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TOTAL POSITIVITY AND REPRODUCING KERNELS

JACOB BURBEA

In this paper we investigate the relationship between
total positivity and reproducing kernels. We extend the
notion of total positivity to domains in the complex plane.
In doing so, we also give a geometrical interpretation to
certain Wronskians of reproducing kernels. These geome-
trical quantities are connected to Gaussian curvatures of
Kahler metrics induced by these kernels. For simply-connected
domains these curvatures are negative constants, thereby
showing that the kernels are totally positive and moreover
yielding an efficient method for computing the relevant de-
terminants. In general, the reproducing kernels of multiply-
connected domains are not totally positive.

The motivation for this work stems from the work of Karlin [7]
which deals with "optimal" quadrature formulas.

Let H be a Hubert space of functions analytic in a plane domain
D and possessing a reproducing kernel K(z, t), z,teD. Let LeH*,
where iϊ* is the dual of H. A subset & of H* is specified and a
member Q e & is called a quadrature formula. To each Q e & is
associated a remainder functional RQ = L — Q. An optimal quadra-
ture formula, if it exists, is any member Q* e ̂  satisfying

||22^|| = Inf ||Λg | | = I n f | | L - Q | | ,

where L is the representor of L in iϊ* and & is the set of all
representors of functionals in &. Since H has a reproducing kernel
K(z, t) it follows (see [5], pp. 318-319) that L(t) = LjzJ) and

\\R*||2 = (Lt - Qΐ){Lz - Q*)K(z, t) .

(The subscript in Lz indicates that t is held fixed and L is applied
to K(z, t) as a function of z.)

More specifically, let 7 be a rectifiable curve lying in D and
specify

L(f)= [f(z)w(z)dz, feH,

where w{z) is an integrable function on 7. Consider

&% - {Q e H*: Q(f) = Σ «*/(«*), («*)? c D, («*)? c C} ,
fc = l
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where n is fixed. (The knots (tk)* are free variables.) L is of course
in H* and its representor L is given by

L(t) = \ K(t, zjw{z)dz , t e D .
h

Therefore, if Q e &n, then

\\RQ\\ = K(t, z)w(z)dz - Σ δ*#(ί, <*)
llJr fc=i

and

Q M IIJBβll = Inf ίllΛβll: W ? c C , (ί4)?cZ)} .

Then the problem of finding the optimal quadrature formula, as
described above, is closely related to whether the sequence (K(t, tk))t=ι,
for any choice of the n knots (tk)l, forms an extended complete
Tchebycheff system on D (see definition below) or not ([7], [8]).
Therefore, the optimality of a quadrature formula is closely connected
to the notion of total positivity of K(z, t) on D.

Here, we extend the notion of total positivity to the complex
case. By doing so, we also give a geometrical interpretation to
certain Wronskians of reproducing kernels. These geometrical quan-
tities are connected to Gaussian curvatures of Kahler metrics induced
by the reproducing kernels.

When D is simply-connected (that is when the automorphism
group of D is transitive) these curvatures are negative constants,
thereby proving that the kernels are totally positive and moreover
yielding an efficient method for computing the relevant determinants.
In general, the reproducing kernels of multiply-connected domains
are not totally positive.

l Total positivity* We introduce some definitions and notation
from the theory of total positivity. We shall use Karlin's book [6]
(especially pp. 11-49) as basic reference.

DEFINITION 1. A sequence of real-valued continuous functions
φ^x), φ2(x), , ΦJx) is said to constitute a Tchebycheff system {T-sy stem)
on [a, b] if

det > 0

for all a ^ xι < x2 < < xn ^ δ. The sequence is called a complete
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T-system (CT-system) on [α, b] if φl9 , φk is a T-system for k = 1,
• , n. The sequence is called a Descartes system (D-system) on [α, 6]

if Φajc is a CT-system for each l^aλ <
Let ΰ be a domain in the complex plane, and let φ0, φl9

m^ e ^{m-1](D). The Wronskian of φ0, φlf , φm_, is given by

( 1 ) W[φo(z),
dzk

k,j=O

DEFINITION 2. A sequence of complex-valued functions φo(z), Φi(z),
• , ^»-i(^) of class ^ ^ ^ ( f l ) is called an extended complete Tchebycheff
system (ECT-system) on D if Ϊ7[β>(s), ', Φk-i(z)] ̂  0 for Λ = 1, ,
m and for all 2 6 iλ

This definition is an extension of the usual definition of a sequence
of real-valued functions φo(x), Φi{%), •••, φm-i{ώ) on the interval [a, b].
If 0o, φlf , 0m_! is ECT on [a, b], then (see [6], p. 52) 0O, 0,, - , ψm_x

is CT on [a, 6].

DEFINITION 3. A real-valued function 1£(:E, T/) defined on [α, 6] x
[α, b] is said to be totally positive (abbreviated TP) on [α, b] x [α, δ]
if, f or all α ^ Bj < α?2 < < xm^b, a ^ yι < /̂2 < < ym^b, m =
1, 2, , we have the inequalities

. 1 / 3 , 2 / 2 , •••, y «
= det > 0

DEFINITION 4. Let K(z, t) be of class ^°°(D) in the two complex
variables z,teD. K(z, t) is said to be extended TP (ETP) on D if,
for m = 1, 2, , we have the inequalities

( 2 )
k,j=l

Again this definition extends the usual definition to the complex
case. If D contains the real interval [a, b], and K{zf t) is real-valued
on [a, b] x [a, b] and ETP on [a, b] x [α, b] then (see [6], p. 55) K(z, t)
is TP on [α, b] x [α, 6].

2* Reproducing kernels* Let H be a Hubert space of analytic
functions in the domain D with the inner product ( , ) and such that
all polynomials are contained in H. In addition, we assume that for
each teD the linear functional Lt, defined by Ltf — f(t),feH, is
bounded on H. According to [1], H possesses a unique reproducing
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kernel K(z, t) with the following properties:
( i ) for each t e D, K{, t) e H;
(ii) for each t e D and each feH, f(t) = (/, iΓ(, ί)).
This kernel satisfies the following lemmas (compare also [1]).

LEMMA 1. The form Σ?,;=i^i> **)£<£* is positive definite for all
tu , ίΛ e D. In particular, K(t, t) > 0 and K(z, t) = K(t, z), z,teD.

LEMMA 2. K{z, t) is analytic in {z, t) for (z, t)eD x D.

LEMMA 3. If fn—>f in H then fn—>f uniformaly on compacta
of D.

Proof. We have

\fS) - /(ί)l = ! ( / • - /, K(, *))l ^ II/» - f\\X(t, ^)1/2

The lemma now follows from Lemma 2.

LEMMA 4. H is a separable Hilbert space.

Proof. Let (tn) be a dense sequence in D and consider the sequence
of functions ψn(z) = UT(2, ί"%), w = 1, 2, . Then (fn) c IZ" and since
the polynomials are contained in H this sequence is linearly indepen-
dent. Moreover, if (/, ψn) = 0, n = 1, 2, , / e H, then / = 0.

Let (φn) be an orthonormal basis of H. Then

where, according to the previous lemmas, the infinite sum on the
right is independent of the choice of the basis and it converges
absolutely and uniformly on compacta of D.

We need the following lemma which is, to a certain extent, a
reformulation of the Cauchy-Binet formula (see [6], p. 1).

Let (an>k) and (bn,k) (n^ = 1, 2, •; k = 1, 2, , m) be two infinite
matrices such that Σ^U \an>kbn>j\ < oo, 1 <: k, j S m-

and

We have:
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L E M M A 5.

det || (au bf) \\T,j=ι — Σ Dιλ\"μm(a)Dΐλ\'^ίm(b) .

THEOREM 1. Suppose D contains [α, b] and (φk)ΐ=ι is an orthonormaί
basis of H. If (φk)l=u n = 1, 2, , forms a D-sy stem on [a, b], then
K(z, t) is TP on [α, 6] x [α, &].

Proof. Using Lemma 5, we have

00 00 J

u Σ ^(^op^d/i) Σ Φμ^dΦμSy*) !

Σ Φμρn)Φμn{vi) - Σ Φr<n(
χ»)φpSy*)!

Σ

a ^ Xi. < < xn ^ 6, a g y, < - < yn ^ 6, n = 1, 2, . The last
sum is strictly positive by assumption, thereby proving the theorem.

A somewhat converse of this theorem is contained in the
following:

THEOREM 2. Let [a, b] be contained in D and suppose K{z, t) is
TP on [a, b] x [a, b]. Then:

( 1 ) there exists a basis for H? (ψk)~=1 such that (ψA)Li, ^ = 1>
2, •••, forms a D-system on [α, 6];

( 2 ) there exists an orthonormal basis (φk)t=i in H such that
(p;.)λ=1, n — 1, 2, , forms a CTsystem on [a, b].

Proof. Define

b — a i o

n = 1, 2,^(6 - α) + 1

Note that

α < ĵ < θ2 < - - < θn < - < b , lim θn = b e D .
n—>oo

Next, define

ψ k ( z ) - K(z, θk), z e D , fc = 1, 2, .

Clearly, (τ/rfc) so defined is linearly independent. Further, suppose
there is an / e H such that (/, ψk) = 0, k = 1, 2, . Thus /(0fc) =
0, with limk^ooθkeD and hence / = 0. Moreover, (ψa])k=u 1 ̂  «i <
^2 < < oίn <L m, is CT on [α, b]. In fact, for a ̂  ^ < ί2 < < ί« ̂  6,

det 11^(^)11^=1 - det l i i f fe , 0βJfc)j|Jffc=1 > 0 ,
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since a < θaχ < θa2 < < θa% < 6. This proves (1). To prove (2),
we apply the Gram-Schmidt procedure on (ψk) to obtain the orthonormal
basis (φk) given by

Φi= Ψ

Φn = χ /llχ ll, χ = t * - Σ (Ψ», <**)<** > w = 2, 3, . . . .
fc = l

Now it is easily verified that

fet \\Φk(tj)Wl,^ = 1 det | | t , (ωiί l i=i > 0 ,
II Xi II ' # * II Xn II

for a ^ t, < t2 < <tn<^h, since 0,0/U is also CT on [α, 6]. This
concludes the proof of the theorem.

Let t G D and consider the closed convex subsets of H

A h ( t ) = { f e H : f ^ ( t ) = δ n k 9 n = 0 , 1 , - . - , £ } , ft = 0, 1, .

Since H contains the polynomials these subsets are not empty. Let
φk(z) = φk(z; t) be the unique solution of the minimal problem

λ*= Xk(t) = mm{\\f\\2:feAk(t)} .

Clearly, the sequence (φk)ΐ=0 forms a complete orthogonal system in
H. Therefore,

( 3 )

where

Inserting (3) in (2), and using Lemma 5, we obtain, after some
manipulations,

m

z ,z

t, •••, t

We therefore obtain

THEOREM 3. K(z, t) is ETP on D if and only if, for any teD,
the orthonormal basis (ψh(z\ t))ΐ=0 is ECT on D.

We remark that, for the fixed point teD, we have

W[iro(t), , ψv.,(ί)] = 1/l/λoλ, λΛ., .
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Thus
m

(4) Z*(*' " ' ί ) = l/λ.λ I.. λ ^ 1 .

It is of course clear that the assumption that H contains the
polynomials can be replaced by the requirement that for any
t e D, Ak(t) Φ 0 , k = 0, 1, . Note also that

(5) λo(t) = 1/K(t, t) > 0 ,

and moreover the λ's introduced above are connected to certain
Gaussian curvatures of Kahler metrics induced by K(t, t). More
explicitly, the Kahler metric dS2 = K(z, z) \ dz |2 has the Gaussian
curvature

Cs(z) = - ±V log K/K = - I dn°ξK,K= K{z, z) .
2 K dzdz

Therefore, using (4) and (5),

cs(t) = - —κ*^i ί) = - 2 r < °>κ==

ϋ t tj λ

THEOREM 4. Let D be a simply-connected domain and assume
that each automorphism w — w(z) induces an isometry T of H(DW)
onto H(DZ), given by (Tf)(z) = f(w(z))[w'(z)]a. Then

m(m+2α—l)/2α

[K(z,

m — 1, 2, ,

where the X3- — Xj(t0), j = 0, 1, , m — 1, are positive constants and
U is any point of D.

Proof. T: H(DW) -* H(DZ), (the subscript in Dw means that D is
described in the w-plane), is an isometry of the corresponding Hubert
spaces. Therefore,

(7) K ( z , t ) - K ( w , τ)[wf{z)Y[τr{t)]% τ = w(t), t e D .

Inserting (7) in (2) we obtain, after some manipulations

m m
s •

/z

(8) K
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Consider the function

m

J(z9ΐ) = K*tZ'"9f

Since D is homogeneous (i.e., the automorphism group of D is transi-
tive) it follows, from (7) and (8) that J(z, t) is constant in D. We
evaluate this constant at a fixed point toeD. According to (4) and
(5) J(t0, t0) = X^m+2a~1)l2a/(W - λ»-i), where λ, = X3{tQ) are positive
constants. Therefore (6) is true.

COROLLARY. Under the assumptions of Theorem 4 and if, in
addition, K(z, t) never vanishes in D, then K(z, t) is ETP on D.

REMARK. In the case of Theorem 4, dS2 = [K(z, zψa\dz\2 is a
conformally invariant metric for a > 0. Therefore, its Gaussian
curvature Ca(z) is a constant in D. We have

r ( ^ _ -2 1 d2logK _ _A
a dzdz a K{1+2a){a \z, zt

\ (l+2a)!oc O > (α+D/α
JQ

α λoλj a

Therefore,

A

! f
3. The kernels of Hardy spaces* Let v > — 1. The Hardy

space s&i is defined as the set of all functions F(z), analytic in the
upper half plane U = {z: Im z > 0}, of the form

F(z) =

with f(x) in L2(0, oo). &rv is a Hubert space ([3], p. 219) with the
norm

Of course, point evaluation is a bounded functional and, in fact,
IF(z) |2 ^ Γ(v + l)[2Im ^ ] - ( ^ + 1 ) | | jP||2υ. The sequence

O \ 1 + v

—-r-J , k = 0, 1, ,
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is an orthogonal basis in ^ and \\ψk\\l = k\/Γ(l + v + k). Therefore,
the reproducing kernel of &» is given by

, t) = Σ Γ ( 1 \v, + k)

or

Kv(z, t) =

(The fractional power is chosen to be continuous in U and positive
at t.)

Let w = w(z) be an automorphism of U (i.e., w(z) — (az + b)/(cz + d),
a, b, c, d real and ad-bc>0). Then (TF)(z) =F(w)[wT+1]'2 is an isometry
of £&v. Since U is simply connected it follows from Theorem 4 that

( 9 )
\l, •••, IJ Λ,0Λ,j •• Λ, w _i

m = 1, 2, ,

where λ, = λ, (i) > 0 are evaluated at i e Z7. Since ^(2;, ?) is never
zero we obtain:

THEOREM 5. K,{z9 t) = Γ ( l + v)/(iί - ^ ) 1 + v , v > - 1, is ETP on
the upper half plane U. Moreover it is strictly ETP (i.e., the
Wronskians in (9) are positive) on all straight lines in U which are
parallel to the imaginary axis.

REMARK. When z and t are on the imaginary axis, i.e., when
z — iy, t = ir, y > 0, r > 0, we have Ku(iy, —ir) = Γ(l + v)/(r + y)1+v.
Thus Γ ( l + v)/(r + y)1+v is ETP on (0, oo) x (0, oo) for v> - 1 .
Especially, when v — 0, K0(iy, —ir) — l/(r + y) is the famous Cauchy
kernel. The fact that this kernel is ETP is used to establish the well-
known Mϋntz theorem on best polynomial approximation.

If U is mapped conf ormally onto the unit disc Δ = {w: \ w \ < 1}
the mapping w(z) = eiθ(z — a)/(z — α), a e U, induces the natural iso-
metry of the corresponding Hubert spaces. Consequently,

Kv{z, t) = Kv{w, τ)[w'(zψ+l)i2[τ'(t)Y+ίi\ τ = w(t) e Δ ,

or

(10) Kv(w, τ) - Γ ( l + v)/(l - wτ)ι+v , w,τeΔ .

Using (10) and Theorem 5 we obtain:
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COROLLARY. The reproducing kernel

Kv(z, t) - Γ( l + v)(l - zty+\ v> - 1 ,

is ETP on A = {z: \z\ < 1}. Especially, it is strictly ETP on all
diameters of A. (Karlin, using Laplace transforms, has also shown
(unpublished) that (1 - xy)1+tf is ETP on ( - 1 , 1) x ( - 1 , l),v > - 1 ) .

We continue to identify these kernels as follows: If v > 0 then
for Fe&v it holds that ([3], p. 219);

(11)

If v = 0 then for

(12) 2ττ | | ίΊ | ; = sup Γ \F(x + iy)\2dx .
y>o J—oo

We again map U onto the unit disc Δ by w — eiθ(z — a)/(z — a),
aeA. (Tf)(z) = f{w)[w'}{»+1)μ is an isometry of the Hubert space of
functions on A onto 3fv. But 1 — | w |2 = 21 w'\ Im «. Therefore, using
(11) and (12), we have

πΓ(l + v)

and

In the last integral, / stands for the nontangential boundary value
of the analytic function f(w) in A. Of course, T~\3f^ is the Hardy-
Szego space with the reproducing Szegb kernel 1/(1 — wτ)9 w, τ e A.

We let £p> = HW{A) = πΓ(l + v)T~ι{^) for v > 0 and H™ =
JΪ(0)(aj) = 2πT-ί(^r0). Therefore, H^(A), v > 0, is the Hubert space of
analytic functions f(z) in the unit disc A = {2: |g| < 1} with the inner
product

lί)1'-1dίc ^ , / , flr e JEP>, v > 0 .

Naturally, H°(dA) is the Hardy-Szego space with the inner product

(/ g)0 = I f(zjg(z) I dz j (the integral is taken over the nontangential
JdJ

boundary values of / and g).
Each / e H{i/) is given by f(z) - Xr=o α / w and

IIF\\l = 2πvΣ IαΛ | 2 Γ(l - r

2)^V2 % + 1dr , v > 0 .
J
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Therefore,

Iv + nY

κi2
Σ

»=o V n

Similarly,
2
o =

|2

It follows that the sequence ψn(z) = π~ll2(v + nY\n, ra = 0, 1,

forms an orthonormal basis for Hw and (2Λ/τ/2τr)~ is an orthonormal
basis for iϊ ( 0 ). Therefore

(13) Ku(z, t 1

π (1 — z£)v+1

is the reproducing kernel of H[v\ v > 0, and

(14) lΓ0(s, ί) = -A- 1 , 2, ί e J ,
27Γ 1 — zί

is the reproducing kernel of iί (0).
We have shown that 1/(1 - zt)»+1, v > - 1, is ETP on J. For

v > 0, however this fact can be shown directly from the definition
of H{v). Indeed for any w = w(z\ w(z) = eiθ(z — to)/(l - zt0), t0 e A,
(Tf)(z) = f{w)[w'YvJrl)i2 is an isometry of the corresponding Hubert
spaces. Therefore, again,

m = 1, 2, • ,

where λ,- = λ3 (0) > 0 are evaluated at 0 e Δ and KXz, t) is the repro-
ducing kernel of HM, v ^ 0. Now, ψk(z; 0) = zk/kl, k = 0, 1, , are
the solutions for the minimal problems related to λj(0), thus

A = 0, 1, . From the fact that the positive quantity

•\ (m(w + v))/(v + l) IΛ Λ \
AJQ JΛJQΛJI ' Λ ι m _ !

is conformally invariant we obtain:

T H E O R E M 6. Let LΔ{z, t) = 1/(1 - zt)v+\ z,teA, and LΌ(z, t) =
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Ijiit - iz)v+1, z,teU,v> - 1. Then

m—1

— τi[k\r(v+k[Γ(v

and

[Γ(V

l)] [Lu(z,

m = 1, 2,

4* The Bergman and Szegό kernel functions* Let D be a
plane domain whose boundary components do not reduce to a point
and consider the Bergman space H{1) = HW(D). HW(D) is the set of
all analytic functions in D with a single-valued primitive in D normed
by | | / | | ϊ = \\\f(z)\2dxdy,feHw. Ha) is a Hubert space with the

Bergman reproducing kernel KD(zf t) ([2], p. 49).
Let w:D—>D* be a rconformal mapping of D onto D*. Then

(Tf)(z) = /(w)w' is an isometry of fί(1)(D*) onto iϊ(1)(Z)). Therefore,

(15) ^ ( ^ , ί) - KD.(w9 τ)w'{z)τ'(t), τ = w(t) e D* .

THEOREM 7. Let ND be the connectivity of D. KD{z, t) is ETP
on D if and only if ND = 1.

Proof. According to (15) we can assume that D is bounded by
ND analytic curves. We use the identity ([2], p. 100) connecting
KD(z, t) with the slit mapping. From the above mentioned identity
follows that for each fixed t e D, KD(z, t) has 2{ND - 1) zeros (coun-
ting multiplicities) in D and none near 3D. Consequently, if KD(z, t)
is ETP on D then ND = 1. Conversely, let ND = 1. Clearly, by (15),

m

JD(z, t) = K%(Z' '"' Z)l[KD(z,

is conformally invariant. Since D is simply-connected it follows by
the Riemann mapping theorem that JD(z, t) is a constant for all
simply-connected domains. Therefore,

JD(z, t) = ^ ( 0 , 0) , Δ = {w: \w\ < 1} ,

where as before
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J,(o, o) - λ r

and

λ* = λ/c(0) = , k = 0, 1,
Λ } (k + l)(fc!)2

Therefore,

m

/#, •, Z\ / m—1 \2 _

(16) K% _' _ = m! τrw(m-1)/2( Π fc! ) [JMs, £)p i

According to (13) E"j(w, τ) = K^w, τ) = τr"7(l — wr)2. Hence, using
(15) and (16), KD(z, t) is ETP on D.

REMARK. JΔ(0, 0) are the Gaussian curvatures related to the
Poincare metric

The Gaussian curvature of this metric is — 2/^(0, 0), where m = 2.
Thus, -2Jj(0, 0 ) = -4ττ. (Compare [2], p. 38.)

The Hardy-Szego space H{0) = Hi0)(dD) is the set of all analytic

functions f(z) in Z> that possess well-behaved nontangential boundary

values f(ζ),ζedD, in L2(dD). The norm is the L2(D) norm, i.e.,

11/115= ( \f(ζ)\2\dζ\. Hi0) is a Hubert space with the Szego repro-
JdD ^ _

ducing kernel KD(z, t) ([2], p. 108). Similarly to (15), we have, under
conformal mappings,

(17) [KD(z, t)Y = [KD.(w, τ)Yw'(z)τ'(t), τ - w(t) e D* ,

(see also [4]).

Similarly to Theorem 7 we have

THEOREM 8. KD(z, t) is ETP on D if and only if ND = 1.

Proof. This follows from (14), (17) and the fact KD(z, t) has (for
fixed t e D) ND — 1 zeroes (counting multiplicities) in Ό and none near
3D, ([21, p. 118).

In analogy to (16) we have (D is simply-connected)

m
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The following is a generalization of Theorem 4.

THEOREM 9. Let D be simply-connected and assume that each
automorphism w — w(z) of D induces an isometry T of H{DW) onto
H(DZ), given by (Tf)(z) = f(w)-G(w), f e H(DW). Then

m

. . . , t

where the λ, = λ ί̂o) > 0, ί0 e D, are related to the space H = H(D)
with the reproducing kernel K(z, t) and KD{z, t) is the Bergman
kernel. Especially, if K{z, t) never vanishes in D then it is ETP
on D.

Proof. This follows immediately from (15), from

K(z, t) = K(w, τ)G(w)G(τ), τ = w{t)eD*

and from

COROLLARY. Let D be simply-connected and let p(z), l/p(z) be
analytic functions in D. Consider the Hilbert space H^ and H^
of analytic functions f(z) in D normed by

\
dD

and | | / | | J = ί \\p(z)Γ\f(z)\*dxdy

respectively. Then the reproducing kernels of H(

P

0) and H{

p

ι) are ETP
on D. Moreover, Kp(z, t) = KD(z, t)ρ{z)ρ(t) is the kernel of Hp

0) and
KP(z, t) = KD(z, t)ρ(z)ρ(t) is the kernel of Hj,".

For v > 0 we can generalize HM{Δ) as follows: Hiv)(D) is the
Hilbert space of all analytic functions f(z) in D with a single-valued
primitive in D and normed by

Of course, when v = 1 this is the usual Bergman space. Let KDv(z9 t)
be the reproducing kernel of H{V)(D). Assume now that D is simply-
connected. If w:D->D* is conformal, then (Tf)(z) = f(w)[wT+1)β

is an isometry of ίί(v)(Z)*) onto H{V){D). This is because
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Therefore,

KDv(z, t) = KD*(w, τ)[wf(z)]^+1^[τ\t)Yv+1)ί\ τ = w(t)eD* .

Especially, when D* = Δ = {w: \w\ < 1},

Therefore, KDJίz, t) is ETP on D and

m

EXAMPLE. Consider the oval of Cassini,

C = {z: Rez > 0, | z2 - 11 < r, r < 1} .

This is a simply-connected domain of four-fold symmetry (i.e., if
zeC then —z,zeC). w = (̂ 2 - l)/r maps C onto J conformally.
Therefore,

is the reproducing kernel of H{U)(C). Consequently, KC]/(z, t) is ETP
on C. Especially, it is strictly ETP on all diameters of C. Therefore,
(xyy»+»η[r2 - (X2 _ ι^y2 _ yy+i^ v > _ χ > i s strictly ETP on (τ/l - r,

l / Ϊ T r ) , 0 < r < 1.

5* The exponential kernel* Let H= H(C) be the space of
entire functions f(z) normed by

11/11'*=-
π

Let

M^r) = A f (I f(z) \2e-^2dx dy , 0 < r < oo .

Then | ] / | | 2 = lim r^Λf f(r). Each / e H is given by /(z) = ΣΓ=oM*
and thus

Mf{τ) - 2 Σ |
Λ = 0
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Let

Since

it follows that

an(r) - A [p^e^2dp , n = 0,
nl Jo

~ p**+ίe-<*dp = —
o 1 2

where 0 < an{r) < 1 and limr_O0 tfπ(r) = 1. From this, it follows (an
application of Fatou's lemma) that

(18) (/,/)= ί > ' K I2

Using the Cauchy-Schwarz inequality we obtain

Hence

thus, H is a Hubert space with the reproducing kernel K(z, t). The

simplest orthonormal system in H is ψn(z) — zn/(n\)ll*,n= 0 , 1 , •••,

and, by (18), it is also complete. Therefore,

K(z, t) - e* .

The subgroup of automorphisms of C of the form w = eiθz + B,
BeC, is transitive and induces an isometry of the corresponding
Hubert spaces of the form

(Tf)(z) = eiθe^2e-*wf{w) .

Therefore,

ezJ = Ae-S"-B*e™f A = elBι\ τ - w(t) ,

and so

m m

T, ~',τ
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m

J( # # 5j\ /

J ' ΛI[K(z9 t)]m is a constant, say J(z, t) =
t, , £//

J(0, 0). Here

J(0, 0) = λΓ/Cλoλ! . λm_0 ,

where

fc!
= i/fci, k = 0,1,

Therefore,

THEOREM 10. The reproducing kernel K(z, t) = ezt is ETP on
C and

m

m = 1, 2,

7ί is strictly ETP on all rays passing through the origin. Especially,
the well-known result ([6], p. 99), exy is ETP on (—©°, «>) x (—°°, °°)
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