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LINEAR PINCHERLE SEQUENCES

E D DUBINSKY

Dragilev's theory of regular bases in nuclear Frέchet
spaces is applied to obtain necessary and sufficient conditions
in terms of the zeros for a linear Pincherle sequence to be a
basis for the space ^ R of functions analytic on the interior
of the disk of radius R ^ oo. It is shown that a linear
Pincherle basis is always proper. All possible phenomena for
the basis radius of a linear Pincherle sequence are exhibited.
In this connection it is shown that for any finite Ro > 0 there
is a sequence of analytic functions which is a basis for &~R

if and only if R ^ Ro or R — oo.

A classical problem of fundamental interest is to study the
representability of analytic functions as infinite series in a given
sequence of functions. The purpose of this note is to point out one
case in which recent developments in the theory of nuclear Frechet
spaces are directly applicable and lead to results which have not been
obtained by other methods.

In order to describe the results it is necessary to explain certain
concepts. A sequence (an) in a Frechet space E is a basis if each
x £ E has a representation x = Σ cnan where (cn) is a sequence of
scalars uniquely determined by x and the infinite series converges in
the topology of E. Two bases, (an) and (βn) are equivalent if Σ cnan

converges in E if and only if ^ cnβn converges in E.
Let 0 < R <; oo. We shall be interested in the nuclear Frechet

space J^R consisting of all functions analytic on the open disk of
radius R, equipped with the topology of uniform convergence on
compact sets. As is well known, the sequence (zn) is a basis for ^R.
An arbitrary basis, (an) for ^r

R will be called proper if it is equiva-
lent to (zn).

The general question then can be viewed as the problem of
determining when a sequence (an) is a basis for ^"R and when it is
a proper basis. Of course, one can only hope for conclusive results
in special cases. M. Arsove, in a series of papers over the past
15 years (see [1] for a bibliography) has considered Pincherle sequences
in which an has the form an(z) = znψn(z), n = 0, 1, 2, where each
ψn is a function in ^ R and ψn(0) = 1. Most recently, in [1], Arsove
studied linear Pincherle sequences in which each ψn is a nonconstant
linear function with its zero at zn, so we can write,

oc«. =
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Our results can then be described as a complete determination,
in terms of the sequence of zeros (zn), of when a linear Pincherle
sequence is a basis and when it is proper. Also we consider the
question of how the result depends on the value of R. It is hoped
that both our results and our method will be useful in studying
general Pincherle sequences.

Our method is to apply a deep result of M. M. Dragilev ([3],
Theorem 5), which we use in the formulation given by C. Bessaga
[2]. In order to describe the method, we must introduce some further
concepts. Let (xn) be a basis for a nuclear Frechet space E. We say
that the basis is regular if there is a fundamental sequence of semi-
norms (|| ||fc) for E such that

l|a»lU ^ Ha»+ilU f o r a Π n a n d k #

l | I U ||||
We say that the basis is of type Ώt or D2 if we have (|| |U) s u c h
(R) is satisfied and

(Di) II %n Hi = 1 for all n and Vklj B j ^ ψ

or

(D2) lim || xn \\k = 1 for all n and Vklj 3 sup ϋ ^ j j * ^ 1 .
k % l l ^ ϋ i

Then the main result which we will use in this paper is due to
Dragilev and has the following formulation:

LEMMA. If (xn) and (yn) are regular basis in a nuclear Frechet
space and they are both of type Όt or of type D2 then they are
equivalent.

The proof of the lemma is immediate from [2], 1.10 formulas (5)
and (6).

Now we explain some of the notation which will be used. For
the topology in the space ^Rf we can take the seminorms || ||,,
0 < p < R given by

We set, for 0 < R ^

As is well known, ξeΛR iff lim | ξn \lln <L 1/R. The map J: ΛR
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given by

Σ
Λ=0

is an algebraic isomorphism and we write e* — J~\zn). We can use
J to define a topology on ΛB (carried over from ^ ΐ ) . It is not hard
to show that the topology is defined by the seminorms || ||,, 0 < p < R
where

Given a linear Pincherle sequence (an) with zeros (zn) and 0 < R
we will use the labels p = p(i2) and rn — rn(R) given by

1 i f J B = oo I „ I

, r» = ^ , n = 0, 1, 2, .

The symbol ^m ^%_! is clear if n > m and if n = m we will take
it to be 1.

An automorphism is a linear topological isomorphism of a space
onto itself. We recall that two bases (xn) and (yn) in a Frechet space
i? are equivalent iff there is an automorphism T of E such Txn = 2/Λ.
Also, it is obvious that if (#J is a basis and (ίΛ) is a sequence of
nonzero scalars, then (tnxn) is a basis.

THEOREM 1. A linear Pincherle sequence (an) with zeros (zn) is
a basis for ^B, 0 < R ^ oo iff

(CR) Vp < R ip < R 3 sup sup t 1 + 1 g» Df* <
• "^™ \ z m - z n \ ρ m

Proof. Suppose that (an) is a basis for
The first step is to show that the basis (rnan) is of type Dt or

D2 according as R — oo or R < oo. Consider the seminorms on
and compute, for p < p,

|g»lU|g»+il

+ ̂ A - X ^ + ΊA τr

whence the basis (an) is regular, so the basis (rnan) is also regular.
If R — oo, we have

and, for 1 ^ p2 ^ p ,
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<Γ ' ' <Γ 1

so the property (Dx) is satisfied.
If R < CXD , we fix % and have

z n \ )

Also, for 0 < ,o <

so the property (D2) is satisfied.
Next we observe that it is a simple matter to check that in

the basis ((l/pn)zn)n is also of type Όx or D2 according as R is infinite
or finite. Hence it follows from the lemma that the basis (rnan) is
equivalent in ^~R to the basis ((l/pn)zn). This in turn implies that
(rnp

nan) is a proper basis in ^ R ,
Thus we have an automorphism T: AR—>ΛR given by the relation,

Tξ — η where ξ, η are determined by the relation,

\ X ) 2-1 £n% — 2-1 'in' nP α n
n=0 n — 0

Using formula (3.3) of [1], we obtain that

= V
4 -

n=m Zm

It is not hard to check, using the seminorms in ΛB, that the continuity
of T is equivalent to the statement,

II To™- II

Vp < R Ip < R 3 sup n l β '^ < co .

Using the definitions of these seminorms in the explicit repre-
sentation for T, we see that the continuity of T is equivalent to,

Vp < R lp < R 3 sup sup β> + 1 g» 1)PΛ < co .
- «δ* I Zm - - 3W I ̂ m

When i2 = CXD, this is exactly (C^). For R < 00 this is equivalent to
(Cβ) in view of the fact that

min (1, p) ^ v + 1 g» 1 ^ max (1, p) , 0 < p < 00 .
1 +
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This completes the necessity portion of the proof.
Now suppose that (CR) holds. We can then immediately assert

the existence and continuity of the map T: ΛR —• ΛR defined by the
relation (1). We can use this relation to compute,

m , / IrP"1pm — <γ> OΊmϊ Pm om'
J- V — I mP l ^ &

This map is in any case continuous because

supi^-^i^-supmaxί-J^l—-, —-£ [<
{v + I zm I v +

Hence T is an automorphism of ΛR so JT^J'1 is an automorphism
of ^ R and since JT~ιJ~\zn) = rnp

nan it follows that (rnp
nau) is a basis

for ^ ^ and since rnp
% Φ 0, it follows that (an) is a basis for ̂ R .

This completes the proof of the theorem.

COROLLARY. A necessary condition for a linear Pincherle sequence
(an) with zeros (zn) to be a basis for ^ R is

n

V I«»I ' 1 ^ 1 if R< oo .

Proof. We apply (CR) and, in the second sup we always take
= m. The given condition is then easily derived.

REMARK. By taking other special values of m and n in (CR) we
can easily obtain other necessary conditions. For example, if we take
m = 0 in the first sup, we immediately obtain condition (1.4) of [1].
These conditions will not be sufficient. For instance, the condition of
the corollary is always satisfied if zm is constant. However, by Lemma
2.2 of [1], if this is so and \zn\ < R, then (an) will not be a basis.
On the other hand, the condition of the corollary is strong enough
to settle the question of when a linear Pincherle basis is proper.

THEOREM 2. Every linear Pincherle basis is proper.

Proof. In the proof of Theorem 1 it was shown that if a linear
Pincherle sequence (an) is a basis for ^ R , then (rnp

nan) is a proper
basis in ^ π . Hence Σ % ξnan converges iff

n zn converges in
n=o rnp

n

which is equivalent, by the Cauchy-Hadamard formula to
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and, in view of the corollary, this is equivalent to lim% | ξn \lίn <: 1/R,
i.e., that Σn ? X converges in

REMARK. The above result shows that the sufficient condition
given in Lemma 3.4 of [1] is also necessary. Alternatively, that
lemma can be used, along with Theorem 1 to obtain Theorem 2.
This is done by observing that condition (CR) directly implies condition
(3.11) of [1].

We turn now to the question of basis radius. A Pincherle sequence
is said to have basis radius Ro provided that it is a basis for ^~R if
and only if 0 < R g Ro. This is slightly different, on the face of it,
from the definition given by Arsove [1] who requires that the sequence
be a basis for ^ R whenever R < Ro and fail to be a basis when
R > Ro. The two statements are equivalent because it follows from
general considerations that if a sequence is a basis for j^~R whenever
R < Ro, then it is a basis for ^ ^ 0 .

Arsove [1] points out that a Pincherle sequence may fail to have
a basis radius. The next theorem gives more or less complete in-
formation in the linear case.

THEOREM 3. Let (an) be a linear Pincherle sequence. Then (an)
has a basis radius if and only if either (CJ) fails or (CR) holds for
all R ^ co. In either case we have,

RQ = sup {R: 0 < R < oo and (CR) holds} .

Proof. If (Cβ) holds for all R <; oo, then obviously Ro = oo and
the given representation is valid. Suppose that (CJ) fails and define
Ro as in the statement of the theorem. Then we have an increasing
sequence (Rj) of positive numbers which converges to Ro and 3 (CR.)
holds for each j .

Suppose now that R < R' < oo and (CB>) holds. Then given
p < R, we consider p(R'/R) < Rf so we have p from {CR>). But then
ρ(R/R') < R and the inequality in (CR) holds for p, ρ(R/Rr). Thus
(CR) holds.

Thus we may conclude that for each j and each R<Rj', (CR) holds.
This implies that (CR) holds for all R < Ro.

Finally, suppose / G ^ ^ 0 . For each R < i?0, (α.) is a basis for
J^~R and f^J^n. Hence we have a unique sequence, (cξ)n of scalars
9 / = Σ cn'an and the convergence is uniform on each closed disk of
radius less than R. By the uniqueness, (c£) is independent of R and
this shows that (an) is a basis for ^ ^ 0 . (This last argument is a
specific proof of the equivalence of Arsove's definition of basis radius
and the one given above.)

This completes the proof in one direction. The converse is obvious
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so the theorem is proved.
In Arsove's example showing that a linear Pincherle sequence

can fail to have a basis radius, the sequence is a basis for ^ C but
not a basis for any _^>, 0 < R < oo. We now give an example
showing that for any Ro with 0 < Ro < oo, there is a linear Pincherle
sequence which is a basis for j ^ R if and only if R = oo or 0 < R ^ Ro.

EXAMPLE. Let (zn) be defined by

J for % = 2>,i = l , 2 . . .

(1 otherwise .

Then the linear Pincherle sequence (an) with zeros (zn) is a basis for
^l if and only if R = oo or R <: 1.

Proof. First we consider R = oo. Fix <o < oo and choose p^ p.
We may assume that /0 > 1. Then

sup — sup ~̂ ^— on

. ... s«.

^ 2 sup sup -3— sup
Zm

sup -^- sup

1
-zz-rr S U P
P23 + 1 ^ ^

I Z m

ρn

Z2j+i

^ 2 sup max ] sup — s u p

sup

<: 2^ sup sup -=- sup

= 2|0 sup sup -—^ max] sup

sup

Now, if y ^ jO — 1, the expression after the first sup is dominated by

n*i+ι
1 ί nΛ n 2

sup -4- max ρ23+\ sup JίU- ^ < sup £ — < 1,

for j sufficiently large. This shows that the quantity in (CJ is
dominated by 2p for m sufficiently large and so it remains to show
that for each m,
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Sup ί- < co .

But, given m, for n sufficiently large, we can take 2j < n ^ 2j+1 and
obtain,

- ^ -̂ 7-τ- < 1 for j sufficiently large .

Hence by Theorem 1, (an) is a basis for
For R S 1, we fix ^ < J2 and choose ^ with p ^ p < R and we

have

sup-3-

» ρn

= 2 sup -J- sup ^ = 2 sup (4-V = 2 ,
pm ^ \ p I

so (an) is a basis for ^~B, R ^ 1.
Finally, if R > 1 we can choose p < R, p > R2ί\ Then for any

p < R, we choose m = 2i~1 + 1, n = 2J" to obtain,

sup sup 1 + i ^ l ^ - L ^ sup 1 + 1 ^ 1 Λ«'-

Ί Γ/ /> \ ]2i-i-i

so by Theorem 1, (an) is not a basis for
This completes the proof of the example which is a special case

of the statement we made before the example. For the general case,
we simply observe that from Theorem 1 it follows immediately that
if (an) is a linear Pincherle sequence which is a basis for <_̂ >,
0 < R < oo with zeros, (zn), then for any a > 0, the linear Pincherle
sequence obtained by taking, as zeros, the sequence (zja) is a basis
for jrR.

Finally we observe that in the above example, if n = 2j, then

so that for any positive number p we have

This shows that the sufficient condition of Arsove ([1], Theorem 4.3)
is not necessary for a linear Pincherle sequence to be a basis for
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Remarks added in proof.
1. It has recently been shown by L. Crone and W. B. Robinson

(Studia Math. 52 (1974) 203-207) that any two regular bases in a
nuclear Frechet space are equivalent and thus we can drop the
requirement in the above Lemma that the two bases are both of
type Dj or of type D2. This considerably simplifies the proof of
Theorem 1.

2. Using a recent result of Nguyen Thanh Van (Ann. Inst.
Fourier, 22 : 2, 1972, pp. 187-190) it is possible to prove Theorem 2
without assuming that the basis is linear. There are many additional
applications of this fact including an improved version of Theorem 3.
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