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METRIZABILITY OF TOPOLOGICAL SPACES

R. E. HODEL

This paper is a study of conditions under which a topol-
ogical space is metrizable or has a countable base. In § 2 we
consider the metrizability of spaces having a weak base in the
sense of ArhangeΓskiϊ. In § 3 we extend earlier work of
Bennett on quasi-developments by showing that every regular
0-refinable β-space with a quasi-G5-diagonal is semi-stratifiable.
One consequence of this result is a generalization of the
Borges-Okuyama theorem on the metrizability of a paracom-
pact wi-space with a G^diagonal. In § 4 we prove that a
regular space has a countable base if it is hereditarily a
CCC wA-space with a point-countable separating open cover.
This result is motivated by the remarkable theorem of
ArhangeΓskiϊ which states that a regular space has a countable
base if it is hereditarily a Lindelδf p-space. In § 5 we show
that every regular p-space which a Baire space has a dense
subset which is a paracompact p-space. This result, related
to work of Sapirovskiϊ, is then used to obtain conditions under
which a Baire space satisfying the CCC is separable or has a
countable base. In § 6 we prove that every locally connected,
locally peripherally separable meta-Lindelδf Moore space is
metrizable. Finally, in § 7 we consider the metrizability of
spaces which are the union of countably many metrizable
subsets. The results obtained in this section extend earlier
work of Coban, Corson-Michael, Smirnov, and Stone.

!• Preliminaries* We begin with some definitions and known
results which are used throughout this paper. Unless otherwise stated,
no separation axioms are assumed; however, regular, normal, and
collectionwise normal spaces are always TΊ and paracompact spaces
are always Hausdorff. The set of natural numbers is denoted by N,
and if j, k, m, n, r, s, and t denote elements of N.

Let X be a set, let ^ be a collection of subsets of X, let p be
an element of X. The star of p with respect to &, denoted st(p, &),
is the union of all elements of ^ containing p. The order of p with
respect to Ŝ , denoted ord (p, S )̂, is the number of elements of 5f
containing p. The union of all elements of g^ is denoted by ^ * If
& covers X, then ^ is said to be separating [43] if given any two
distinct points p and q in X, there is some G in ^ such that p e G,
qίG.

A topological space X is said to be developable if there is a sequence
Ŝ i, 2̂ 2, of open covers of X such that, for each p in X,
{st(p, S^J: n = 1, 2, •} is a fundamental system of neighborhoods of
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p. Such a sequence of open covers is called a development for X.
A regular developable space is called a Moore space. Bing [12] proved
that every paracompact Moore space is metrizable.

A quasi-development for a topological space X is a sequence 2^,
Ŝ 2, of open collections in X such that, given any point p in X
and any neighborhood R of p, there is some n m N such that
st (p, 5f J =£ ̂  and st (p, S^J S -β. Clearly every development is a quasi-
development, and in [10] Bennett proved that a space is developable
if it has a quasi-development and every closed subset is a Gδ.

The notion of a G5-diagonal plays an important role in metrization
theory; see, for example, [13], [14], [18], [51]. In [18] Ceder proved
that a space X has a G^-diagonal if and only if there is a sequence
5̂ i, ^2, of open covers of X such that, given any two distinct
points p and q in X, there is some n in N such that q£ st(p, ^ ) .
Such a sequence of open covers is called a Gδ-dίagonal sequence for X.

A collection g^ of subsets of a topological space X is called a %e£
[6] if given any point p in X and any neighborhood R of p, there is
some G in g^ such that peGSR. A space with a <7-locally finite net
is called a σ-space [50],

A topological space X is θ-refinable [64] if for each open cover
*%S of X, there is a sequence 2^, Ŝ 2, of open refinements such that,
for each p in X, there is some n in N such that ord (p, 2^) is finite.
Such a sequence of open covers is called a θ-refinement of c ^.

A topological space X is a wA-space [14] if there is a sequence
5̂ i, ^ 2 , β β of open covers of X such that, for each p in X, if xn e
st (p, gf%) for n = 1, 2, , then the sequence <xw> has a cluster point.
Clearly every countably compact space and every developable space
is a wJ-space. In [31] it is proved that every regular wJ-space with
a (7-point finite separating open cover is developable.

The p-spaces of ArhangeΓskiϊ [4], which generalize Cech complete
spaces and completely regular developable spaces, are defined in terms
of the Stone-Cech compactification. In this paper we adopt as the
definition of a p-space an internal characterization given by Burke in
[16], A pluming for a topological space X is a sequence Sf1? gf2,
of open covers of X such that, for each p in X, if p 6 Gn e 5f%, n =
1, 2, - , then (a) C(p) = flSU Gn is compact; (b) {f\U Gt: n = 1, 2, -..}
is a "base" for C(p) in the sense that given any open set R with
C(p) S JR, there is some w in JV such that Π?=i GZQR. A topological
space is a p-space if it has a pluming.

Quasi-complete spaces were introduced by Creede in [22] as a
generalization of p-spaces and i^zί-spaces. In this paper we adopt as
the definition of quasi-completeness a characterization due independently
to Sohn-Choi [61] and Gittings [25]. A topological space X is quasi-
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complete if there is a sequence &u gf2, of open covers of X such
that the following holds for each p in X: if p e Gn e &n, n = 1, 2, ,
and (xn) is a sequence with xn e Π;=i <?* for all w, then (xn) has a
cluster point. Such a sequence of open covers is called a quasi-com-
plete sequence for X In [16] Burke proved that ^//-spaces and
p-spaces coincide for the class of completely regular #-refinable spaces.
Recently Gittings [25] extended this result by showing that ^-spaces
(as defined above), wJ-spaces, and quasi-complete spaces coincide for
the class of regular #-refinable spaces.

Recall that a topological space is called a Baire space if any
countable intersection of open dense sets is dense, and is ^-compact
if every uncountable subset has a limit point. Also, a topological
space is a CCC space, or satisfies the CCC (CCG = countable chain
condition), if every mutually disjoint collection of nonempty open sets
is countable. It is easy to check that a topological space is hereditarily
y^-compact if and only if it hereditarily satisfies the CCC.

Let (X, J7~) be a topological space, let g be a function from
N x X into ^~ such that p e f|?=i 9(n, P) for each p in X. Consider
the following conditions on g.

(A) If g(n, p) Π g{n, xn) Φ φ for all n, then p is a cluster point

of <χny.
(B) If g(n, p) Π g(n, xn) Φ φ for all n, then (xn) has a cluster

point.
(C) If yn e g(n, p) and xn e g(n, yn) for all n, then p is a cluster

point of (xn).
(D) If xn e g(n, p) for all n, then (xn) has a cluster point.
(E) If p 6 g(n, xn) for all n, then (xn) has a cluster point.
In [29] Heath characterized Nagata spaces in terms of a function

g satisfying (A). (The To separation axiom is assumed.) A function
g satisfying (A) is called a Nagata function. A topological space X
is, respectively, a wN-space, a Ί-space, a q-space, a β-space if it has
a function # satisfying, respectively, (B), (C), (D), (E). A function g
satisfying (C) is called a Ί-function, and one satisfying (E) is called

σ -point finite base Moore space Nagata space

7-space p-space wzί-space

/3-space

g-space
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a β-function. See [31], [32], [41]. The idea of characterizing gen-
eralized metrizable spaces in the above fashion was first used by Heath
in [30].

The relationship between some of the classes of spaces defined in
this section is summarized in the preceding diagram.

2* Weak bases* The following natural technique for defining a
topology on a set is due to ArhangePskiϊ [5]. (Also, see [56].) Let
X be a set, and suppose that for each p in X there is assigned a
collection &p of subsets of X which is closed under finite intersections
such that each element of &p contains p. Let S~ be all subsets V
of X satisfying this condition: for each p in V, there is some Bp in
&P such that Bp £ V. As is easily seen, the collection S~ obtained
in this fashion is a topology on X. This construction suggests the
following definitions.

Let X be a topological space, and for each p in X let &P be a
collection of subsets of X which is closed under finite intersections
such that each element of έ%p contains p. The collection & = {έ%P\
p in X) is called a weak base for X [5] if the following condition
holds: a subset V of X is open if and only if for each p in V, there
is some Bp in &p such that Bp £ V. Now let g^, Ŝ 2, be a sequence
of (not necessarily open) covers of a topological space X such that
Ŝ »+i refines Ŝ %, w = 1, 2, . Such a sequence of covers is said to
be semi-refined [19] if {&P: p in X) is a weak base for X, where
&P = {st (p, g^): w = 1, 2, •}. The two theorems in this section give
conditions under which a weak base and a semi-refined sequence of
covers yield metrizability. The first result is closely related to the
general metrization theorem of Nagata [48], while the second result
generalizes the metrization theorem of Alexandroff and Urysohn [1].

THEOREM 2.1. A To space (X, J7~) is metrizable if and only if
for each p in X there is a collection &p = {B(n, p)\ n = 1, 2, •} of
subsets of X satisfying these conditions:

(1) p e B(n, p) and B(n + 1, p) £ B{n, p);
(2) q e B(n + 1, p) implies B(n + 1, q) £ B(n, p);
(3) q $ B(n, p) implies B(n + 1, p) Π 2?(^ + 1, ?) = 0;
(4) {^,: p in X) is a weak base for X.

Proof. If X is metrizable, the existence of the collections is
clear. Assume, then, that for each p in X there is a collection &9 =
{B(n, p): n = 1, 2, ...} of subsets of X satisfying (l)-(4). To prove X
metrizable, it suffices to show that there is a function g: N x X—>^*
(with p e Π?=i ^(^, #) for all p) which is a 7-function and a Nagata
function. (See [32].) For p in X, w in iVΊet #(w, p) = 2?(w, p)°. First
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let us show that p e g(n, p). Let

V = {x in X: B(jx, x) £ B{n, p) for some positive integer jx} .

It is clear that pe VξίB(n, p), and so it remains to show that V is
open. Suppose it is not. Then by (4), there is some q in V such
that B(k, ϊ ) g 7 , i = l , 2 , . . . . Now qeV, so B(j, q)QB(n, p) for
some j . But B(j + 1, q) g£ V, so there exists a? e B(j + 1, #) such that
xίV. Since a? $ V, B(j + 1, x) §= i?(w, p), so there exists # 6 J3(i + 1, x)
such that y $ B(n, p). Now x e B(j + 1, q), so by (2), J5(i + 1, x) S
JB(i, g). Hence # e j?(w, p), a contradiction. Thus F is an open set.

To see that g is a Nagata function, let g(n, p) Π g(n, xn) Φ φ, n =
1, 2, , and let us show that xn —> p. Let V be an open neighbor-
hood of p. By (4), B(n0, p)SV for some n0. Then for w ̂  w0 + 1»
xn e V. Indeed, since B(n, p) Π B{n, xn) Φ φ, it follows from (3) that
x% e B(n — 1, p), and hence xn e V.

To see that g is a 7-function, let yn e g(n, p), xn e g(n, yn), and let
us show that xn —> p. Let V be an open neighborhood of p. By (4),
B(n0, p)S V for some n0. Then for n*zno + l,xneV. Indeed, since
yneB(n,p), it follows from (2) that B(n, yn)^B(n - 1, p). Since
a?w 6 JB(^, yn) and ΰ(% — 1, p) £ -B(w0, ί>) S V9 it follows that xn e V.

THEOREM 2.2. A To space X is metrizable if and only if there
is a sequence &lf g?2, of covers of X satisfying these conditions.

(1) The sequence &lf gf2, is semi-refined;
(2) for all n, if Gx and G2 are elements of 5fn+1 such that

GtΠGiΦ φ, then Gι[jG2^G for some G in S?n.

Proof. If X is metrizable, the existence of the covers is clear.
Assume, then, that &ί9 5f2, is a sequence of covers satisfying (1)
and (2). For p in X, n in N let B(n, p) = st(p, gQ, and let &9 =
{B(n, p):n = 1, 2, •}. It is easy to check that the collections {&p:
p in X} satisfy the conditions of Theorem 2.1, and hence X is
metrizable.

3* Spaces with a quasίr(?δ-diagonaL A paracompact wJ-space
is metrizable if it has any one of the following: (1) a Gδ-diagonal
(Borges [13], Okuyama [51]); (2) a point-countable base (Pilippov [24]);
(3) a point-countable separating open cover (Nagata [47]); (4) a quasi-
development (Bennett [9]). The notion of a point-countable separating
open cover was introduced by Nagata to achieve a unification of (1)
and (2). The problem of obtaining a similar unification of (1) and (4)
suggests the following property. A quasi-Gδ-diagonal for a topological
space X is a sequence &u &2, of open collections in X such that,
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given any two distinct points p and q in X, there is some n such
that st (p, 5f%) Φ φ and q $ st (p, gf j .

Recently Bennett and Berney [11] proved that every regular θ-
refinable /3-space with a quasi-development is developable. This result
yields the following generalization of (4): every paracompact /9-space
with a quasi-development is metrizable.

In this section we modify Bennett's proof of (4) to obtain the
result that every regular ^-refinable /3-space with a quasi-ft-diagonal
is semi-stratifiable. Consequences of this result include a unification
of (1) and (4) and the above result of Bennett and Berney on develop-
able spaces. As in Bennett's proof of (4), use is made of the following
set-theoretical lemma. (See Theorem 114 on p. 47 of [45].)

LEMMA 3.1. Let Q be a property, let J%fu Sίf^ ••• be finite non-
empty sets, and assume that for all n, each element of <%ζ,+1 has
property Q with respect to some element of £έfn. Then there is a
sequence Hlf H2, such that for all n, Hn e β^n and Hn+1 has property
Q with respect to Hn.

THEOREM 3.2. Every regular θ-refinable β-space with a quasi-
Gδ-diagonal is semi-stratifiable.

Proof. Let (X, ^) be a regular #-refinable space, let I: N x X —>
be a β-ίunction for X (assume that l(n + 1, p)^l{n, p), n = 1, 2,

•••, and all p in I ) , and let &u 2 2̂, be a quasi-G5-diagonal for
X. Assume, for a moment, that every closed subset of X is a Gδ.
It easily follows that X has a Gδ-diagonal. Indeed, for n — 1, 2,
let &* = UZU Fnkf where each Fnk is a closed set, and let έ%fnlt =
&n\J{X— Fnk\. Then, as is easy to check, {^Kk: n, k in N} is a Gδ-
diagonal sequence for X. Since every regular ^-refinable /S-space with
a G5-diagonal is semi-stratifiable (see [31]), the proof is complete.

It remains to show that every closed set is a ft. So let M be a
closed subset of X, and assume that M has no isolated points. (Let
I be the isolated points of M. If M — I is a Gδ, it easily follows that
M itself is a Gδ.) For each x in M, there is a strictly increasing
sequence of positive integers m(l, x) < m(2, $)<•••< m(i, &)<•••
such that for all n, xe %?* if and only if n = m(i, x) for some i<Ln.
For i = 1, 2, let G(i, a?) be some element of &nlitX) containing x.

For each x in If, let H(l, x) - J(l, a?) Π G(l, «). Then {iϊ(l, a?):
a? 6 Λf}, together with (X - Jkf), covers X. Let { ^T,fc: ft = 1, 2, •}
be a ^-refinement of this cover. Note that if W is any element of

such that WΠ M Φ φ, then there is some x in M such that TFS
, a?).

Next, for each x in ikf, let V(2, x) be an open neighborhood of x
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such that F(2, x) is contained in some element of cWlΛ. Let H(2, x) =
V{2, x) Π 1(2, x) Π G(l, x) Π G(2, x). Then {H{2, x): x in M}, together
with (X - M), covers X Let { WlΛ\ k = 1, 2, - -} be a ^-refinement
of this cover.

Continue this process. Then for each n we obtain a sequence
5^,i> 5^,2, of open covers of X, and a collection {H(n, x): xe M}
of open sets, such that the following hold for all n:

( 1 ) if We Wn,k and WΓ\ Mφ ό, then W^H(n, x) for some x
in Λf;

( 2 ) for all x in If, x e i?O, a;) £ JO, α) Π (Π?=i G(i, x));

( 3 ) for all x in M and all j ^ n, k ^ n, H(n + 1, x) is contained
in some element of Wj,k'j

( 4 ) for all x in X, there is some & such that ord (x, c%^Λtk) is
finite.

Now let Vn,k= U{We W~n,k:WΠMΦφ}. Clearly each Vn>k is
open and ikfg ΠΓ,fe=i Vn,k. Let p G Γl~,fc=i Vn,k, but suppose p i M. By
(4), there is a positive integer k(ϊ) such that ord (p, Wl,k{1)) is finite.
Let {WΊ, , Wh} be all elements of Wl,k{1) which contain p and inter-
sect M. Such elements of <%^ikω exist since pe Vukω. By (1), for
r = 1, β , ί i, there is some x r in Λf such that WrξiH(l, xr). Let
Γi = K •••, xh) and let i( l) - 1.

Now let i(2) = j(ϊ) + &(1) + 1, and by (4) pick a positive integer
&(2) such that ord (p, ^ (2,,fc(2)) is finite. Let {W7, --^W/J be all
elements of ^^7(2)jA;(2) which contain p and intersect Jkf. Such sets exist
since p e Vj{2)ίk{2). By (1), for r = 1, , ί2, there is some x'γ in M such
that W;sfl"0'(2), a?;). By (3), for r = 1, , ί8> iϊ(i(2), a'r) is contained
in some element of ^7 i J f e { 1 ). It easily follows that H(j(2), xF

r)^H(t, xs)
for some xs in T,. Let T2 = {̂  : H r ^ ί2}.

Continuing this process, we obtain a strictly increasing sequence
of positive integers 1 = j(T) < j(2) < < i θ ) < , and for each
w a nonempty finite subset ΓΛ of M, such that the following hold for
all n:

(5 ) if x e Tn, then p e H(j(n), x);

( 6 ) if x 6 Γft+1, then H(j(n + 1), a?) £ i ϊ ( i θ ) , y) for some # in Γw

For w = 1, 2, let Jg^ = {H(j(n), x): x in Γn}. Then by Lemma
3.1, there is a sequence (xn) in ikf such that pe H(j(n), xn) and

, a?J for all n. Now by (2),

l(j(ri), xn)ξΞ:l(n, xn), so pe l(n, xn), n = 1, 2, . Since ϊ is a ^-func-
tion, (x%) has a cluster point, say g. Clearly q e M, and it is easy to
check that qeH(j(n)f χn), n = 1, 2, •••. (Recall t h a t xneH(j{ri), xn)

by (2), and that H(j(n + 1), xn+1) S H(j(n), xn).) Now p g Λf, so p ^ q.
Hence there is some nQ such that st(g, ̂ n o ) Φ ψ and pg st(g, S^o).
Choose n^> n0 such that a?Λ G st (g, ^ Λ o ) . Since xn e &*Q, there is some
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% ^ n0 such that n0 = m(i0, xn). Note that G(i0, xn) e &mu0,»n) = S^o

and that iQ^n. Now (p, q}^H(j(ri), a J g Πί=i G& #»)» so both p
and q belong to G(i0, xn)- Thus pest {q, 5^0), a contradiction. Hence
pe M, and so the proof that M is a G5 is complete.

COROLLARY 3.3. Every regular Θ-refinable Σ*-space with a quasi-
Gδ-diagonal is a σ-space.

Proof. Let X be a regular #-refinable J^-space with a quasi-Gδ-
diagonal. Now every I^-spaee is a /3-space (see [34]), and so X is
semi-stratiίiable by Theorem 3.2. Since every regular semi-stratiίiable
i^-space is a σ-space (see [57]), the proof is complete.

COROLLARY 3.4. (Bennett and Berney [11].) Every regular θ-
refinable β-space with a quasi-development is developable.

Proof. By Theorem 3.2, such a space is semi-stratiίiable. Since
every semi-stratifiable space with a quasi-development is developable
(see [10]), the proof is complete.

COROLLARY 3.5. Every regular θ-refinable wΔ-space with a quasi-
Gδ-diagonal is developable.

Proof. By Theorem 3.2, such a space is semi-stratiίiable. Since
every regular semi-stratifiable wJ-space is developable (see [22]), the
proof is complete.

COROLLARY 3.6. Every paraeompact wΔ-spaee with a quasi-Gδ-
diagonal is metrizable.

Proof. By Corollary 3.5, such a space is developable. Since every
paraeompact developable space is metrizable [12], the proof is complete.

COROLLARY 3.7. Every paraeompact wΔ-space with a θ-separating
cover is metrizable.

Proof. Let X be a paraeompact wJ-space, let Ŝ Ί, &2f be a
^-separating cover of -X". (Recall that each SfΛ is an open collection
and that given any two distinct points p and q in X, there is some
n such that ord (p, &n) is finite and there is some G in g^ such that
peG, q$G. See [31].) For each pair of positive integers n and k
let 3ί?nk = {H:HΦ φ, H = Γlti Gί9 Glf , Gk distinct elements of gf J .
Then {^fc: n, k in N} is a quasi-Gδ-diagonal for X, so by Corollary
3.6 X is metrizable.



METRIZABILITY OF TOPOLOGICAL SPACES 449

COROLLARY 3.8. (Bennett and Berney [11].) Every paracompact
β-space with a quasi-development is metrizable.

4* Hereditarily CCC spaces. In [3] ArhangeΓskiϊ proved that
every regular space which is hereditarily a Lindelof p-space has a count-
able base. In [33] the author obtained an analogue of ArhangePskiϊ's
theorem by showing that every regular space which is hereditarily a
GGC strong J-space has a countable net. These two results suggest
numerous questions concerning the metrizability of hereditarily CCC
spaces. The following problem seems particularily interesting.

Problem 4.1. Does every regular space which is hereditarily a
CCC wz/-space have a countable base?

In this section we show that the answer to 4.1 is "yes" under the
additional assumption that the space has a point-countable separating
open cover. We begin with a lemma due to ArhangeΓskiϊ [3]. Since
it is not clear in ArhangePskiFs paper that this lemma is independent
of the continuum hypothesis, we sketch a proof here. The main idea
of the proof, of course, is ArhangeΓskiϊ's.

LEMMA 4.2. (ArhangeΓskiΐ) Let X be a regular CCC space which
is hereditarily a q-space. Then X is first countable.

Proof. Let p be a point of X, and let us show that p has a
countable fundamental system of neighborhoods. Let Y* be a maximal
mutually disjoint collection of nonempty open sets in X such that
p$ V for all Fin T. Since X satisfies the CCC, T is countable, say
T = {Vn: n = 1, 2, •}. Let Z = {p} U (U~=i Vn). By the maximally
of T\ Z is a dense subset of X. Now Z is a regular g-space, and
p is a Gδ in Z({p] = ΠϊU (Z — Vn)), so by a result due to Lutzer [40]
p has a countable fundamental system of neighborhoods in Z. Since
Z is dense in X, it follows (see p. 10 of [39]) that p has a countable
fundamental system of neighborhoods in X.

THEOREM 4.3. A regular space has a countable base if and only
if it has a point-countable separating open cover and is hereditarily
a CCC wΔ-space.

Proof. Let X be a regular space. If X has a countable base,
the result is clear. Assume, then, that X has a point-countable
separating open cover S? and is hereditarily a CCC wJ-spaee. First
we show that X is separable. (The technique used here is due to
Ponomarev [53].) Suppose X is not separable. Then there is a subset



450 R. E. HODEL

Y = {xσ: 0 £ σ < ωj] of X such that xσ£ {xτ: τ < σ}~ for all <7 < ωt.
Now by Lemma 4.2, X is first countable, and so for each σ < ωx there
is a countable fundamental system of open neighborhoods {V(σ, n):n =
1, 2, .} of xσ such that for all n, V(σ, n) (Ί {xΓ: τ < σ) = ψ. Let T =
{F(σ, w) Γ) Γ: 0 ^ σ < ω l f w = 1, 2, •}, and note that Γ is a point-
countable base for Γ. Since Γis ^-compact, it follows from a result
of Aquaro [2] that Γ is Lindelof. (Also, see Lemma 3.6 of [33].)
Thus Y is a Lindelof w J-space with a point-countable base and hence
has a countable base [53]. This contradicts the fact that Y is not
separable.

Since X is separable, the point-countable separating open cover Sf
is actually countable. Now every regular wJ-space with a σ-point
finite separating open cover is developable [31]. Thus Xis a develop-
able ^ rcompact space and hence has a countable base [38].

REMARK 4.4. The above argument can be modified to prove the
following result. Every regular space which is hereditarily a quasi-
complete CCC space is hereditarily separable.

REMARK 4.5. Gittings [25] has recently proved that every regular
quasi-complete space with a Gδ-diagonal is a p-space. His argument
also shows that such a space is hereditarily a p-space. By Remark
4.4, then, we obtain this result. Every regular quasi-complete space
with a Gδ-diagonal which is hereditarily a CCC space is hereditarily
separable. It should be noted that Burke [17] has constructed a
regular p-space with a Gδ-diagonal (hence a hereditarily p-space) which
is not developable.

Problem 4.6. Does every regular wJ-space with a Gδ-diagonal
which hereditarily satisfies the CCC have a countable base?

5* Baire spaces satisfying the CCC* In [55] Sapirovskiϊ showed
that every Cech complete space has a dense subspace which is a para-
compact Cech complete space. Using this result he then proved that
every Cech complete space with a point-countable base which satisfies
the CCC has a countable base. In this section we obtain similar
results.

LEMMA 5.1. Let X be a regular space, let &l9 5f2, be a
pluming for X such that each 3 ^ is a locally finite collection. Then
X is paracompact.

Proof. Let & be an open cover of X, let &' be all finite unions
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of elements of &. It suffices to show that &' has a α-locally finite
open refinement [42]. For n = 1, 2, let ^fn = A?=i &i9 and note
that <%^ is a locally finite open cover of X. For n = 1, 2, let

J*^ = {iί in ^fn\ H is contained in some element of &'} .

To complete the proof it suffices to show that (J«=i ̂  covers X. Let
p G X, and for n = 1, 2, - -. let p e GΛ e ^ Λ . Now C(p) = f|»=i G» ί s

compact, so there is some ϋ? in &' such that C(p)S22. Choose n in
JV such that Π?=i <5, S 22. Then i ί = f|?=i G* is an element of £fn such
that peH.

LEMMA 5.2. Every regular p-space which is a Baire space has
a dense sub space which is a paracompact p-space.

Proof. Let X be a regular Baire space, and let g^, S 2̂, be a
pluming for X. We may assume that each &n is a base for X. (See
4.2 in [36].) With the aid of the axiom of choice, construct a sequence
§ϊfλ, 3ίf2j of open collections satisfying these conditions.

( 1 ) ^gζ is a mutually disjoint subcollection of 5^;
(2) Vn= \J{H: H in ^ ζ } is a dense subset of X;
( 3 ) for all w, if Heβ^n+ly then H^H' for some i Γ in ^ ς .
The technique for constructing such a sequence is well known; see,

e.g., [8], [44], or [54]. Let D = Γl»=i K> and note that D is a dense
subset of X since X is a Baire space. For n = 1, 2, let . ^ —
{£Γ Π D: H in ^ ^ } . It is clear that ^ , ^ , is a sequence of locally
finite (in fact discrete) open covers of Ό, and so to complete the proof
it suffices to show that £έ\y £^2y is a pluming for D. (Recall
Lemma 5.1.)

Let pεD, for n = 1, 2, -. let p e Ln - Hn Π D, where £Γ% e ^gς,
and let C(p) = Π»=i C^D (-^J We must show that (a) C(p) is compact;
(b) {Γ\ni=ιdD{L%)\n = 1, 2, •••} is a "base" for C(p). Observe that
pe Hne^n, n — 1, 2, and so C*(p) = Π»=i Hn is compact and
{f\ΐ=ιHz:n = 1, 2, •••} is a "base" for C*(p). We are going to show
that C(p) — C*(p), from which both (a) and (b) easily follow.

Clearly C(p) £Ξ C*(p); so let g e C*(p), and let us show that q e C(p).
First, q e D, since for all n, q e Hn+1^HnS Vn. (That Hn+1 S fl"Λ follows
from (1), (3), and the fact that pe(HnΓ\ Hn+1).) To show that qe
clD (Ln), consider an arbitrary open set R in X containing q. Now
qeHn,soRΠHnΦ ψ. Since D is dense, (R Γ) Hn) Γ) D ̂  φ. But LΛ =
fl"n Π D, so 22 Π L n ^ p.

LEMMA 5.3. Every regular quasi-complete space with a point-
countable separating open cover is a p-space.
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Proof. Let X be a regular space with a point-countable separating
open cover, let &u &2, be a quasi-complete sequence for X. For
n = 1, 2, let <^ς be an open cover of X such that {#: H in ^ }
refines 5^. Let peHne βέ?n, n = 1, 2, . Using the fact that
Ŝ i, Ŝ 2, is a quasi-complete sequence, one can easily check that
(a) C(p) = Π~=i Hn is countably compact and (b) {Π?=i H^. n = 1, 2, - —}
is a "base" for C(p). Since C{p) is a regular countably compact space
with a point-countable separating open cover, it is compact [7]. Hence

§ίf%, is a pluming for X.

THEOREM 5.4. Every regular wΔ-space with a point-countable
separating open cover which is a Baire space and hereditarily satisfies
the CCC has a countable base.

Proof. Let X be a space satisfying the hypotheses of the theorem.
By Lemma 5.3, X is a p-space. Hence, by Lemma 5.2, Xhas a dense
subspace D which is a paracompact p-space. Now D also has a point-
countable separating open cover, and so D is metrizable [47]. Using
the denseness and the metrizability of D, together with the fact that
X satisfies the CCG, one can show that X is separable. From this it
follows that X has a countable separating open cover. Now every
regular wJ-space with a σ-point finite separating open cover is devel-
opable [31]. Thus X is a developable y^-compaet space and hence has
a countable base [38].

REMARK 5.5. Comparing Theorems 4.3 and 5.4, we see that
"hereditarily wzf-space" in 4.3 can be weakened to "wzf-space", provided
the assumption "Baire space" is added. This suggests the following
problem.

Problem 5.6. Does every regular wz/-space with a point-countable
separating open cover which hereditarily satisfies the CCC have a
countable base?

THEOREM 5.7. Let X be a regular quasi-complete Baire space
which satisfies the CCC. If X has a Gδ-diagonal, or a point-countable
separating open cover, then X is separable.

Proof. If X has a Gδ-diagonal, then by a result of Gittings [25],
X is a p-space. And, if X has a point-countable separating open cover,
then X is a p-space by Lemma 5.3. In either case, then, by Lemma
5.2 there is a dense subspace D of X which is a paracompact p-space.
Since D has a Gδ-diagonal or a point-countable separating open cover,
D is metrizable (see [13], [51], [47]). Now D is dense in X and X
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satisfies the CCC, so D also satisfies the CCC. Thus D is separable,
from which it follows that X is separable.

REMARK 5.8. From Theorem 5.7 we obtain the following slight
generalization of the result of Sapirovskiϊ mentioned at the beginning
of this section. Every regular quasi-complete Baire space with a
point-countable base which satisfies the CCC has a countable base. It
should be noted that the "Baire space" hypothesis in this result and
Theorem 5.7 is not superfluous. Indeed, Pixley and Roy [52] have
constructed a regular developable space with a σ-point finite base which
satisfies the CCC but is not separable.

6* A metrization theorem for Moore spaces* In this section we
extend two theorems of Traylor on the metrizability of Moore spaces.
(See Theorems 4 and 5 of [63].) This new result should be compared
with a theorem of Borges [14], which states that every locally con-
nected, locally peripherally compact paracompact space with a Gδ-
diagonal is metrizable.

THEOREM 6.1. Let X be a locally connected, locally peripherally
separable meta-Lindelof Moore space. Then X is metrizable.

Proof. It suffices to show that X i s paracompact [12]. Let rέ? —
{Ca: a in A} be the collection of all distinct components of X. Thus,
each Ca is a closed, connected subset of X, and a Φ β implies Ca Γ)
Cβ — φ. Since X is locally connected, each Ca is also an open subset
of X. It is easy to check that each Ca is a connected, locally connected,
locally peripherally separable meta-Lindelof space, and so by a result
of Grace and Heath [26], each Ca is Lindelof. Now any regular space
which is the union of a disjoint collection of open sets, each of which
is Lindelof, is paracompact. This completes the proof.

7* Metrizability of countable unions* Let X be a regular space,
and suppose that X = \Jn=i Mn, where each Mn is a metrizable subset
of X. The following are known conditions under which X itself is
metrizable:

( 1 ) X is locally countably compact and each Mn is separable
(Smirnov [60]);

( 2 ) X is collectionwise normal and locally countably compact,
and each Mn is closed (Stone [62]);

( 3 ) X is a collectionwise normal #>-space, M,x is separable, and

Mn is closed for n ^ 2 (Coban [20]);
( 4 ) each Mn is locally dense, and X is one of the following:

(i) separable; (ii) locally compact; (iii) α-compact (Corson-Michael [21]).
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{Recall that a subset of X is locally dense if it is a dense subset of
an open subset of X. This definition, due to Corson and Michael, is
a clever device for considering subsets which are either open or dense.}

In this section we obtain generalizations of these results. In
particular, Theorem 7.1 unifies and generalizes (1), (2), and (3), while
Theorem 7.4 extends (i) and (iii) of (4).

THEOREM 7.1. Let X be a collectionwise normal space which is
locally a quasi-complete space, and suppose that X = (J"=i Mn9 where
each Mn is metrizable and either separable or closed. Then X is
metrizable.

Proof. If Mn is separable, then it has a countable base and hence
a countable net. On the other hand, if Mn is closed, then there is a
σ-locally finite collection in X which is a net for Mn. It easily follows
that X has a cx-locally finite net, and hence is a σ -space. In particular,
then, X is semi-stratifiable and subparacompact [22]. Now every
regular semi-stratifiable quasi-complete space is developable [22], and
so X is locally a developable space. Since every subparacompact
locally developable space is developable [15], we see that X is a
collectionwise normal developable space and thus metrizable [12].

REMARK 7.2. It is clear that (2) and (3) follow from Theorem
7.1. To see that (1) also follows from 7.1, note that a countable union
of separable metrizable spaces is Lindelof and that every regular
Lindelof space is collectionwise normal. As the following example
shows, the hypothesis that X is locally a quasi-complete space is not
superfluous.

EXAMPLE 7.3. A nonmetrizable, paracompact semi-metric space
which is a countable union of closed separable metrizable subsets. The
space S described by Heath in [27] has the required properties.

THEOREM 7.4. Let X be a regular space such that X = \Jn=i Mn,
where each Mn is a locally dense, metrizable subset of X. Then X
is metrizable if it satisfies any of the following:

(a) X is locally a CCC space;
(b) X is a wN-space;
(c) X is a normal β-space;
(d) X is a normal countably metacompact p-space.

Proof. First we show that X has a σ-disjoint base. For n =
1, 2, let Rn be an open subset of X such that Mn is a dense subset
of Rn. Since Mn is metrizable, it has a cr-disjoint base &n —
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\Jk=ι&n,k9 w h e r e &ntk = {Ba> cc in An>k} is a disjoint open collection in
Mn. F o r each a in AnΛ let Ga be an open subset of Rn such t h a t
GaC) Mn = Bay and let &ntk = {Ga: a in Antk}. I t is easy to check t h a t
^Λ > f c is a disjoint open collection in X. To see t h a t {&ntk: n, k in N}
is a base for X, let p e l and let U be an open neighborhood of p.
Let F be an open neighborhood of p such t h a t F £ C 7 , and choose n
in iV such t h a t peMn. F o r some α in Antk9 pe BaQVΠ Mn. N o w
GaSj?α since jlfΛ is dense in i ϊ Λ , so peGa^U.

As consequences of the fact t h a t X h a s a cr-disjoint base, we note
t h a t X is screenable and is a 7-space.

To prove (a), a s sume t h a t X is locally a GCC space. Since X h a s
a σ-disjoint base, it easily follows t h a t X is locally metrizable and
locally separable. N o w it is easy to check t h a t every open cover of
a locally separable screenable (in fact meta-Lindelof) space has a s tar-
countable open refinement. I t follows t h a t X is paracompact . (See
[58] or p . 229 of [23].) Since every p a r a c o m p a c t , locally metrizable
space is metr izable [ 5 9 ] , t h e proof of (a) is complete.

To prove (b), a s s u m e t h a t X is a wiV-space. Since X has been
observed to be a 7-space, it follows t h a t X is metrizable [32] .

To prove (c), a s sume t h a t X is a n o r m a l , /S-space. The metrizability
of X follows f rom the fact t h a t every Tlf β, 7-space is developable
[32] and t h a t every n o r m a l screenable developable space is metrizable
[12].

To prove (d), a s s u m e t h a t X is a n o r m a l , countably metacompact
p-space. By (c), it suffices to show t h a t X is a /S-space. This follows
from the fact t h a t every countably m e t a c o m p a c t screenable space is
metacompact and t h a t every m e t a c o m p a c t p-space is a /S-space [16].

R E M A R K 7.5. N o t e t h a t (i) of (4) follows f r o m (a) of Theorem 7.4,
while (iii) of (4) follows f rom (c) of 7.4. In addit ion, (b) of 7.4
generalizes Theorem 5.1 in [ 3 7 ] . As the following example shows,
the assumptions in (a), (b), (c), and (d) a r e n o t superfluous.

E X A M P L E 7.6. A nonmetrizable completely regular developable
space which is the union of two open metrizable subsets. Consider
the space S described by H e a t h in [ 2 8 , E x a m p l e 2]. The points of
S a r e all points of the plane on or above t h e ίc-axis, and S (equipped
with the topology described in [28]) is a completely r e g u l a r nonnormal
screenable developable space. Let U be all ra t ional points on the x-
axis together w i t h all points of the plane above the cc-axis, and let
V be all i r ra t ional points on the x-axis t o g e t h e r wi th all points of the
plane above the ίc-axis. Then S = U U V, a n d U and V are open
metrizable subsets of S.
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In [21] Corson and Michael prove that every normal Cech complete
space which is the union of two locally dense metrizable subsets is
metrizable. They also ask if the restriction to just two sets is really
necessary. We now show that their result holds for any finite union,
and that "Cech complete" can be weakened to "p-space".

LEMMA 7.7. Let M be a locally dense, countably paracompact
subset of a topological space X, let {Un: n = 1, 2, •} be a countable
open collection in X which covers M. Then there is a point-finite
open collection {Wn:n = 1,2, •••} in X which covers M such that

Proof. Let R be an open set in X such that M is a dense subset
of R. Since M is countably paracompact, there is a cover {Vn: n =
1, 2, •••} of M, locally finite and open in M, such that VnSUnΓϊ M,
n = 1, 2, . For each n let Gn be an open subset of R such that
G κ n l = Vn, and let

L = {p 6 R: {Gn: n = 1, 2, •} is locally finite at p) .

Clearly L is open, and M£ L since M is dense in R. For n = 1, 2,
let Wn = Lf]Gnf] Un. Then {Wn: n = 1, 2, . -} is the desired point-
finite open collection.

THEOREM 7.8. Let X be a normal p-space which is covered by
a finite number of locally dense, metrizable subsets. Then X is
metrizable.

Proof. By Theorem 7.4, part (d), it suffices to show that X is
countably metacompact. But this follows immediately from Lemma
7.7.

Added in proof. The notion of a quasi-Gδ-diagonal has been
studied by other topologists. In particular, Lutzer [Dissertationes
Math. 89 (1971)] has proved that a LOTS is quasi-developable if and
only if it has a quasi-Gδ-diagonal, and Shiraki [Proc. Japan Acad.
47 (1971), suppl. II, 1036-1041] has proved that every regular,
metacompact, wz/-space with a quasi-Gδ-diagonal has a uniform base.
A. Okuyama, in a private communication, has answered Problem 5.6
affirmatively under the assumption of the continuum hypothesis.
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