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ON THE IRRATIONALITY OF CERTAIN SERIES

P. ERDOS AND E. G. STRAUS

A criterion is established for the rationality of series of
the form Σ bj(alf , an) where an, bn are integers, an ^ 2
and lim δn/(αn-:A) = 0. This criterion is applied to prove
irrationality and rational independence of certain special
series of the above type.

1* Introduction* In an earlier paper [2] we proved the fol-
lowing result:

THEOREM 1.1. If {an} is a monotonic sequence of positive integers
with an *> nιιin for all large n, then the series

(1.2) Σ φ{n) and
. _ :1 ata2 an

are irrational.

We conjectured that the series (1.2) are irrational under the
single assumption that {an} is monotonic and we observed that some
such condition is needed in view of the possible choices an — ψ{n) + 1
or an = σ(ri) + 1. These particular choices do not satisfy the hypothe-
sis lim inf an+1/an > 0 but we do not know whether that hypothesis
which is weaker than that of the monotonicity of an would suffice.

In this note we obtain various improvements and generalizations
of Theorem 1.1, in particular by relaxing the growth conditions on
the an and using more precise results in the distribution of primes.

In § 2 we obtain some general conditions for the rationality of
series of the form Σ bj(au , an) which are modifications of
[2, Lemma 2.29]. In § 3 we use a result of A. Selberg [3] on the
regularity of primes in intervals to obtain improvements and generali-
zations of Theorem 1.1.

2* Criteria for rationality*

THEOREM 2.1. Let {bn} be a sequence of integers and {an} a
sequence of positive integers with an > 1 for all large n and

(2.2) Iim-1M_ = o .

Then the series

85



86 P. ERDϋS AND E. G. STRAUS

^ 6.(2.3)
an

is rational if and only if there exists a positive integer B and a
sequence of integers {cn} so that for all large n we have

(2.4) Bbn = cnan - cn+1 , | cn+1 \ < aJ2 .

Proof. Assume that (2.4) holds beyond N. Then

Baγ aN_λ Σ = integer + Σ Gn<ln "" °n+ι

M * a^_ a ft ft •" a$ a^

= integer + cN = integer .

Thus condition (2.4) is sufficient for the rationality of the series (2.3),
To prove the necessity of (2.4) assume that the series (2.3) equals-

A/B and that N is so large that an ^ 2 and | bj{an_ιa7) \ < 1/(41?)
for all n^N. Then

A - B Y K
N~' »=* a, an

(2.5) = integer + ̂ + £
aN n=N+i aN an

If we call the last sum RN we get

\ R N \ ^

(2.6) / 1 Y 1 = 1

Thus, if we choose cN to be the integer nearest to BbN/aN and
write BbN = eNaN — cN+1 then (2.5) yields that —cN+1/aN + RN is an
integer of absolute value less than 1 and hence 0, so that

(2.7) ^ ± L = RN =

or

(2.8) ^ ^

From (2.8) it follows that cN+1 is the integer nearest to BbN+ί/aN+1

and if we wr i te BbN+1 = cN+1aN+1 — cN+2 we get

(9 Q{\ BbN+2 _ r>

aN+2



ON THE IRRATIONALITY OF CERTAIN SERIES 87

Proceeding in this manner we get the desired sequence {cn}.

REMARK. Since (2.2) implies Bn —> 0 it follows that for rational
values of the series (2.3) we get cn+1/an —> 0. Thus either an —> °° or
cn — 0 and hence bn = 0 for all large n.

COROLLARY 2.10. Let {an}, {bn} satisfy the hypotheses of Theorem
2.1 and in addition the conditions that for all large n we have
bn > 0, an+1 ^ an, lim (bn+1 — bn)fan <̂  0 and lim inf aJbn — 0. Then the
series (2.3) is irrational.

Proof. According to Theorem 2.1 the rationality of (2.3) implies
the existence of a positive integer B and a sequence of integers {cn}
so that

Bbn = cnan - an+1

for all large n where cΛ + 1/αn—»0. Thus

bn+1 = cn+1an+1 — c n + a > (cw + 1 — ε) ^ c^+i — g

&̂  cnan — c Λ + 1 c%α% ~ cn

for all ε > 0 and sufficiently large n. Thus c w + 1 > cn would lead to

(2.11) bn+ί > ( l + ±=-ϊ)bn >bn + ( l - e)(an - * * ±

\ c Λ / \ cn

This contradicts our hypothesis for sufficiently large n. Thus we get
0 < cn+1 ^ cn for all large n and hence 6Jαw is bounded contrary to
the hypothesis that lim inf ajbn = 0.

In fact, if we omit the hypothesis lim inf ajbn = 0 then we get
rational values for the series (2.3) only when Bbn = C(an — 1) with
positive integers B, C for all large n.

3* Some special sequences*

THEOREM 3.1. Let pn be the nth prime and let {an} be a monotonic
sequence of positive integers satisfying lim pjai = θ and lim inf ajpn =
0. Then the series

(3.2) Σ ——

is irrational.

Proof. Since the series (3.2) satisfies the hypotheses of Theorem
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2.1 it follows that there is a sequence {cn} and an integers B so that
for all large n we have

(3.3) Bpn = cnan - cn+1 .

For large n an equality cn = cn+1 would imply cn \ B and an > pn.
Since {cj is unbounded there must exist an index m^ n so that
cm ^ cn < cm+1. But this implies by an argument analogous to (2.11)
that

(3.4) pm+1 >pm + aJ(2B) > (l + -^

which is impossible for large m. Thus we may assume that cn Φ cn+1

for all large n. Now consider an interval N ^ n ^ 2N. If cn+ί > cn

then as in (3.4) we get

Pn+ι > Pn + aJ(2B) > pn + V~~p~n

which therefore happens for fewer than (p2N — pN)/l/ PN < Nlβ+ε

values in the interval (N, 2N). If cn+ι < cn then we get

- cn+1 > cn(an -

so that

(3.5) an

Since case (3.5) holds for more than N/2 values of n in (N, 2N)
we get a2N > N/2 and thus for all large n we have an > nβ, cn <
2>»/β» + 1 < l / ^ / 4 . Substituting these values in (3.5) we get

(3.6) an+1 >an + τ/¥" when cw+1 < cn, n large

so that a2N > iV3/2/2, contradicting the hypothesis that lim inf α j p w = 0.

THEOREM 3.7. Let {an} be a monotonic sequence of positive in-
tegers with an > nlβ+δ for some positive d > 0 and all large n. Then
the numbers 1, x9 yy z are rationally independent. Here

^=i a1 an

 n=ι a1 an

and

dn
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where {dn} is any sequence of integers satisfying \dn\ < nιμ~δ for all

large n and infinitely many dn Φ 0.

Proof. Assume that there exist integers A, B, C not all 0 so that
setting bn = Aφ(n) + Bσ(n) + Cdn we get that S = Σ»=iδ»/(αi> •'•><*»)
is an integer.

From Theorem 2.1 it follows directly that z is irrational and thus
not both A and B can be zero. We consider first the case A + B Φ 0
so that without loss of generality we may assume A + B = D > 0.
Since S satisfies the hypotheses of Theorem 2.1 there exist integers
{cn} so that

K = cnan — cn+1 for all large n .

Since | bn \ < ^1+δ/2 for all large n we get

I cn I < wιl-a)>2 for all large % .

Let pn be the nth prime and set

cι w — aPn, on = ^p%> ^ = = ^p%> ^w = r : βpn+ι y

then

δ: - A(pn - 1) + β ( ^ w + 1) + CdPw = Z?,, + d'n

where

d; = Cd^ - A + B with I C I < n{1-δ)l2 for all large n .

Now

O ^^ CSh C

so that from

K+ι __ Dpn+1 + d'n+ί _ pn+1 1 + d'n+1/(Dpn+1)

K Dpn + d'n pn l + d'J(Dpn)

Pn

we get

(3.8)
Cn/(CbnCn)
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Here the last inequality follows from the fact that

(bn

cn+ι)/an

Aφ(n + 1) + Bσ(n

I Aφ(n) + Bσ(n) |

From (3.8) we get that <£+1 > c'n implies

(3.9) pn+ί > pn + Jk- - pi'*-"4 > pn + JLy,

for all large w.
We now use the following result of A. Selberg [3, Theorem 4].

THEOREM 3.10. Let Φ(x) be positive and increasing and Φ(x)/x
decreasing for x > 0, further suppose

Φ(x)/x —> 0 and lim inf log Φ(x)βog x > 19/77 for x —> co .

2%ew /or almost all x > 0,

π(x + Φ(x)) —
logx

We now apply this theorem with the choice Φ(x) = x1/2+δ to in-
equality (3.9) and consider the primes N ^ pm < pm+1 < < pn < 2N
in an interval (N, 2N) with N large. According to Theorem 3.10
the union of the set of intervals (pif pi+1) where pif pi+ί satisfy (3.9)
and m ^ i < n, form a set of total length < eN where ε > 0 is
arbitrarily small. Also the number of indices i for which (3.9) holds
is o(VN). Thus by (3.8) and (3.9) we have

< 1 + 2ε < 22£ .

From the monotonicity of an it now follows that for any ε > 0 we
have

(3.11) I cn I < nε for all large n.

Substituting this inequality in (3.9) we get that c'n+1 > cn would
imply

(3.12) pn+1 >pn + P?~ pw+w >pn + -LpjΓ

which is impossible for large n when ε < 5/12. Thus K} becomes
nonincreasing for large n and hence constant, c'n = c, for large n.
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This implies ap > p/(c + 1) for large primes p and by the monotonicity
of an we get

n

dp

2p >h
where p is the largest prime ^ n.

Now consider the successive equations

bp = cap — cp+1

Vp + l = = Gp + l&P + l Cp+2

Thus

Aφ(p + 1) + Bσ(p + 1) +

Dp + 0{pιj2~δ) = ca

for all large primes p. This leads to

= cp+ιap+1

(3.13)

and hence
sequence

• ,.. Bσjp 1)
D p + 1 D p + 1

0-1/2

to the conclusion that the only limit points of the

A φ(p + 1
D p + l

B σ(p + 1)
D p + l

p — prime

are rational numbers with denominator c. To see that this is not
the case, consider first the case B Φ 0. Then by Dirichlet's theorem
about primes in arithmetic progressions we see that σ(p + ϊ)/(p + 1)
is everywhere dense in (1, oo). Thus we can choose p so that the
distance of Bσ(p + Ϊ)/D(p + 1) to the nearest fraction with denominator
c is greater that l/(3c) while at the same time σ(p + l)/(p + 1) is so
large that | Aφ(p + ΐ)/D(p + 1) | < l/(3c), contradicting (3.13). If B = 0
we use the fact that φ(p + l)/(p + 1) is dense in (0, 1) to get the
same contradiction.

Finally we must consider the case A + B — 0. Here we can go
through the same argument as before except that we consider the
subsequence b2P = Aφ(2p) + Bσ(2p) + Cd2P = 2Bp + (SB + Cd2P) = 2Bp +
O(pll2~δ). As before we get

b2P = ca2P — c2P+1 for all large primes p

which leads to the wrong conclusion that

σ(2p _ φ(2p
p = primed

2p + 1 2p + 1

has rational numbers with denominator c as its only limit points.
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