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ON A LEMMA OF BISHOP AND PHELPS

ARNE BRONDSTED

The main purpose of the present note is to establish
a theorem on the existence of maximal elements in certain
partially ordered uniform spaces. The theorem unifies a
lemma of E. Bishop and R. R. Phelps and a number of known
extensions of this lemma.

1. In the proof of the fundamental theorem of E. Bishop and
R. R. Phelps [1, Theorem 1] on the density of the set of support
points of a closed convex subset of a Banach space, a lemma [1,
Lemma 1] on the existence of maximal elements in certain partially
ordered complete subsets of a normed linear space played a central
role. Subsequently, this lemma was extended for various other
purposes. Since none of the extensions is sufficiently general to
cover all of them, it seems natural to look for a common generali-
zation. In §2 we shall present such a general theorem. Actually,
we first prove a theorem (Theorem 1) which is too general to be
directly applicable, at least in the present context, and next we
apply it to obtain the desired theorem (Theorem 2). The theorems
are formulated in terms of uniform structures, due to the facts
that completeness is the crucial assumption and that both non-
metric topological linear spaces and metric nonlinear spaces are to
be covered. The proofs are heavily influenced by known arguments.
In §3 we shall discuss the relations of Theorem 2 to the Bishop-
Phelps lemma and its extensions. Finally, in §4 we shall give a
simplified proof of a recent result of J. Danes by applying the Bishop-
Phelps procedure.

2. Everywhere in the following E is assumed to be a non-
empty set. By an extended real valued function on E we shall
mean a mapping @: EF— |—oco, + ], not identically +oo. The set
of points z€ K such that @(x) < +c is denoted dom@. When E
is equipped with a uniformity %, and @ is an extended real valued
function on E, we shall say that @ is inf-complete when the set of
points € E such that o(x) < » is complete for each real . Note
that this implies lower semi-continuity of @, and that the converse
holds if Zv is a complete uniformity. By an ordering on E we shall
mean a reflexive, asymmetric and transitive relation =<; the corre-
sponding irreflexive relation is denoted <. For xz e E we shall denote
by S(x, £) the set of points y € E such that  <y. We shall say
that an extended real valued function @ on E is decreasing resp.
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strictly decreasing (with respect to =), if x, <z, implies @(x,) =
P(x;) resp. p(z,) > P(x.).

All uniformities and topologies considered are assumed to be
Hausdorff. All linear spaces considered are assumed to be real.

THEOREM 1. Let Z be a uniformity on E, let < be an order-
ng on E, and let ¢ be an extended real valued function on E which
is bounded below. Assume that the following conditions are ful-
filled:

(@) The set S(x, X) s complete for each xec K.

(b) The function @ is decreasing.

(¢) For each Ue Z there exists 0 > 0 such that x, = %, and
P(x,) — P(x,) < 0 implies (x,, x,) € U.

Then for each xcdom @ there exists x,€ dom @ such that x = x, and
%, 18 maximal n (B, 2).

Proof. For any given point zcdom @ there exists by Zorn’s
lemma a maximal totally ordered subset M of E containing . We
shall index the points of M by the elements of a totally ordered set
(Z, £) so that for «, eI we have z, <z, if and only if a =Z4.
Since @ is bounded below and decreasing, the net (@(2,))..; converges
to some @ €]— oo, +oo[. Let UeZ be given, and let 6 > 0 be such
that (c) is fulfilled. Choose @ el such that @(z,) < a + 6. Then
for ¢ < 8 <7 we have (x5 2,)€ U by (c). This shows that the
net (%.)..; is a Cauchy net, and hence, by (a), it converges to a
point x, with z, <, for all @ e I. In particular, 2 <z, By the nature
of M it next follows that z, is maximal in (K, ). Finally, (b)
implies z, € dom .

REMARK 1. As is well known, the use of Zorn’s lemma may
be replaced by an induction argument (involving the axiom of choice)
along the following lines. Let z, =2, let E, = S(x, =) and let
@, = inf »(¥,). When z,, ,, - - -, «, have been chosen, let E, = S(x,, <),
let @, = inf @(#,), and choose z,., € E, such that o(z,..) = a, + n7".
In doing so, one obtains sequences (z,),.y and (@,),.y such that z, =
Tnsty On = Gpyy < P(2), Ay < P(Tpy1) < a, + 0. Using these relations
and the idea of the proof above, the conclusion follows.

REMARK 2. We add an obvious but useful remark. Let E, Z,
@, and < be as assumed in Theorem 1, and let <’ be an ordering
on E which is finer than =X, i.e., x, =<', implies 2, < z,. Then (b)

and (¢) are also fulfilled for <’. Therefore, if (a) is fulfilled for
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=<’, then the theorem applies to <’. Even if (a) does not hold for
=<', we may still conclude, however, that there exists x,€ dom o
which is maximal in (E, <’), due to the fact that if z, is maximal
with respect to =<, then it is also maximal with respect to <'.

In order to obtain the desired theorem, we shall apply Theorem
1 to certain orderings which we shall denote =<,,. Let E be a set,
and let d be a nonnegative extended real valued function on F x E
satisfying the following conditions:

(d) d(x,y) =0 if and only if = = ¥.

(e) d(=, 2) = d(x, y) + d(y, 2).
Furthermore, let » be an extended real valued function on E. We
then define =<,, as follows: z, <,,®, if and only if either z, = x,,
or z,, x,€ dom @ and d(x,, ¢,) < o(x,) — @(x,). Then it is easily checked
that =<, , is in fact an ordering and that @ is strictly decreasing with
respect to =<;,, cf. (b). Also, if £ is equipped with a uniformity
such that @ is inf-complete and the functions y— d(z, ¥), € &,
are lower semi-continuous, then for each x ¢ E the set S, =,,) is
a closed subset of a complete set, and hence complete, cf. (a).
Finally, note that if for each Uec % there exists d > 0 such that
d(x, y) < 0 implies (z, y) € U, then (c) holds for <,,. Therefore, by
Theorem 1 we have:

THEOREM 2. Let Z/ be a uniformity on E, let d be a mon-
negative extended real valued function on E X E satisfying (d) and
(e), and let ¢ be an extended real valued fumction on E which is
bounded below. Assume that the following conditions are fulfilled:

() The function @ is inf-complete.

(g) The functions y — d(x, y), x € E, are lower semi-continuous.

(h) For each Uec Z there exists 0 > 0 such that d(z, y) <0
implies (x, y) e U.

Then for each xedom @ there exists x,€dom @ such that © <,, 2,
and x, s maximal in (B, <,.), i.e.,

@(900) g QD(.’X/') - d(%, xo) ’
and
2(y) > P(x,) — A2, ¥)

for all ye E\{x,}.

REMARK 3. Note that if <’ is finer than <,,, then under the
conditions of Theorem 2 there exists x, which is maximal in (&, <’),
and if in addition the sets S(z, <') are closed, then we may obtain

x =<' a, for any given z; cf. Remark 2.
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3. In this section we shall clarify the relations of Theorem 2
to the Bishop-Phelps lemma and the most general extensions known
to the author, namely that of I. Ekeland [5, Théoréme 1] for com-
plete metric spaces, and that of R. R. Phelps [6, Lemma 1] for
non-metric topological linear spaces.

Note first that if d is a metric on E, then the conditions (d)
and (e) are fulfilled. Furthermore, if one takes % to be the
uniformity on E generated by d, then (g) and (h) hold. Hence, if
E is a metric space with metric d, and @ is bounded below and
inf-complete on E (in particular, if d is a complete metric, and @
is bounded below and lower semi-continuous), then Theorem 2
applies. Adding the obvious remark that @ may be replaced by
k7@ for any & > 0, one obtains (under the condition stated) for
each zedom® an z,¢€ dom @ such that

P(r) = p(x) — kd(z, x)

and

P{y) > P(x) — kd(w,, ¥)

for all ye E\{x,}. This statement is essentially the theorem of I.
Ekeland.

To obtain the result of R. R. Phelps, let X be a topological
linear space, and let C be a closed, bounded, convex subset of X
containing o. Let g be the gauge function of C, i.e.,

p(e) = inf {x > 0|z enC}

for xe X, and let d(z, ¥) = {x — y) for z, ye X. Then, as is well
known, d maps X x X into [0, 4+ o] (with d(z, y) = + < if and only
if C does not absorb # — y), and the conditions (d) and (e) are ful-
filled. Also, if Z is taken to be the uniformity given on X (X
being a topological linear space), then (g) and (h) hold; for (g), the
closedness of C is essential, for (h), the boundedness is essential.
Therefore, if £ is a subset of X, and @ is bounded below and inf-
complete on E (in particular, if E is complete and @ is bounded
below and lower semi-continuous) then Theorem 2 applies. Noting,
as before, that @ may replaced by k™' for any k > 0, one obtains
a slight reformulation of the result of R. R. Phelps, stating that
(under the conditions above) for each xcdom @ there exists z,¢
dom @ such that

o) = o) — ke — @)
and

P(y) > P(x) — ke, — v)
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for all ye E\{z,}. (In [6], the set corresponding to the set C above
is not assumed to be convex. This condition seems necessary, how-
ever, to ensure that the relation considered be an ordering. For all
the applications in [6], the appropriate set is in fact convex.)

Note that if one takes d(x, ¥) = || — y || = p(x — ), both of the
two cases above covers the case of E being a subset of a normed
linear space. In particular, both cases covers the original lemma of
Bishop and Phelps which we shall briefly review. Let E be a com-
plete subset of a normed linear space X, let & be a nonzero continu-
ous linear functional on X which is bounded above on E, and let
k> 0. Then the set

K k) ={fweX[[a] =k, &)}

is a closed convex cone in X. (Note that K(& k) = {o} when k||&]| <
1, and that int K(§, k) +# @ when k||&|| > 1.) Being also proper,
the cone determines an ordering < on X in the usual manner, and
the ordering on E induced by =< is simply =,, with d(z, ¥) =
lle —yl|| and o(x) = —k{x, &). Therefore, for each xzecE there
exists x,€ K such that « < z, and «, is maximal in (&, <). This is
the lemma of Bishop and Phelps, slightly reformulated. In this
connection, note that if <’ is an ordering on X determined by a
convex subcone C of K(¢, k), then by Remark 3 we may still conclude
the existence of a point z,€ E such that x, is maximal in (E, =');
and if in addition C is closed, we may obtain z <’x, for a given
xe E. This covers a result of F. E. Browder [2, Lemma 2].

For a review of applications of the Bishop-Phelps procedure in
the case of orderings on Banach spaces generated by convex cones,
see R. R. Phelps [8]. In particular, this paper contains a com-
prehensive bibliography. For applications in more general cases, see
e.g. A. Brondsted and R. T. Rockafellar [3], R. R. Phelps [7] and the
papers of Ekeland and Phelps quoted above. See also §4.

4. By a drop D(z, r, ¥) in a normed linear space X we shall
mean the convex hull of a closed ball B(z, r) and a point ¥ not
belonging to the ball. This notion was introduced by J. Dane§ who
proved the following [4, Drop Theorem]:

THEOREM 3 (J. Danes). Let F be a closed subset of a Banach
space X, and let z be a point in X\F. Let 0 <r < R < p, where
R = dist (2, F'). Then there exists a point x,cbdF such that
|z, — 2]l = 0 and D(z, r, ) N F = {x;}.

This theorem is related to a theorem of F. E. Browder [2,
Theorem 4]. Roughly speaking, Browder proves that a certain drop
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may be translated to “support” the appropriate set, i.e., the “peak”
is the only point of the drop that belongs to the set, whereas Danes
proves that for certain given z and r there exists a “supporting”
drop of the particular form D(z, », y) for a suitable y. The proof
of Browder’s theorem depends on the lemma of Browder referred to
in §3; hence the Bishop-Phelps procedure applies with an ordering
defined by a convex cone. Although not explicitly stated, the proof
of J. Dane$ also contains a sort of a Bishop-Phelps argument. We
shall give a considerably clarified version of the proof by applying
directly the Bishop-Phelps procedure (with an ordering not generated
by a convex cone).

Proof (Theorem 3). Without loss of generality we may assume
that 2 = 0. We define a relation < on the set £ = F N B(o, p) by
putting «, < x, if and only if «,e€ D(o, 7, x,). It is easily checked

that =< is in fact an ordering. Let

P(x) = %*-%qu

for xe E. It is claimed that < is finer than the ordering =,.,,

where d(z, ¥) = ||z — v||. Let x, and x, be points in E such that
2, < %, From the definition of a drop it then follows that

(1) 2, =1 — t)x, + tv

for appropriate t€]0, 1] and ve€ B(o, r). By (1), we have ||z,|| =<
@ -tz + tlv|, whence

tll @] = lvl]) = o] — [l .
On the other hand, we clearly have R — » < ||a.]| — ||v||, and we
therefore obtain
(2) t= (ol — [l )8 —7)7".

From (1) it also follows that z, — =, = t(v — »x,). Using this and (2)
we get

e, — @l =tlv—al = tlv] + ||2.])
str+0) =@+ )R-l - [z,

as desired. Now, by Theorem 2 (see also § 3), there exists a maximal
element x, in (E, <;,). But then x, is also maximal in (&, <), cf.
Remark 3. This proves that ||«,|| < 0 and that x, is the only point
of D(o, r, 2,) belonging to E. But then =z, is the only point of
D(o, 7, x,) belonging to the given set F', since the points in D(o, 7, x,)
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have norm = o, whereas the points in F\K have norm > p. Finally,
it is obvious that x, is a boundary point of F.

Note that since a drop is closed, we may obtain x,€ D(z, 7, x)
for any given x € F with ||z — z|| < o, cf. Remark 3.
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