψ(z), given by (1.1),
is an abelian analytic function with domain ϋ^.

Proof. We assume that ψ is an abelian analytic function on
£& and that zQ e 3f. The series ψ(z) — Σ N*((z ~ zo)

n/nϊ) converges
with Nn given by Cauchy's formula is in J ^ and z is in some neigh-
borhood So of z0. If JVn = \ φ gn(X)I(X)μ(dX)f then for z fixed in

J Λ

So, ψ(z)(X) = Σ«0»M((s - zo)
n/nl)I(X) for almost all λ. Hence, by

the convergence properties of power series, we may conclude that
ψ(z, X) is analytic in a neighborhood of z0 and hence on £&μ a.e.

Conversely, we assume that ψ(z, X) belongs to L^A, μ) and
|| f{z, •) I loo is bounded for z in compact subsets of ^ . For z0 in 3ί, let
ψ(z, X) = Σn^n(^)((« — zo)*/nl) be the power series expansion in a
neighborhood SQ of z0. Since the functions {gn} are given by Cauchy's
formula and ψ(z, •) is measurable, we conclude that {gn} are meas-
urable. We are done if we can show that gn e Ljyί, μ). That,
however, also follows from Cauchy's formula and using the hypothesis
that \\ψ{z, •)!!«, are uniformly bounded on compact subsets of «£̂ .

REMARK. If it is the case that φ(z, X) is independent of λ, then
the proposition is trivial. For example, if ψ(z) = f{z)I, then ψ(z)(X) =
f(z)I(X) almost everywhere. In order to save the repetitiousness of
deleting a set of measure zero from every argument, whenever ψ(z)
is an abelian analytic function on a domain £%r, we will always assume
that ψ(z, X) is analytic on a domain containing &.

The main result in this section will show that the zeros of
ψ(z, X) can be chosen in a μ measurable way. Such a result consti-
tutes a generalization of the key lemmas in the study of ^-normal
operators by N. Dunford [6; XV, 10] and is also related to the
Theorem 1 in [5].

For this problem to be well defined, we must make a restriction
so that ψ(z, X) is not identically zero on some subdomain of ϋ?*. We
shall call an abelian analytic function ψ locally nonzero if for every
convergent sequence {zn} in & with zn~+z0 in &f then Γ\n Λ"(Ψ(z*)) =
{0} (yV(A) denotes the nullspace of the operator A). For scalar
valued functions, this is the usual definition of locally nonzero. To
see this, we just let H be one dimensional, then ψ(z) is just a scalar
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valued function and Λ^(ψ(zn)) Φ {0} means that f(zn) = 0. The
following lemmas establish the relationship between ψ(z) and ψ(z, X)
with respect to this property.

LEMMA 1.2. An abelian analytic function ψ is locally nonzero
if and only if ψ(-, X) is locally nonzero for almost all X.

Proof. First assume that ψ is not locally nonzero. That is,
there exists a nonzero xe H and a sequence {zn} in gf converging to
z0 in &, so that ψ(zn)x = 0. If E1 = {λ e A \ x(X) Φ 0} and E2 =
U* ίλ I TK2**, λ)a?(λ) ^ 0}, then E = E\E2 is a set of positive measure
on which ψ( , X) is not locally nonzero.

Conversely, if ψ( , X) is not locally nonzero for λ in a set E of
positive measure, then we can show that ψ(z) is not locally nonzero.
For this, we let ψ(z, X) be zero on the subdomain 2fx if λ 6 E. Since
the domain of analyticity of ψ(z, X) contains 3f, each ϋ% contains
one of the subdomains of £&\ and thus, there is a subset F of E
with positive measure so that ΠλeF ^ΊZD ̂ fOf a subdomain of 3f.
Therefore, ψ{z, X) = 0 for Xe F and ze £%r0. Let z% —*z0 in &0 and
x e H so that {λ | a (λ) ^ 0} = F, then x e f ) ^{ΨίzJ). This completes
the proof of this lemma.

Let a locally nonzero abelian analytic function ψ be decomposed
as in (1.1). The following theorem shows that the zeros of the
functions ψ( , λ) restricted to a compact subset of & can be made
measurable.

THEOREM 1.3. Let ψ(z, λ) be given by (1.1) with domain 2$ x Λ.
If D is a bounded subdomain of Si with D c ϋ^, then there exist
disjoint Borel sets Eu i = 0, 1, with the measure of Λ\Uί̂ o Et zero
and for λ e Ejf the analytic function ψ(-f λ) has exactly j zeros counted
to their multiplicities in D. Moreover, there exist Borel functions
WS=i so that if Xe E3 , then r,(λ) 1 ̂  i ^ j are those zeros.

Proof. Since the number of zeros of an analytic function inside
a desk is given by an integral formula, it is easy to see that if %(λ)
denotes the number of zeros counted to multiplicity of ψ(z, X) con-
tained in Dy then Sk = {λ | n(X) ̂  k} is Borel subset of A. Hence, if
we may set Ek = Sk\Sk+1, then Ek is a Borel set; and it follows
that Λ\\J?=Q Ei has measure zero. We shall fix n and define rt on
En; and this will be clearly sufficient to complete the proof.

Henceforth, we are assuming that En — Λ, 1 <; n < oo, and, the
mapping ψ on D x A is a Borel measurable map from the product
space into the complex numbers. The projection of {(z, X) | ψ(z, X) = 0}
onto A is A (a.e.) and by the Principle of Measurable Choice one
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finds a Borel function rx: A—+D so that (rL(λ), λ) is in the null space
of ψ, that is, ^(n(λ), λ) = 0 for all XeΛ [17; I, 4.7], Consider now
the function ψ(z, X)(z — r^λ))"1 = Φ(z, X). By judiciously applying
Schwartz's lemma on the modulus of a complex valued function one
can show that φ(z, X) is uniformly bounded in λ on compact subsets
in &. Thus by Proposition 1.1 we conclude that φ is again an abelian
analytic function. Moreover, it is clear that ^( , λ) has n — 1 zeros
in D counted to their multiplicity almost everywhere. The propo-
sition now follows with repeated application of the above argument.

The motivation for introducing abelian analytic functions is to
study the structure of certain of their operator roots; and in doing
so, unify several previous investigations. Whenever ψ(z) is a poly-
nomial with commuting normal coefficients and T is an operator
commuting with those coefficients, then ψ(T) has an obvious definition.
The definition of ψ(T) we shall now give will be compa table with this
usual definition when ψ is a polynomial.

Let ψ be an abelian analytic function on a domain £gr with values

in the von Neumann algebra Stf. If H = 1 φ H(X)μ(dX) is the direct
JΛ

integral decomposition of H corresponding to the decomposition of
Jzf into factors; and if Γ G J / ' , then T is a decomposable operator.
That is, T is represented as T = [ φ T(X)μ(dX) where T(X) is an

operator on Hλ. Now let Te Stf' and σ(T) c &. Since σ(T(X)) c σ(T),
almost everywhere, the operator ψ(T(X), X) is well defined by the
usual functional calculus [7, 11].

To complete the definition of ψ(T), let Γ be an admissible curve

for f{T) in &. Thus ^(!Γ(λ)f λ) = (2πi)~1 [ R(z; T(X))ψ(z, X)dz and

ψ(T(X), X) is clearly a measurable operator function. If we can show
that it is essentially bounded, then we may define ψ(T) to be the
decomposable operator given by ψ(T)(X) = ψ(T(X), X). Now let zn be
a dense set on Γ. Since almost everywhere || R(zn; T(X)) \\ ̂
|| R(zn; T) ||, we may eliminate a set E of measure zero and have on
the complement of E, \\R(z; Γ(λ))|| ^ \\R(z; T)\\ for all zeΓ. By
Proposition 1.1, \\ψ(z, X) IU ̂  M < °o for all z on Γ and thus
\\f{z, X)R(z; T(X)) || <̂  M on the complement of a set of measure zero

and for all zeΓ. Hence if k = (2πi)~1\ \dz\, we have that

|| f (Γ(λ), λ) || ^ Mk, for almost all X and therefore ψ(T) is a bounded
operator on i ϊ i f it is the decomposable operator defined by ψ(T)(X) =
f(T(X), λ). It is clear that ψ(T)ejzfr since +(Γ(λ),λ)ej/'(λ)' for
each λ. We conclude our remarks on the definition of ψ(T) be noting
that we have actually shown that ψ(T) satisfies the conditions of a
Fubini type theorem. Alternately ψ(T) may be defined by usual J9*
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algebraic techniques as

(1.2) ψ(T) = (2ττi)-1 \rΨ(z)R(z; T)dz ,

where ψ(z) is a Szf valued analytic function defined on a domain
containing σ(T) and with Tejzf' and the integral converging in the
norm. We may conclude that

z, X)R(z; T{X))dzμ(dX)
(1.3) ] i ]Γ

^ ^ f(z, X)R(z; T(X))μ(dλ)dz ,

that is, ψ(T)(X) = ψ(T(X), X) almost everywhere.
In the two applications of this theory, we wish to pursue we

note that ψ(T) coincides with previously understood definitions. If
ψ(z) is the polynomial ψ(z) = Nnz

n + + Ntz + JV0, with coefficients
Nt in an abelian von Neumann algebra, then by (1.3) we see that
ψ(T) is just NnT

n + + N,T + NQ. On the other hand, if ψ(z) is
a scalar valued analytic function, then by (1.3) we have established
that ψ(T) is the usual operator determined by the standard functional
calculus [7; VII]. Moreover, in this latter case, the fact that the
definition above for ψ(T) and the usual one given by contour inte-
gration are the same as a special case of Theorem 1 in [11].

2* Roots of abelian analytic functions* We shall call T a root
of the abelian analytic function ψ if ψ(T) = 0 where ψ(T) was
defined in § 1. If f has domain of analyticity <& and takes
values in the von Neumann algebra Jzf, then, by the definition of
ψ(T), we are assuming that Γ e j / 1 and that ( J ( T ) C J ^ In this
section, we give a structure theorem for all roots of an abelian
analytic function and several applications.

We shall state and prove the main theorem after which we shall
restate it using the language of spectral operators.

THEOREM 2.1. Let ψ be a locally nonzero abelian analytic func-
tion on & taking values in the von Neumann algebra Szf and let T
be a root of ψ. There exists a normal operator S in J^fr and a
sequence of mutually orthogonal projections {Pn} in Szf with I = ΣPn

so that TPn is similar to (S + Ln)Pn, where Ln is a nilpotent operator
SLn = LnS and both Ln and the operator which induces the similarity
are in

Proof. In assuming that T is a root of ψ(z) we have that
Te Ssf. We shall give the structure of T by first decomposing T
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into a direct integral of operators via the direct integral of decom-
position of J ^ and then determining the structure of each reduced
operator in the decomposition of T.

Let H = 1 φ H(X)μ(dX) be the decomposition of H corresponding
J Λ

to the primary decomposition of Ĵ C Since Te J^", we may decompose

T as T = \ φ T(X)μ(dX). Furthermore, by (1.3) if ψ(T) = 0, then
j Λ

almost everywhere ψ(T(X), X) = 0, where ψ(z, X) is an analytic
function in a neighborhood of σ(T(X)). By Lemma 1.2, the analytic
function ψ(z, X) is locally nonzero in 3&. In fact, by Theorem 1.3,
there are disjoint Borel sets 2£<, i = 0, 1, •••, where i \ U S ^ i has
measure zero, and Borel functions r^λ), % = 1, •••, so that if XeEk

then r^λ), , rk(X) are the zeros of ψ(z, X) in σ(T) counted to their
multiplicities. Since {£7J determine mutually orthogonal projections
in J^f we may assume without loss of generality that for almost all
λ in Λ, ψ(zy X) has k roots in σ(T) counted their multiplicities and
since f(A(X), X) = 0 a.e., that μ(E0) = 0.

It follows from the measurability of {^(λ)};^, that the distinct
roots of ψ(z, X) as well as their multiplicities can be chosen measurably.
Thus we let ^(λ), •••, ̂ (λ) be the distinct roots of ψ(z, X) in σ(T)
for λ in the Borel set Fn = {λ | ψ(z, X) has n distinct roots in σ(T)}
and let the multiplicity of z^X) be &*(λ). Define §(X) — min^ | ̂ (̂λ) —
^•(λ)l> which is also a Borel function. For each i, we determine the
algebraic projections

(2.1) EAX) = (27a)-1 ( R(z; T(X))dz ,
M

where Γt is the circle centered at z^X) of radius <5(λ)/2. Since T(X)
is an algebraic operator with σ(T(X)) c {̂ i(λ)}i=1 we have

(2.2) T(\)/Et(\)H(X) =

where JV λ̂) is nilpotent of order k^X). Setting

(2.3)

then jβ(λ) is invertible on H(X), R(X)Ei(X)R(X)~1 = P«(λ) are mutually
orthogonal self-adjoint projections with I(X) = Σ ? P ( ) f F
and

(2.4) U W ^ f i ί λ ) - 1 - Σ «*WP,(λ) + L(λ) ,

where L(λ)fc = 0 and P,(λ)L(λ) = L(λ)P,(λ) for each i. The form (2.4)
is what we desired as our structure theorem. The only drawback to
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integrating the expression (2.4) over Fn and then taking direct sums
is the boundedness of the projections 2?έ(λ) (the boundedness of R(X)
and iϋ(λ)-1 only depend on n and the boundedness of the E^X)).

It is not the case that the projections 2£«(λ) are in general
bounded independent of λ and thus the structure theorem is given
in terms of "piecewise" similarity. Let

GM = {\eFn\ || J0,(λ) || ^ m, i = 1, 2, . . , n} ,

and #TO(λ) the characteristic function of the Borel set Gm. Let Qm

be the corresponding projections in given by

= \

and set Hm = QmH and Tm = Γ/iZ"m. Then i?(λ), β(λ)-1 and L(λ) are
uniformly bounded for λ e <?m and hence we may define

= ί
and

where the summation under the integral in S is taken over the number
of distinct roots of ψ(z, λ) in σ(Γ), for example, n for λ in i*V
Considering all the special conditions on the operators, we have

=[S+ RmNmR^]I

or if we set Lm = RmNmR~\ then

Qm = (S+ Lm)Qm .

Finally, it is clear that S e j / ' is a normal operator, Lm

and SLm = LmS.

REMARK. Recently, decomposable operators on a direct integral
of Hubert spaces have been investigated by E. A. Azoίf [2] He has
shown that in general, the spectrum of a decomposable operator is
measurable. The results in § 1 and this section imply this result for
roots of abelian analytic functions, so that Azoίf's work is related to
certain results in these sections.

The following proposition will give a connection between the
spectrum of T and that of the corresponding normal operator S.



OPERATOR VALUED ROOTS OF ABELIAN ANALYTIC FUNCTIONS 137

This will be useful in the next section where we discuss special abelian
analytic functions.

PROPOSITION 2.2. If T and S are as in Theorem 2.1, then the
spectrum of S intersects every connected component of σ(T).

Proof. Let ^ be a subdomain of &r containing a connected
component of σ(T) and let Γ = d£2fx be an admissible curve which
also is contained in &r. Let E = (2πi)~1[ R(z; T)dz, then Eejtf"

&nά E = (2πi)-1 [ φ[ R(z;T(X))dzμ(d\)=[ ®E(X)μ(dX) [11]. Clearly

if 1 R(z; T(X))d(z) = 0 almost everywhere, then E = 0. Thus there
JΓ

is a Borel set ί7 so that E(X) Φ 0 for λ e F and μ(F) ^ 0. Hence,
the set G = {XeF\σ(T(X)) Γ\ &[=£ φ} and consequently for some i
the set Gt = {X e F \ r^X) Π S&^Φ Φ) has positive measure. Therefore,
σ(S) Π 3PX contains the essential range of zt restricted to G>

REMARK 1. The operator S in the theorem is also a root of
ψ(z) as well as each of the operators S + Lm. Later we shall see
that in special cases where the nilpotent part does not appear, we
will then have all roots "piecewise" similar to normal roots.

REMARK 2. The proof of the theorem can be used to construct
the normal as well as the nonnormal roots of ψ(z). Thus we establish
the fact that certain abelian analytic functions have roots. This
is related to work in [4] and [12].

As we stated before the theorem, we may put this result in the
context of the theory of spectral operators on a Hubert space H.
Our result in this setting then reads: Let T be a root of a locally
nonzero abelian analytic function. There exists mutually orthogonal
projections Pn in R{T)' so that I = Σ P% and T/PnH is a spectral
operator of finite type.

Before giving an application of this result, we wish to remark
on the roots of abelian polynomial functions vis-a-vis abelian analytic
functions. If / is a locally nonzero complex valued analytic function
defined on a domain containing σ(T), then f(T) = 0 implies p(T) = 0
for some complex valued polynomial. An analogous result holds for
the operator valued analytic functions.

PROPOSITION 2.3. If T is the root of an abelian analytic func-
tion with values in J ^ then T is the direct sum of roots of monic
polynomials with coefficients in
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Proof. This follows from the structure theorem if we let pN(z, λ) =
Πί=i (2 ~ ^i(λ)), on the set where N is the number of roots of ψ(z, λ)
in σ(T) counted to their multiplicities and the Borel functions r^λ)
are the functions given in Theorem 1.3. Thus by equation (2.1)
it follows that pN(TN) = 0 where TN is defined in the obvious way.

We might point out the importance that a root T of ψ{z) belong to
J ^ ' aside from the fact that the proof of Theorem 2.1 would other-
wise fail. In case T is not in Sf' essentially nothing can be deter-
mined, at least along the lines of our results. Let H be a Hubert
space with orthonormal basis {en}, n — 0, ± 1 , ±2, •••. If U is the
bilateral shift of H with respect to this basis and V is the unilateral
shift on KJ, n = 0, 1, 2, , and 0 on {en}, 0 = - 1 , -2, , then V
satisfies the abelian polynomial z2 — Uz = ψ(z).

As a corollary to our main theorem, we shall show that roots of
abelian analytic functions have hyperin variant subspaces or are multi-
ples of the identity operator. We shall call a closed subspace M in
H hyper invariant for an unbounded operator A, if M Π £&{A) = M
(&(A) is the domain of A and will be taken to be dense), and ifcf is
invariant under every bounded operator B which commuted with A
in the following sense: B~ι&(A) (Ί &{A) is dense and AB = BA on

Let A be an unbounded operator with dense domain and T be a
bounded operator. We say T is quasisimilar to A, if there exist
bounded one-to-one operators X and Y, with dense ranges, so that
XH<z&(A)9 AX^XT, and TY = YA on 3f{A). The following
lemma extends to the unbounded case a useful tool for proving the
existence of hyperinvariant subspaces.

LEMMA 2.4. Let T be quasisimilar to an unbounded operator
A. If A has nontrivial hyperinvariant subspaces, then T has non-
trivial hyperinvariant subspaces.

Proof. The proof is similar to the usual proof for the bounded
case [13; Theorem 2.1].

Combining this lemma and Theorem 2.1, we have the following
result, the proof of which is straightforward and it omitted.

THEOREM 2.5. Let T be a root of an abelian analytic function.
If T is not a multiple of the identity, then T has nontrivial
hyperinvariant subspaces.

3. Solutions to f(T) normal* In this section we develop the
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structure of the operator roots T of the equation

(3.1)

where f(z) is a complex valued analytic function on a domain &~D
and N is a normal operator. Certain results are known as was
mentioned in the introduction; in particular, (3.1) has been studied
with various restrictions on /. If we set ψ(z) = f(z) — N, then ψ is
a locally nonzero abelian analytic function on a domain £& if and
only if / ' is locally nonzero on 3p (/' is locally nonzero is also ex-
pressed as / is locally nonconstant). Thus we may apply the results
of the previous sections to solutions of equation (3.1) whenever / is
locally nonconstant. The von Neumann algebra generated by {f(z) \ z e
&} is abelian and in fact, just R(N), the von Neumann algebra
generated by N and /. Hence, if T has spectrum in Sf and f(T) = N,
then T commutes with N, so by the Fuglede theorem T e R(N)' and
hence T satisfies the condition in the hypothesis of Theorem 2.1.
Moreover, matters are even made simpler in this section if when we
apply our results we let J ^ = Z(T) as then we are utilizing the
primary decomposition for T. Thus in this section, unless otherwise
stated, J^= Z(T) where T is a solution of (3.1).

To aid in our characterization, we shall use the notion of semi-
similarity, which is motivated by the use of a related concept by A.
Feldzamen for spectral operators [9]. We call A and B semi-similar
if there exists a sequence of mutually orthogonal self-adjoint projec-
tions {PJ commuting with A and B so that I = ΣJPi and for each
i, there exists an invertible operator St on PtH, so that S^ASt =
B I PiH. That is, there is a "complete" family of reducing subspaces
for A and JS, so that A is similar to B on each of these subspaces.
Let A and B be semi-similar as above. By considering first the
operator X = Σ< \\S< IΓ&P, on H and then Γ = Σt H S Γ M Γ ^ Γ 1 ^ we
have that AX = AB and YA = BY, where Xand Yare quasiaίfinities
[14] Thus this notion of semi-similarity implies the notion of quasi-
similarity which is used by various authors to describe certain opera-
tors.

THEOREM 3.1. Let f be a locally nonconstant analytic function
on a domain & and let N be a normal operator. If T is an operator
with o(T) c & and f{T) = N, then there is a central projection P
of T so that

τ= τo®τ19

where TQ = T\PH and Tx= T \ (I - P)H, To is semi-similar to a
normal operator No, σ(N0) = <r(T0) and No is a normal solution to
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/(•) = N\ PH. Finally, TΊ is an algebraic operator with /(7\) = 0.

Proof. Let H ~ \ φ H(X)μ(dX) be the decomposition of H so
U

that Γ = φ T(X)μ(dX) is the primary decomposition of T. Since

NeZ(T), N= [ φ g(X)I(X)μ(dX)9 where geL^μ), and moreover

/(T(λ)) = g(\)I(X) almost everywhere [11].
Let XeE0H and only if /(z) — #(λ) has only zeros of multiplicity

one in σ(T). If we let g0 be the characteristic function of the set Eo,

P = 0 go(X)I(X)μ(dX), then To = T/P is easily seen to be semi-similar
J Λ

to a normal operator No = JV/P using Theorem 2.1.
On the complement of Eo, the function /(#) — g(X) has as least

one multiple root. Since / ' is locally nonzero there are only a finite
number of distinct zeros of / ' in σ(T). Let zu * 9zk be the zeros
of / ' in σ(T). Now a multiple root of f(z) — g(X) must be one of
the numbers zίf , zk. Let Ft be the measurable set of λ in Λ for
which f(z) — g(X) has the multiple root zt. Then Et = Ft — \JJ<ΪFJ

are disjoint measurable sets so that Λ = U o ^ i If \ , λ2 € 2?y(.? > 0),
then / ( z) — ̂ (λj and /(^) — #(λ2) both have the root zt and therefore,
g is constant on each Eό{j > 0). If g(X) = «i on ^ ( i > 0), then T(X)
satisfies the equation f(z) — α* for λ in Et and it follows that T(X)
satisfies a complex polynomial Pi(z) for λ 6 ^ ( i > 1). Thus if Pλ —
/ - P o and Tx = T | P ^ , ί>(2\) = 0 f or p = ^ pk.

From Theorem 2.1 it is clear that σ(N0)aσ(T0), in fact, 2
belongs to the essential range of 22(λ) given in (2.4) for some i if
and only if z is in σ(N) and such a z is in σ(T). Conversely, we
shall show that σ(N0) z> σ(T0). Let N/P0H= Nlf then we are considering
/(Γo) ^'iVΊ and TQ is semi-similar to JV0. Let zoeσ(TQ) and ε > 0 be
given. Denote by SQ a ball of radius r less than ε, centered at z0

with So c ^ , and with f(z) — /(^0) ^ 0 on So except for z = z0. Let
f(z0) = zlf then by the spectral mapping theorem zx e σ{N^) and by the
local mapping theorem, there exists a neighborhood Si of zx and S2 of
£0 contained in SQ, so that /(S2) — Sx.

Let J&( ) be the spectral measure for Λ ,̂ then E(Sλ) is not zero
since z^σ(N^. Also E{S^^Z{T^ so we denote T01 to be T/EiSJH
and similarly JW01 and i\Γn. Thus, /(To l) = Nn and iVd is the normal
operator semi-similar to TQ1 given by Theorem 2.1. Since σ(Nn) c Sί9

by the spectral mapping and local mapping theorems we have that
S2 must contain a component of σ(T01). By Proposition 2.2 there is
a z2 in α(iVoi) c σ(N0) so that | z2 — ^01 < s Since ε was arbitrary,
we may conclude that σ(T0)c:σ(N0) and the proof is complete.

Whenever / ' has no zeros on σ{T) then a theorem of C. Apostol
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has shown that T is similar to a normal solution of (3.1) [1]. A
generalization of that result will be given in Proposition 4.5. If,
however, / ' has zeros but (/'^(O) ΓΊ σP(T) is empty, then the operator
T1 does not occur need to in the above theorem and we have the
following corollary.

COROLLARY 3.2. Let f be a locally nonzero analytic function
on a domain & and let N be a normal operator. If T is an
operator with σ(T)d &f, f(T) = N and σp(T) Π (fT'Φ) = Φt then there
exists a normal operator No with cr(N0) — o{T), f(N0) = N and T is
semi-similar to No.

Prior to C. ApostoΓs work, it was shown by J. Stampίli that
whenever An is normal and A is invertible, then A is similar to a
normal operator [18] It easily follows from Stampfli's result that
whenever 0 g σP{A), then A is semi-similar to an nth. root of N. This
result is also an application of the above corollary where, of course,
f(z) = *n

REMARK. That σ(T0) = σ(N0) in Theorem 3.1 also follows the
result of C. Apostol, C. Foias, and I. Colojoara when we have first
shown that To and No are quasisimilar. For the first author proves
that solutions of (3.1) are generalized scalar operators and the later
authors have shown that quasisimilarity between decomposable opera-
tors preserves the spectrum. Since decomposable operators possess
hyperinvariant subspaces, it follows from C. ApostoΓs results that
solutions to (3.1) have hyperinvariant subspaces. However, this fact
is also immediate by applying Theorem 2.5 to solutions of (3.1).

The following theorem and corollary generalize existing theorems
and are obtained by placing some condition on f(z). We shall only
briefly indicate their proofs.

THEOREM 3.3. Let T satisfy (3.1) and let {zjf=1 be the zeros of
f'(z) in σ(T) with multiplicities {wjt-i. Assume that for each i
there exists a neighborhood Nt of zt so that there are at most m
elements in Nt Π σ(T) Π f'1^) for each z in σ(N). Then there exists
an orthogonal projection P in R(T)' so that

1 — *0 W 1 l 9

where Tλ = T/PH is algebraic and satisfies p(z) = Πϊ=i 0? — Zi)ni and
To is similar to an operator SQ which satisfies a monic abelian
polynomial of degree at most m.

Proof. The proof is similar to the proof of Theorem 3.1 in that
2\ is the same operator in each case. Here because of the restriction
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on the spectrum we divide σ(T0(X)) into at most k distinct pieces so
that each contains at most m points of σ(T0(X)) and each is of multi-
plicity one. From such a decomposition the theorem will follow.

COROLLARY 3.4. Let Tn be normal where σ(T) lies in m sectors
of the plane, each of width at most 2π/n, then T is similar to the
direct sum of a nilpotent operator To and an operator T19 which
satisfies a polynomial of degree m with coefficients in the center of
the von Neumann algebra generated by 7\.

4* Operators satisfying an abelian polynomial* In this section,
we give several results in the study of opetators which satisfy

(4.1) p(A) = 0 ,

where p(z) is a monic polynomial with coefficients which are commuting
normal operators and A commutes with the coefficients. In view of
Proposition 2.3, this problem subsumes the study of roots of abelian
analytic functions. First, we shall discuss in some detail the results
obtained whenever the polynomial is of degree two, and give results
related to Corollary 3.2. As mentioned in the introduction, N. Dunford
has studied ^-normal operators from the viwpoint of when they were
spectral operators. We relate our work to those results and to later
works of T. Hoover [13] and H. Radjavi and P. Rosenthal [15,16].
For example, several authors have shown that whenever A is ^-normal,
then A is a scalar multiple of the identity operator or A has non-
trivial hyperinvariant subspaces. These results also follow from
Theorem 2.5.

Recently, H. Radjavi and P. Rosenthal have given a character-
ization of operators satisfying certain polynomials of degree 2.
Specifically, they have studied solutions to z* + az = N, where N is
a normal operator [16]. The following theorem generalizes their results
and a similar result of H. Behncke [3].

THEOREM 4.1. Let T be a root of p(z) where the degree of p is
less than or equal to 2 and the coefficients of p(z) are in Z(T). Then
there exists a central projection P of T, so that

T = Γo © 2\

where To = T/PH and Tx = T/(I - P)H, To is normal, Tx is unitarily
equivalent to an operator of the form

B C

0 D
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on K φ K, where B, C, D are commuting normal operators on K.
Moreover, o{B) 1J o{D) — 0"(TΊ) and C is positive definite.

The proof of Theorem 4.1 will follow from a direct integral
reduction of T and the next lemma. Recall that an operator is called
primary if the von Neumann algebra it generates is a factor. The
following lemma has a direct elementary proof. However, it does
follow from A. Brown's nonelementary work [4] and we cite that
as a proof.

LEMMA 4.2. Let A be a primary operator on H (dim H > 2).
If A2 + bA + c = 0 for complex numbers b and e, then A is unitarily
equivalent to

~Ίl βll

_0 al\ '

on K@K, where {7, a} = σ(A) = {l/2(-δ ± (b2 - 4c)1/2)} and β = (p2-
I a ~ 712)1/2, where p=\\A- al\\.

Proof of Theorem 4.1. Let T = To 0 7\ be the unique central
decomposition of T by projection P so that TQ is normal and 2\ is
completely nonnormal. If T satisfies T + TN, + JV2 = 0, then 2? +
T,LX + L2 = 0 where L, = 7^/(7 - P)JBΓ and L, e Z{Tt) (i = 1, 2). We
decompose Hx = (I — P)H by the primary decomposition of TΊ. Thus

Hi = ( Θ H(X)μ(dX) and

= ( © 2\(λ)/£((ίλ) ,

where Γi(λ) is a primary operator defined on Hλ. Moreover, there
exist bounded Borel functions fx and f2 on A so that for i = 1, 2,

Therefore, we may conclude that

- 0

almost everywhere. From our proposition, Tk(X) is unitarily equivalent
to

on iζjφjK'; where J ; is the identity operator on Kx, where g, h, and
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k are measurable, h(X) > 0 and the projection P(λ) onto the sub-
pace KλQ0 is measurable. We let Q(X) = I(X) - P(λ) and then
P(λ)7\(λ)P(λ) = g(X)P(X), PίλJΓiίλJQίλ) - 0, P W T ^ Q W = λ(λ)P(λ)
and ©(λJΓxίλJQίλ) = k(X)Q(X) and the result follows.

REMARK 1. That Nlf N2eZ(A) is not essential to Theorem 4.1.
The same conclusion holds if A is any root of a locally nonzero abelian
polynomial of degree less or equal to 2. We need only decompose A
as in Theorem 2.1 and thus have g(X)A(X)2 + h(X)A(X) + k(X)I(X) = 0
almost everywhere. By Theorem 4.1, there exists a projection Q(X)
measurable with respect to λ, so that A(X)Q(X) — rx{^x)Q{X)f

P(X)A(X)P(X) = ra(λ)Q(λ) where P(λ) = J(λ) - Q(λ) and Q(λ)A(λ)P(λ) =
c(λ)Q(λ) where c(λ) is a positive operator on H(X). The more general
result now follows.

REMARK 2. A. Brown called 2-normal operators binormal and
H. Gonsher called them J2 operators [4, 12]. Hence, Theorem 4.1
implies that: A is a binormal operator if and only if A is a zero
of a locally nonzero abelian polynomial of degree less than or equal
to 2. For a discussion of the unitary invariant of these operators
we refer the reader to [2].

We can obtain various known theorems as special cases of the
preceeding theorems. For example, we can generalize Theorem 3 in
[16] with the following corollary.

COROLLARY 4.3. Let Tn = N, where N is normal and let σ(T)
lie in two sectors of the plane each with width less than 2πn~1. Then
there are mutually orthogonal central projections Po, Plf and P2 of
T with I = Po + P,+ P2 and

T= To © Tί 0 T2

where To — T/P0H is nilpotent of order n, T\= T\PJί is normal
and T2 = T/P2H is unitarily equivalent to

B

P

where B, C, and D are commuting normal operators with C positive
definite.

Proof. Let Po be the central projection so that T/PQH is normal
and T/(I — P0)H is completely nonnormal. If we apply Corollary 3.6
to T/(I - P0)H we can obtain Px and P2 so that T/P.H is algebraic
and in fact Ύn\PJI = 0 and T/P2H satisfies a monic polynomial of
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degree 2 with coefficients in Z(T/P2H). Using Theorem 4.1 we now
conclude the complete structure of T.

In Theorem 2.1 we see that if the root functions are different
almost everywhere, then the operator zero is semi-similar to a normal
zero. We use this observation in the following result concerning
solutions of an abelian polynomial of degree 2 which will be useful.
It differs from the preceding results in that it utilizes semi-similarity.

PROPOSITION 4.4. Let T satisfy an abelian polynomial of degree
2. Then there exists unique central decomposition of T into

so that TQ is unitarily equivalent to the commuting sum of a normal
operator and a nilpotent operator of index 2. The operator To has
no reducing subspace on which it is similar to a normal operator
and Tx is semi-similar to a normal operator.

Proof. We let the root functions be {r^λ)}^ and set M =
{X I r^X) = r2(λ)}. If g is the characteristic function of M, then

P = φg(X)I(X)μ(dX) is a central projections for T. We let TQ be
U

the completely nonnormal part of T/P and the proposition follows from
the fact that on the complement of M, r^X) Φ r2(λ) almost every-
where.

In the case of operators satisfying an abelian analytic function,
we always have by Theorem 2.1 that they are piecewise similar to
spectral operators. The question naturally arises as to when are they
spectral. This has been studied by both N. Dunford and C. Apostol
for the special cases they considered respectively [1, 6]. The following
sufficient condition follows easily from the proof of Theorem 2.1.

PROPOSITION 4.5. Let T be a root of a locally nonzero analytic
abelian function ψ which has root functions {r^X)}?^ in σ(T) satisfying
HiΦά I ^iW — rj(λ>) I ̂  δ > 0 almost everywhere. Then T is similar
to a normal root of ψ.

Proof. The root functions are given by Theorem 1.3 and under
the assumption Π<*/ I rt(X) — r^X) | > 0 almost everywhere we have
no multiple roots. Furthermore, the projections given by equation
(2.1) are just Et(\) = p,(3Π(λ)) where j φ ) = ILv*(z ~ ^(λ))(n(λ) -

M)""1 a n ( i a r e essentially bounded under the hypothesis on {^(λ)}.
In fact, a necessary and sufficient condition can be given in case
(ri(λ>) — rj(y)) Ψ 0 almost everywhere.
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PROPOSITION 4.6. If T is a solution of an abelian analytic
function with Π ^ i ( r*(λ) ~ ^(^)) Φ 0 almost everywhere, then T is
a scalar type operator if and only if ILw0 (^\0(

λ) ~ rz(λ))~11! T(X) —
r t(λ) || is essentially bounded for 1 tί iQ ^ n.

REMARK. The theorem of J. Stampfli for Tn normal and T
invertible as well as S. FogueΓs theorem and C. ApostoΓs theorem
for p(T) normal and p'{z) Φ 0 on σ(T) and f(T) normal and f(z) Φ 0
on σ(T) respectively, follow from these propositions.

Unfortunately, these conditions are not sufficient as we shall see
below. In the case of an operator T satisfying a second degree monic
polynomial with coefficients in Z(T), we can given necessary and
sufficient for that T be similar to a normal solution of the polynomial.

THEOREM 4.7. Let T satisfy a monic second degree polynomial

with coefficients in Z(T). IfT=\ ® T(X)μ(dX) is the primary
JΛ

decomposition of T, {^(λ)}^ are the root functions of the polynomial
and p(X) = (| T(X) — r^X) ||, then T is a spectral type operator of
nilpotent index 2 if and only if {p(X) \ rλ(X) — r2(λ) I"1: rx(λ) Φ r2(λ)}
is essentially bounded.

Proof. This follows from Propositions 4.4 and 4.6.

We shall give an example which yields some of the results in
N. Dunford's work. Let H = L2(0, 1) 0 L2(0, 1) and Mf denote the
multiplication operator on L2(0, 1) for / € L°°(0, 1). If

= VMf Mg

lMh Mk

where / , g, h, k e L°°(0, 1), then clearly A satisfies a second degree
monic polynomial z2 — Ntz + N2 where the coefficients

[Mf+k 0
f+k

Mf+

and

Thus, if we take the direct integral decomposition determined by
Lebesgue measure on [0, 1] and H(X) = C2, then JVi, N2 are obviously

diagonal operators and A decomposes with A(X) = w J *j\A . Then

as in Proposition 4.4, there is a Borel set M so that if g is the
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characteristic function on M, then A is decomposed by 1 φ g(X)I(X)μd(X)

U
into At 0 A2 so that A1 is a spectral operator of order 2 and A2 is
semi-similar to a normal operator. By Theorem 4.7, A is a spectral
operator iff {|| A(X) — r^λ) || | rx(λ) I"1: Xe Λ — M) is essentially bounded.
This later condition is equivalent (following the notation in [4]) to

( ( / ( λ ) ) - k(X)Y + gjXf + h(XY . χ e Λ _ M

d(xγ

being essentially bounded where δ(X) = ((/(λ) - k(X))2 + Ag(X)h(X))112.
Note that δ(X) = 0 on M which parallels the treatment in [4, 6; XI].

Finally, we given an example first introduced by J. Stampfli
[17] to show that sequare roots of normal operators need not be
spectral. Let

Mt M,

o n £ f = L2(0, 1) 0 L2(0, 1) where / 6 L°°(0, 1). Then A} is normal for
each /, however Af is a spectral operator (in fact scalar type operator)
if and only if | t^fζt) | is essentially bounded. Hence, the example of
J. Stampfli follows. The operator

'Mt I

0 M _

is the square root of a normal operator which is not a spectral
operator.

We close by remarking on several areas of further research
involving these methods and theorems. The theorems in §§ 1 and 2
can be modified in case ψ(z) takes values in certain commutative
algebras of spectral operators; however, the nilpotent operators become
quasinilpotent and are not necessarily of finite type. Most of the
theorems can be obviously modified if the normal operators are replaced
by commuting scalar type operators whenever similarity or semi-
similarity is involved. Some results in this direction have been obtained
and further work is in progress.
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