
PACIFIC JOURNAL OF MATHEMATICS
Vol. 55, No. 2, 1974

GROUPS OF MATRICES ACTING ON
DISTRIBUTION SPACES

S. R. HARASYMIV

Let E be a locally convex space of temperate distributions
on the ^-dimensional Euclidean space Rn, and G aclosed sub-
group of Gl (n, R), the general linear group over Rn. An
attempt is made to identify those distributions which can be
approximated in E by linear combinations of distributions of
the form u(Ax + 6), where u is a fixed element of E, A varies
over G, and b varies over Rn. A cancellation theorem is
proved; this then allows the support of the Fourier transform
of any annihilator of the set of distributions of the form
u(Ax + b) to be localized. This in turn is used to obtain
approximation results.

1* Notation. Throughout, Rn denotes ^-dimensional Euclidean
space. The character group of Rn is again Rn, the identification
being made in such a way that multiplicative factors in the Fourier
inversion formula are eliminated. The Haar measure on Rn is denoted
by dx.

We denote by Cc°°( U) the space of indefinitely differentiate func-
tions on Rn which have compact support inside the open set U in Rn,
S(Rn) is the space of rapidly decreasing indefinitely differentiable
functions on Rn. The space of all Schwartz distributions on Rn is
designated by D'(Rn), and its subspace consisting of temperate dis-
tributions is denoted by S\Rn).

Gl (n, R) is the general linear group over R\ The determinant
of an element A in Gl (n, R) is written det A, and A! denotes the
adjoint matrix of A,

Now, consider a fixed element A in Gl (n, R). Then it is easy
to see that the function

x > φ(Ax) (x e Rn)

belongs to C"(Rn) whenever φ does. We write όA for this function.
This definition is extended to include all distributions by making use
of the adjoint of the map which carries φ onto φA. More precisely,
if u is a distribution, then we define uA to be the unique distribution
which satisfies

<<*, uA> = I det A'11 (ψA~\ u) (φ e C7{Rn)) .

The translate of a distribution u by an element b in Rn is defined
in the usual fashion, and denoted by ub. We write uA for (uh)

A.
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These notational conventions entail that when u is a function, then
uf is the function defined by

uf(x) = u(Ax + b) (x G Rn) .

Let G be a closed subgroup of Gl (n, R), We write Gf for its
adjoint group. G will always be equipped with the topology induced
by Gl (n, R). With this topology, G is a Lie group. We write dA
for left Haar measure on G. If V is an open set in (?, then CΓ(V)
denotes the set of all smooth functions on G having compact support
in V.

Finally, again consider a closed subgroup G of Gl (n, R). If E
is a locally convex space of temperate distributions which is invariant
under all mappings of the form u —> uA

9 where A is a fixed element
of G, we say that E is G-invariant. Similarly, if E is invariant
under all maps of the form u-^uh, where 5 belongs to Rn, then we
say that E is translation invariant. Now, suppose that E is both
translation invariant and G-invariant, and that u is an element of
E. We denote by TG[u] the closed linear subspace of E spanned by
the set of all distributions of the form u£, with A in G and b in Rn.

2* Preliminaries* We shall be concerned with the problem of
characterizing TG[u]; that is, given two distributions u and w in E,
when can we say that w belongs to TG[u]Ί Without some restrictions
on E, the problem is a rather intractable one. However, quite mild
assumptions about E enable us to obtain a great deal of information
about TG[u\. These assumptions are mild in the sense that they allow
us to include most of the classical distribution spaces in our results.
In essence, the assumptions are that the topology on E is barrelled,
and that the action of the topological dual of E can be expressed as
a "convolution". We examine this situation below.

DEFINITION 2.1. (cf. [1]). A locally convex space of temperate
distributions is admissible if

(i) S(Rn) is a dense subspace of E,
(ii) The inclusion maps S(Rn) —+ E —+ S'(Rn) are continuous.
The topological dual space of an admissible space can be identified

with a subspace of S'(Rn) which contains S(Rn). We shall always
make this identification in such a way that the relations

<Φ,v) = φ*v(0) (ψeS(Rn),veEf)

(u, o) - u * 9(0) (ueE,όe S(Rn))

hold.
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DEFINITION 2.2. Let G be a closed subgroup of Gl (n, R). If E
is a 6?-invariant and translation invariant admissible space, we say
that E is a G-space if it has the following properties.

( i) For each u in E, the map x —* ux is continuous from Rn

into E for the weak topology on E.
(ii) For each x in Rn, the map u—*ux is weakly continuous

from E into i?.
(iii) For each u in E, the map A —* uA is continuous from G

into i? for the weak topology on E.
(iv) For each A in 6?, the map u —* uA is weakly continuous

from E into E.
(v) For each u in E and each w in Ef, the continuous (by (i))

function x —> (μx, v} is a temperate distribution on Rn.
We shall find it convenient to denote by u*v the function in (v)

above.
The next result lists some of the basic properties of G-spaces.

These properties will be used repeatedly and without further reference
in what follows.

PROPOSITION 2.3. Let E be a G-space, where G is a closed sub-
group of Gl (n, R). Then

(a) Er is translation invariant, and for each b in Rn

u*vb = ub*v = (u*v)b (ue E, ve Ef) ,

(b) E' is G-invariant, and for each A in G

u*vA = I det A~ι\(uA~ι*v)A (ueE, veE') .

If E is barrelled, then we have also
(c) E! is a module over S(Rn) with respect to convolution, and

for each ψeS(Rn)

u*(v*ώ) = (u*v)*φ (ue E, ve Ef) .

Properties (a) and (b) reflect the fact that the maps u—+ub and u —>
uA of E into E, being weakly continuous, have adjoints which are
weakly continuous from E' into Er, Property (c) derives from the
fact that, if E is barrelled, the map u—+u*v is continuous from E
into S'(ίΓ), for each fixed v in E\ This may be verified by making
use of the Closed Graph theorem; see [2].

Most of the classical spaces of temperate distributions are Gl (n,
iϋ)-spaces, and hence G-spaces for every closed subgroup G of Gl (n,
R). The following result identifies a large class of (?-spaces. However,
since we shall not need this result in what follows, we omit its proof.
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PROPOSITION 2.4. Let G be a closed subgroup of Gl {n, R) and E
a G-invariant and translation invariant admissible space. Suppose
that E is barrelled, Br-complete and a module over S(Rn) with respect
to convolution. Then E is a Gspace if and only if the following
conditions hold.

(i) For each u in E, the map x—+ux of Rn into E is bounded
on compact subsets of Rn.

(ii) For each u in E, the map A-+uA of G into E is bounded
on compact subsets of G.

3* The function qVF. In this section, we construct a certain
function, which will serve as the basic tool in proving our approxi-
mation results. Before we carry out this construction, it is con-
venient to introduce some additional notation.

Suppose that H is a closed subgroup of Gl (n, R), of Lie group
dimension m^n. Let θ: (tu , tn) —• θ{tu , tm) be a diffeomorphism
of a neighborhood of the origin in Rn onto a neighborhood of the
identity in H, and such that #(0, , 0) is the identity matrix. We
write θjk(tlf •••,*„) for the (j, k)th matrix element of θ(tlf , tm). Let
1 be the set of all subsets of {1, •••, m) which have cardinality n.
Suppose that i = {ίlf , in) is an element of / (we adopt this notation
because we shall be using / as an index set). We define a polynomial
Pi on Rn by setting P^x) = P(xlf , xn) to be the determinant which
has, as its (j, k)th entry, the expression

evaluated at tγ — t2 — = tm = 0. Then each Pt is a homogeneous
polynomial of degree n. We write Z{H) for the set of common zeros
of these polynomials; that is,

Z(H) = Γl {̂ : P%(x) = 0} .
iel

We can now turn our attention to the promised construction.
Let H be a closed subgroup of Gl (n, R). Consider a distribution q
in D\Rn) and a function F in Cτ(H). If φ is in C7(Rn), then the
mapping

A ><q\φ> (AeG)

defines a continuous function on H. It then follows that we can
define a linear functional

Φ A <qΛ,Φ>F(A)dA
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on C~(Rn). We claim that this functional is continuous, and hence
a distribution on Rn. For if (φt) converges to φ in C?(Rn), then it
does so uniformly on equicontinuous subsets of D\Rn). Now, the set
{qA: A e supp F} is the image in D'{Rn) of the compact subset supp F
of H under the map A to qA. Since this map is continuous for the
weak topology on Dr(Rn), {qA: A e supp F) is weakly compact as a
subset of D'{Rn). It is thus an equicontinuous subset of D\R%)
(because C7(Rn) is barrelled) and so

lim (qA, φty = {qA, φ)
i

uniformly for A in supp F. Form this, it follows that

lim \ (qA, φi)F(A)dA = \ (qA, φ}F(A)dA

which proves our assertion.
In view of the above, we may now define a distribution qVF

on Rn by setting

<Φ, qVF} = \ <qA, φ)F(A)dA (φ G C7{Rn)) .

Using a similar argument, with S(Rn) in place of CT(Rn)f it can
be shown that qVF is a temperate distribution whenever q is.

We have the following result.

LEMMA 3.1. Suppose that H has dimension m ^ n. Then qVF
is an indefinitely differentiable function on R2\Z(H) for every q in
D\Rn) and F in C7(H). Moreover, for each multi-index a

= Σ (Dβq)V(Ga

βF)

where each Ga

β is a smooth function on H depending only on a and β.

Proof. The proof proceeds in several stages.

First, we make the observation that if / is a continuous function
on R%, then for each φ in C?(Rn), and each F in C?(H)

fA, φ)F(A)dA

= [ \\ f{Ax)φ{-x)dx\F{A)dA

from which it follows that fVF is the function
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(3.1) fVF(x) = \ f(Ax)F(A)dA .

It is easy to see that this function is continuous on Rn.
We now show that if x is not in Z(H) then there exists a

neighborhood Ux of x in Rn and a neighborhood Vx of the identity
in H such that, for every continuous function / on Rn and every
F in C?(VX), fVF is indefinitely diίf erentiable in Ux. To do this, choose
a diίf eomorphism Θ of a neighborhood of the origin Rm onto a neigh-
borhood W of the identity in H, as in the opening paragraphs of this
section. If W is chosen to be sufficiently small, then there exists an
indefinitely differentiate function h on Rm such that

F(A)dA = [ F(θ(t))h(t)dt
H JR™

for all F in C?(W); see [3]. In particular, (3.1) becomes

(3.2) f7F(x) = ( f(θ(t)x)F(θ(t))h(t)dt

for every continuous / on Rn and every F in Cτ{ W). Now, in view
of the choice of x, there is an i in I such that P^x) Φ 0. We may,
without loss of generality, assume that i = {1, 2, -- ,w}. Consider
now the map

of i?w+ί l into i2w+% which is defined by

sk = θφl9 , tm)yx + + 0*^, , Ul/. (1 ̂  k ^ w)

sk = tk (n + 1 ̂  k ^ m)

zk = yk (l^k^n) .

It is easy to verify that the Jacobian of this transformation, evaluated
at tt = = ίw = 0, yt = a?!, , ̂  = xn, is just P<(a;), which is nonzero.
Thus, there exists a neighborhood Ux of x in iϋ% and a neighbor-
hood Vβ of the identity in H, such that the Jacobian of the trans-
formation (3.3) does not vanish on Ux x θ~ι(Vx). The Inverse Function
theorem now tells us that the transformation, when restricted to
Ux x θ~ι{Vx), has an inverse

which clearly has the form

tk = Qtfβi, , 8m, Zi, , zn) (1 ^ k ^ m)

yk = «jb (1 ̂  & ^ w)
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where gu — ,gm, are indefinitely differentiable functions on Rm+n.
We write this briefly as

(3.4) * = Φ ' Z)

y = z .

We assume that Vx is contained in W. If this is the case, then, in
view of (3.2),

(3.5) \ φ{y)fVF{y)dy = \ φ(y)f(θ(t)y)F(θ(t))h(t)dtdy

for all φ in CT(UX), F in C7{VX), and each continuous function / on
RΛ. If we now make the change of variables defined by (3.4) in the
integral on the right of (3.5), we find that

[ φ(y)fVF(y)dy - f φ(z)f'(s)F'(s, z)h'(s, z)J(s, z)dsdz
(3.6) jRn 3;n+m

φ(y)f'(s)F'(s, y)h'(s, y)J(s, y)dsdy

where the functions / ' , Ff, and K are defined by

f'(8) = f(8l9 . . . , 8 n )

F'(8, z) = F(θ(g(s, z)))

h\s, z) = h(g(s, z))

and / is the Jacobian of the transformation (3.4). From (3.6), we
deduce that

= \ f'(s)F'(s, y)h'(s, y)J(s, y)ds
)R™>

for all y in Ux. Since F', h'f and / are indefinitely differentiable on
Bm+n, the indefinite differentiability of fVF in Ux is now evident.

We now go a step further, and show that fVF is indefinitely
differentiable everywhere in Rn\Z(H) for all F in C?(H) and all con-
tinuous functions / on Rn. First, we make the observation that

(3.6) P^x) = det A-1-PtiAx)

for all x in Rn, A in H, and i in /. To see this, assume, without
loss of generality, that i = {1, 2, , n). Temporarily denote by T
the map (3.3) of Rm+n into itself. Then T is composed of the maps

(3.7) (t,y) >(t, A-'y)

and

(3.8) (ί, y) > Γ(ί, Ay) .
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Hence, the Jacobian of T is the product of the Jacobians of the maps
(3.7) and (3.8). Evaluating these Jacobians at t = 0, y = x, we get
(3.6). It now follows that if x is in Rn\Z(H) then the same is true
for Ax, for all A in H. Thus, in the notation of the preceding
paragraph, we may choose, for each A in H, a neighborhood UAx of
Ax and a neighborhood VAx of the identity in H, such that fVG
is indefinitely differentiable in UAx whenever G is in CT{VAx) and /
is a continuous function on Rn. Now let F be an arbitrary element
of C?(H). Then the collection of open sets {VAxA: A e supp F} covers
the compact set supp F in H. (Here, VΛxA denotes the set {BA: Be
VΆχ} ) Thus, there exists a finite number of elements Au •••, Ar in
H such that

supp F c VAlXA. U U VArXAr .

Now choose functions Fl9 , Fr in C~(H) such that

ί\ + + Fr = 1

on supp F and

supp Fk c F^A*

for k = 1, , r. Then we clearly have

(3.9) fVF = fV(FF,) +

We claim that each of the functions fV(FFk) is indefinitely diffe-
rentiable on some neighborhood U of x. To prove this, write

and define (for fe = 1, , r) the functions Gk by

Gk(A) = F(AAfc)^(AAfe) (Aeff).

Then Ĝ  belongs to CC°°(F4A;J, and so fVGk is indefinitely diίϊerentiable
in UAkX. But, if Δ denotes the modular function of H, then for each
φ in C7(Rn)

\ fV{FFk){x)φ{-x)dx = \ <fA, φ)F(A)Fk(A)dA

)1 det Ar

Δ(Aϊι) I det Aττ I ( f*Gk(x)φAτι{ - «)da;

J(A^) [ fVGk(Akx)φ(-x)dx .
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Thus, we conclude that

AkX,

x

for all x in Rn. Since fVGk is indefinitely differentiable in UAkX,
it follows that fV(FFk) is indefinitely differentiable in Aϊ\UAkX), and
hence in U. Thus fVF is also indefinitely differentiable in U.

Now consider an arbitrary distribution q in D\Rn). Again, let
be an arbitrary point in Rn\Z(H). We first notice that for each

multi-index a, and each ψ in C7{Rn), we clearly have

Da(ΦA) = Σ

where the Ga

β are C°° functions on H depending only on a and /3.
It follows easily that for each distribution q on E\

(3.10) Ώ\qA) =
\β\

and

(3.11) ( D ^ =

where we have written

G%A) = G^A'1) (AeH) .

Now choose a neighborhood W oί x which has compact closure. Then,
inside W9 q can be expressed as

Q = Σ ΛβΛ

where the fa are continuous functions on Rn, and the sum is finite.
Using (3.11), we see that if F is in C7(H) and ψ is in C?(B?)> then

< ,̂ (D«fa)VF) - f <(Z>αΛ)̂ , ^>F(A)ώA

= Σ ( <D>(fi), φ)G%A)F(A)dA
β JH

(3.11) = Σ ( <fi, D?<p}G%A)F(A)dA
β JH

= Σ <D
β

= Σ <Φ,

We infer that

(D«fa)VF =
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as distributions on Rn. But, in view of what we have already shown,
each of the functions faV(Ga

βF) is indefinitely diίferentiable on some
neighborhood U of x. The same is therefore true of the distributions
{Dafa)VF. Now, it is evident that

qVF = Σ (Dafa)VF
a

in W. Since we may obviously assume that U is contained in W, it
now follows that the distribution qVF is an indefinitely diίferentiable
function in the neighborhood U of x. This completes the proof of
the first assertion in Lemma 3.1.

To prove the second assertion, we refer to (3.10) and carry out
a computation similar to (3.12).

LEMMA 3.2. Suppose that H has dimension m^n. Let q be a
distribution on Rn and x a point in suppg which is not in Z(H).
Then there is a function F in C?(H) such that qVF(x) Φ 0.

Proof. Write S for the set of all points z in Rn\Z(H) such that,
for some F in C?(H), qVF(z) Φ 0.

We first observe that x is in the closure of S. For suppose that
there were a neighborhood U of x which contained no points of S.
This would entail that each function qVF vanishes identically in U.
It would then follow that, for each φ in Cc°°( U) and each F in C?(H),

<Λ φ)F(A)dA = ί qVF{y)φ{-y)dy

= 0 .

This would lead to the conclusion that the function A —> (qA, φ} is
identically zero on H, for every φ in C7{U). In particular, we would
have

<q,Φ) = O (φeC7(ϋ))

contradicting the fact that x is in supp q.
We know that P^x) Φ 0 for some i, and, as usual, we assume

that i = {1, 2, , n). Consider the map

( ί i , •••, tm) >(ylt •••, ym)

of Rm into itself defined by

yk = θkι(tlf , tm)x, + - + θkΛ(tu , ί K (l^k^n)
yk = tk (n + l^k ^m) .

The Jacobian of this transformation is Pi{x)9 and is therefore nonzero
at tγ — = tm = 0. Hence this map carries a neighborhood W of
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the origin in Rm onto a neighborhood of the point (xu , xn, 0, , 0).
It follows that the set {θ(t)x: t e W) is a neighborhood of x in Rn and,
consequently, so is the set {Bx: Be H}. Since x is in the closure of
S, there must be a point z in S which has the form z = Bx, for some
B in H. Choose a function G in C?(H) such that qVG(z) Φ 0, and
define the function F by

F(A) = G ^ S ' 1 ) (Aeff).

Then ί7 is in C?(H). Moreover, using an argument similar to one
used in the course of the proof of Lemma 3.1, it may be shown that

qVF(y) = qVG(By) (y e Rn) .

It follows that

qVF(x) = qVG(z) Φ 0

as we wished to show.

4* A cancellation theorem* In this section, we prove our
main theorem. Before we do so, however, it is necessary to make
some brief comments about notation. We shall want to make use of
the Schwartz-Fourier transform. Now, if q is a temperate distribution
and A is in Gl (n, R), then it is easy to verify that

(4,1) (QA^ — I det A " 1 ί QA"~

It appears, then, that we shall be dealing with both a closed subgroup
G of Gl (n, R) and its adjoint group (?'. It is actually to the group
Gf that we shall apply the theory developed in the preceding section.
As far as the operation V is concerned, we shall use it in both the
case when we are considering the group G and in the case when we
are considering the group G'. Thus, if q is a distribution on Rn and
F is in C?(G), we shall write qV F for the distribution defined in
§3 (with G playing the role of if); but also, if q is a distribution
and F' is in C?(G'), we shall write qVFr for the distribution arising
when we replace H by Gf in the definitions of §3. The context makes
evident the group (G or 6?') with respect to which the operation V is
being defined.

We begin with a lemma. This will then yield the main theorem
as an easy corollary.

LEMMA 4.1. Let G be a closed subgroup of Gl (n, R) of dimension
m ;> n. Let E be a barrelled G-space. Then for all u in E, v in
E\ F' in C?(G'), and φ in C7(Rn) such that



414 S. R. HARASYMIV

supp φ c Rn\Z(G')

we have the identity

iΦ, uVF' v} = \ <uA~\ v*φ)F'(A')dA' .
Jc

Proof. Recall that if q is a temperate distribution, then so is
qVF'. Thus if φ is in C?(Rn), then

(4.2) = ί <^', ( ^

= t <(<r"r,
JG'

= t \tetA-ι\(qA-\φ.yF\A')AA'
Jc

= ( I det A'11 1

Now consider a temperate distribution v, a function F' in C?(G'),
and functions ψ in S(i2%) and φ in CΓ(i2%). Then, if (ηt) is a net
extracted from S(Rn) which converges to v in S'(i2w), we have, by
virtue of (4.2),

(φ, ψVF'-v) = lim, (ψVF'-φ, η,}

= lim ί [̂ VJP' ^ ^

= lim ( ( I det A"

= lim ( I det A~ι \ f^1 * φ * ηMF\Ar)dAr.

Now, the set

is a bounded subset of S(Rn). Hence

uniformly for A! in supp F\ Thus (4.3) becomes

(4.4) (φ, fVF' v) = f I det A"11 ψ^1"1 * φ
JC

Now consider a fixed Φ in C?{Rn) with
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supp φ c Rn\Z(G')

and a fixed Fr in Cr(tr'). Then, for each u in E, uVF' is indefinitely
differentiate on a neighborhood of supp φ (by Lemma 3.1). Thus
uVF'-φ is in C?(Rn) and so [uVF'-φY is in S(Rn). We claim that
the map

(4.5) u >[ύVF'-φΓ

is continuous from E into S(Rn). Since 1£ is barrelled and S(Rn) is
fully complete, it suffices to show that the graph of this map is
closed. Thus, assume that (ut) converges to u in E and that

^Γ = V

in S(Rn). Then, for each λ in C7(R% we have, in view of (4.2),

9?*λ(0) = \\m[u?7F'-φY*X(ϋ)
i

= lim ί [#tVF' ^] Λ(α?)λ( - x)dx

= lim ( ί I det 4-11 itf"1 * 4>{%)F'{A')X( - x)dA'dx

= lim ( I det A'11 %f-1 * ̂  * X(0)F'(A')dA'
i JC

= lim (
i JG'

Now, since supp i*7' is compact, the set {A: A! e Supp .F'} is a compact
subset of G. Hence, since E is a (?-space, the set

is a weakly compact, and hence equicontinuous (E being barrelled)
subset of JE". It follows that

uniformly for A! in suppF'. Using this in (4.6), we get

= \ (v,, ($*\)AyF'(A')dA'
J G1

= [ I det A'11 (uA~\ φ * xyF'(A')dA'
JG'

= [ I det A"11 v,A~x * φ * X(0)F\A')dA'
JG'

= ( ( I det A"11 wA-1 * $(x)F\A')dA'X( - x)dx
JRn JG'
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We conclude that η coincides with [ϋvF'-φY and therefore the graph
of the map (4.5) is indeed closed.

Now consider again a function φ in C?(Rn) with

supp φ c Rn\Z{G') .

Let (fi) be a net extracted from S(Rn) which converges to u in E.
Using the continuity of the map (4.5) and relation (4.4), we find that

<φ, ύVF'-v} = <ύVF'>φ, v)

'-φ, Vs)

= lim ( I det A"11 fi~Λ * φ * v(O)F'(A')dA'

= lim [ j det A~x \ (^Γ\ Φ * v}F'(A')dA'

= \ I det A"11 <uA-\ φ * v}F'(A')dA'
JG'

the last equality following from a now familiar argument. This
completes the proof of our lemma.

THEOREM 4.2. Let Gbea closed subgroup of Gl (n, R) of dimension
m ^ n. Suppose that E is a barrelled G-space. Let u in E and v
in Ef be such that

(4.7) « v} - 0

for all A in G and b in Rn. Then

supp v Π I U A'(supp #)
UeC

Proof. Relation (4.7) entails that

(uΛ, ψ * v) = 0

for all ψ in S(i2%). Lemma 4.1 now tells us that uVF'-v vanishes
in Rn\Z{Gf) for all F' in C7(G'). Lemma 3.2 now leads us to the
conclusion that

supp v Π supp uA'~x c Z(G')

for each A in G. Since

supp ίi^'"1 = A'(supp u)

the desired result follows.

5* A density theorem* Let E be a subspace of S'(Rn). If S
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is a subset of Rn, we say that S is a set of uniqueness for E relations

supp vaS,veE

entail that v = 0.

THEOREM 5.1. Let G be a closed subgroup of Gl (n, R) of dimen-
sion m ̂  n. Suppose that E is a barrelled G-space and that the set
Z{Gr) is a set of uniqueness for E'. Let u be an element of E.
Then TG[u] coincides with the whole of E if and only if

(5.1) U{^'(suppu):AeG}

is dense in Rn.

Proof. The density of the set (5.1) is clearly necessary for TG[u]
to coincide with E. For suppose that some nonvoid open set U in
Rn did not intersect the set (5.1). Consider a nonzero φ in C7(Rn) with
support in U. Then its Fourier transform φ is a nonzero element of
Ef which annihilates TG[u],

To prove the converse, suppose that (5.1) is dense. Let x be
in Rn\Z(G'). Then, as in the proof of Lemma 3.2, we deduce that
{A'x: AeG} is a neighborhood of x. Thus, there exists a point in
the set (5.1) which is also in {A'x: AeG}. In other words, there is
a point z in supp u, and elements A, B in G, such that A'z = B'x.
Hence, x = B'~ιA'z is in the set (5.1). By Theorem 4.2, x cannot
belong to the support of the Fourier transform of any distribution
v in Ef which annihilates TG[u]. It follows that if v annihilates
TG[u], then we must have supp v contained in Z{Gf). Since Z{Gf)
is a set of uniqueness for Ef by assumption, we infer that v = 0. The
Hahn-Banach theorem now tells us that TG[u] is the whole of E.

The problem considered above has been studied by Gosselin [1]
in the case when E is the space Lebesgue square integrable functions,
but with no restriction on the dimension of G. The approach in [1]
is a measure theoretic one.
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