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REGULARITY AND QUOTIENTS IN RINGS
WITH INVOLUTION

CHARLES LANSKI

Let R be a ring with involution. There exists a unique
maximal nilpotent *-ideal N of R such that R/N with the
induced involution satisfies the property that any regular ele-
ment ot S, the subring generated by the symmetric elements of
R/N is regular in R/N. When N = 0 we say that R satisfies
the regularity condition. Assuming this condition, (Q(R)) = R
if and only if Q(S) = S. The existence of Q(S) implies the
existence of Q(R), and the converse is shown in some special
cases. If either 5 is commutative or R is a semi-prime Goldie
ring, then the relation between Q(R) and Q(S) is explicitly
described.

Recent work on rings with involution [8] has investigated the
question of when a symmetric element which is regular with respect to
ail other symmetries, is regular in the ring. Our first goal here is to
examine the related situation concerning the subring generated by the
symmetric elements. That is, when must an element, regular in this
subring, be regular in the whole ring? We show that semi-primeness is a
sufficient condition on the ring, and define a nilpotent ideal N of R so
that R/N possesses this regularity property. In a slightly different
direction, it has been shown [71 that for a semi-prime ring, the subring
generated by the symmetric elements is a Goldie ring exactly when the
whole ring is a Goldie ring. This result implies that each of these rings
has a semi-simple Artinian classical ring of quotients when the other
does. We determine here the relation between these quotient rings,
and further, investigate more general conditions under which the
existence of a quotient ring for one of these rings implies the existence
of a quotient ring for the other. As one might expect, this latter
problem is /elated to the one above concerr'ig the regularity of
elements in the subring generated by tfie symmetric elements.

Henceforth, R will denote a ring with involution, *; 5 = S(R) =
{x G R I jt* = JC}, the set of symmetric elements of R and S = S(R), the
subring generated by S. An important fact about S is that it is a Lie
ideal_of R (see [4] or [6]). Thus xt - tx G S for every x GR and
t ES. An ideal / of R is called a *-ideal if /* = /. Before our first
result, we recall the following

DEFINITION. If A is a nonempty subset of R, then £{A) = €R(A) =
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{JC <ΞR \xa =0 for all a G A} and r(A) = rR(A) = {JC GJ? | ax = 0 for all

For any subring Γ of JR and t G T, we say that ί is regular in Γ if
0. Clearly, ^ ( ί ) = ^ ( ί ) n T and rT(l) = r , ( l ) n i

LEMMA 1. Let s G S be regular in S. Then rR(s) = €R(s) is a
*-ideal ofR which is nil of index 2, is 2-torsion free, and has cube zero.

Proof. Let JC G R with sx = 0. Since S is a Lie ideal of R,
xs = JCS - sx G 5. But 5 is regular in 5 and s(xs) = 0, so xs =
0. Consequently, r(s)C€(s), and similarly f(s)Cr(s). Note that
0 = sx implies that 0 = x *s, so that r(5 )* C €(s) = r(s). Since r(5) is a
*-ideal of /?, and r(s)Γ\S =0 by hypothesis, it follows that x + x * =
xx* = 0 for all JC G Γ(S). Thus JC2 = JC(JC + x*) = 0. Lastly, should 2JC =
0 for some x G r(s), we would have x = x * G S ί Ί φ ) = 0. Therefore,
r(s) is 2-torsion free, so has cube zero.

Lemma 1 tells us that if a symmetric element is regular in 5, but not
in R, then we can produce a nonzero nilpotent ideal of R. In fact, we
need only consider symmetric elements since if t G S is regular in 5,
then tt* is symmetric, is still regular in 5, and ίR(tt*)D €R(t).

DEFINITION. R satisfies the regularity condition if each regular
element of 5 is regular in R.

We next use Lemma 1 to define a nilpotent ideal of R which is, in a
sense, a measure of how close JR is to satisfying the regularity
condition. A suprising fact about this ideal is that it will be the set
theoretic union of the nilpotent ideals arising in Lemma 1.

DEFINITION. Let V = { s G 5 | . s G S and s is regular in 5}. Set
W= W(R) = ϊr(s) for all s <= V.

THEOREM 2. The ideal W satisfies the following properties
(i) W contains rR(t) and £R(t) for any t, regular in S
(ii) W is a 2-torsion free *-ideal
(iii) W is nil of index 2
(iv) W3 = 0
(v) x G Wimplies x G r(v) for some v EV
(vi) W Π S = 0.

Proof. That W is an ideal of R follows from its definition together
with Lemma 1. Condition (ii) is also immediate from Lemma 1, and
(iv) will hold once (iii) is shown. To see that (i) holds, we note again
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that for t regular in 5, t*t and tt* are regular in S, so are in V. Since
r(t) C r(t*ί), and t(t) C€(tt*) = r(tt*), we have r(ί) C W and *(ί) C W.

Next, choose 5, and s2 in V. It is clear that sιs2si E V and that
5iS2 Sî ('Si) = 0. Also, SιS2Sιr(s2) = 0 since r(s2) is an ideal of R by
Lemma 1. Therefore r(sι) + r(sι)Cr(s\S2sι). An extension of this
argument shows that for s,, s2, , sn E V, there is ι?ε V with r(s,) +
r(s2)+ + K Sn) ̂ r ( ^ ) Since r(υ) is nil of index 2, we have estab-
lished (iii). Also, (v) is now immediate. Lastly, should y G ^ Π S ,
then by (v) y Er(v) for some υ E V. But r(u) Π S = 0, so y = 0, (vi)
holds, and the proof is complete.

COROLLARY 3. // R is semi-prime then R satisfies the regularity
condition.

Proof. For any t, regular in 5, €{t) and r(ί) are in W by Theorem
2-(i), and W is nilpotent by (iv). Since R is semi-prime, W = 0, so t is
regular in R.

Of course, 1? may satisfy the regularity condition without being
semi-prime. This is trivally true if I? = S or if S has no regular
elements. We present some additional and easy examples.

EXAMPLE 1. Let F be a field with char F/ 2, and set R =
F[x, y]/(y2). Define an involution on I? by JC* = x and y* = - y. For
t<ΞR,t =/(x) + g(jt)y, and ί* = /(Jt)-g(x)y, so ί = ί * exactly when
g(jc) = 0. Since t is regular in JR if and only if f(x) ^ 0, every nonzero
symmetric element is regular in i?. Clearly, R is not semi-prime since
(y)2 = o.

EXAMPLE 2. A noncommutative example can be obtained from
Example 1 by considering the subring 2?1CM2(1?) of upper triangular

(a b\ ίc* —b*\
matrices. Set I ft I* = ( # ). One can easily check that for

A&Rl9A is regular exactly when detA = f(x) + g(x)y and
f(x) f£ 0. Also, each symmetric element of R{ is either regular in JR 1 or
is nilpotent. Hence W(RX) = 0, so Rx satisfies the regularity condition,
although it is not a semi-prime ring.

The ideal W(R) possesses a radical property with respect to the
regularity condition in that W(R/W) = 0. Note that since W is a
*-ideal of R, there is a natural involution induced on R/W via
( r + HO* = r* + W.

THEOREM 4. The ring RIW, with induced involution, satisfies the
regularity condition.
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Proof. In view of Theorem 2, it is enough to consider y + W E
S(RI'W)9 which is regular in S(R/W). But if y + W is regular in
S(RIW), so is y2 + VK Furthermore, if y2 + W is not regular in R/W,
then neither is y + W. Since y - y * 6 ^ , w e have y2+W = yy*+W,
and so, it suffices to consider y + W e S(R/W), regular in S(RIW), and
with y e 5(1?).

Suppose that y is not regular in S. Then y(r(y)ΠS) = 0. But
S(R) + WCS(RIW) and y +_W is not regular in S(RIW), so r(y)Π
S C VK By Theorem 2-(vi), S Π W = 0, implying that r(y) Π S = 0, a
contradiction. Hence y must be regular in 5.

If y + W were not regular in R/W, then there exists t£ W with
yί E VK Using Theorem 2-(v), we can find v EV with vyt = 0. Since
ry is in 5 and is regular, we must have t ELW, again by Theorem
2. This contradiction shows that y + W is regular in Rl W, establishing
the Theorem.

One can obtain a rather surprising description of W in the event
that J? satisfies the ascending chain condition on two-sided ideals which
are right annihilators — so called annihilator ideals.

THEOREM 5. If R satisfies the ascending chain condition on an-
nihilator ideals, then W = r(v) for some υ E V.

Proof Since r(t) is an annihilator ideal for each t E V, we may
choose t E V so that r(t) is maximal in {r(v) \ v E V}. As in the proof
of Theorem 2, r(t) 4- r(y) C r(yty) for any y E V. Thus r(ί) C r(yty),
and the maximality of r(ί) forces r(ί) = r(yίy). Consequently,
r(y)Cr(ί) for all y E V, and so, WCr(t)CW.

Observe that if R satisfies the ascending chain condition on right or
left annihilators, or on annihilator ideals, then since W is an annihilator
ideal by Theorem 5, R/W satisfies the same chain condition as R, using
Lemma 3 of [5],

We turn our a ^ntion next to the consideration of quotient
rings. Should a ring A possess a total (right) quotient ring, in the sense
of Ore, we shall denote it by Q(A). Recall that Q(A) exists if and only
if A satisfies the right Ore condition; namely, for r,c E A with rφ 0 and
c regular, there exist r',c'EA with c' regular and rc' = crf. (See
Chapter 4 of [4].)

Our first result on quotients deals with the special case when
Q(S) = 5, or equivalently, when each regular element of S is invertible.

THEOREM 6. // Q(S) = S, then Q(R) = R. Furthermore, if S has
regular elements, then
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(i) R = A 0 B for A and B *-ideals of R
(ii) B is 2-torsion free, nil of index 2, and b * = -b for each

bEB;
(iii) A has identity, S CA, and Q(A) = A
(iv) A satisfies the regularity condition.

Proof. For c regular in R, cc * is regular in both R and S, so if S
has no regular elements neither does R, and Q(R) = R. Assuming that
S has regular elements, let e be the identity of 5. As mentioned above,
S is a Lie ideal of R, so for r ER, er - re 6 5. Consequently,
er -re - {er - re)e = ere - re, and er - re = e(er - re) - er - ere. It
follows that er = re, and so, e is a central idempotent of I?. Also,
e* = e since both are identity elements for S. Hence, we may formally
decompose R as the direct sum of the *-ideals eR and (1 - e)R, which
proves (i).

Now S = eS C eR. Thus for b E (1 - e)R, bb * and b + & * belong
to (1 - <0# Π S = 0. We conclude that b2 = b(b + b*) = 0, and since
2b = 0 would imply that fc = / ) * e ( l - ^ ) U n S = 0 , we also conclude
that (l-e)R is 2-torsion free. This establishes (ii).

To prove (iii) we begin with the facts that e is the identity of
A = eR, and that S C eR. If x is regular in A, sois xx *. But Q(S) = S
implies that (xx*)y = x(x*y) = e, for some y ES. Hence x is a unit in
A and Q(A) = A. Condition (iv) now follows since regular elements
of 5 are invertible in 5, and since S and A have the same identity.

In general, a converse to Theorem 6 is hopeless, for the fact that
Q(R) = R says nothing about 5. One may consider any ring A with
S(A) = A and let R = A 0 N, where N is a 2-torsion free ring with
trivial multiplication. Then with the involution (a, n)* = (α*, - n),
S(R) = A and Q(R)-R, since R has no regular elements. Even if JR
has regular elements and Q(R) = R, we cannot conclude that Q(S) = S,
or even that Q(S) exists, as the next example shows.

EXAMPLE 3. Let F be a field with char F-έ 2, and F{{x, y}}[z] the
polynomial ring over z with coefficients in the ring of formal power
series in the noncommuting indeterminates x and y. Denote by /, the
ideal generated by z2, zx, and zy. Set R = F{{x, y}}[z]II, and let x, y
and z denote their own images in R. Define an involution on R via
z* = -z, JC* = JC, and y* = y. For r ER, if we write r =
a+Σ%ιfi(x,y) + bz9 where a,bEF and {/(JC,y)} are homogeneous
polynomials of degree i, then r* = a + Σf(x, y)* - bz. Note first that r
is regular exactly when α^O, in which case r = (a+bz)
(l + Σa~ιfi(x,y)) is invertible. Hence Q(R) = R. Clearly, each ele-
ment in 5 may be written as a + Σ S,(JC, y), for symmetric, homogeneous
polynomials st(x,y). But x and y ES, and S CF{{x,y}}. It follows
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that xS Q yS = 0, since xF{{x, y}}Γ\ yF{{x, y}} = 0. Consequently, the
domain 5 does not satisfy the right Ore condition, so 5 cannot have a
right quotient ring.

We note that the regularity condition fails to hold in Example
3. In fact, the converse to Theorem 6 is valid under this assumption on
R.

THEOREM 7._ If R satisfies the regularity condition, and if Q(R) =
R, then Q(S) = 5.

Proof Once again, if 5 has no regular elements, there is nothing
to prove. Suppose that x E S is regular in S. Then x is regular in R
by the regularity condition, so JC"1 ε R. Now (JOΓ1) = 1 = 1* = (JC"!)*JC,

so x'ιES. Let y be any regular element of 5. Since yy* is also
regular, with symmetric inverse t, we have 1 = (yy*)t = y(y*t), and
y * ί E S , for y E S implies y * E S . Thus Q(S) = S, proving the
theorem.

Having examined the situatation when either R or S is its own ring
of quotients, we turn to the problem of the existence of quotient
rings. Under the assumption of the regularity condition, one implica-
tion is straightforward.

THEOREM 8. If R satisfies the regularity condition, and if Q(S)
exists, then Q(R) exists.

Proof If R has no regular elements, there is nothing to prove, so
choose a,c ER with a Φ 0 and c regular. Since c is regular in R, cc *
is regular in 5. Should a(cc*) = (cc*)a = c(c*a), then take c1 - cc*
and a1 = c*a to obtain ac' = car ^0 with c' regular. If acc*-
cc *α ̂  0, then this element is in S, since cc * e 5 and S is a Lie ideal of
jR. By assumption, Q(S) exists, so there are w9y E S with w regular
and (ace * - cc *a )w = cc *y Φ 0. Re-arranging terms, we have
acc*w = cc*(y + aw). Let c' = cc*w and a1 - c*(y +ακ>). Now c'
is regular in R by the regularity condition, so acf ^0. Therefore, R
satisfies the right Ore condition, and so, Q(R) exists.

Given that R satisfies the regularity conditon, it would be surprising
if Q(R) could exist without implying the existence of Q(S). Although
we have not been able to show that this holds in general it is true in some
special cases. Of course, when 5 is commutative then Q(S) always
exists. If S is not commutative, then since it is a Lie ideal of R, S
contains the ideal of JR generated by all xy - yjc for JC, y E S. This fact
is well-known, and follows from the proof of Lemma 1.3 of [4J. When
this ideal contains a regular element of JR, we have the following result
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THEOREM 9. Let R satisfy the regularity condition, and suppose
that I is an ideal of R contained in S such that I contains a regular
element of R. Then Q(S) exists if and only if Q(R) exists.

Proof. By Theorem 8, it is enough to prove that Q(S) exists when
Q(R) exists. Let a,t ES with a^ 0 and t regular. Since t is regular
in /?, there exist a',t' GR with t' regular, and at' = ta'. If w E I is
regular in R, then at'w = ta'w. Since I CS, t'w and α'w are in
5. Also, t'w is regular, so the right Ore condition holds in 5, and Q(S)
exists.

COROLLARY 10. // R satisfies the regularity condition and if S is a
domain, then Q(R) exists if and only if Q(S) exists.

Another situation in which .we can guarantee the existence of Q(S),
given that Q(R) exists, is when essential ideals contain regular
elements. Our next result is concerned with the existence of certain
kinds of essfential ideals in S. First, we make the

DEFINITION. A right ideal T of R is called essential if TΠB^O
for each nonzero right ideal B of R.

LEMMA 11. Let R be semi-prime and suppose that dES is
regular. If dR_ is an essential right ideal of R> then dS is an essential
right ideal of S.

Proof. Should S be commutative, the proof is trivial since dA C
A Π dS for any ideal A of 5. If S is not commutative, then as we
observed above, S is a Lie ideal of R containing the nonzero *-ideal / of
R, generated by all xy - yx for x, y E 5.

Let A / 0 be a right ideal of § and assume that AI/ 0._ Then AI is
a right ideal of R, and so, dR ΠAI^O. If dx E AΓCS, then since
d E 5, we have dx - xd E S, which implies that xd E 5. Thus dxd E
dS Π AI, and dxd ^ 0 since d is regular in R by Corollary
3. Consequently, dS Π A / 0.

Next assume that AI = 0. Then A is contained in Ann /, the
annihilator of /, an ideal of R. Hence S Π Ann / is a Lie ideal of R
containing A. But S Π Ann / is a commutative subring of R. To see
this, note that for x,yE:S Π Ann /, xy - yx E / Π Ann I == 0 since R is
semi-prime. Since S Π Ann I is a commutative Lie ideal of R, it
follows that for y E 5 Π Ann /, either 2y = 0 and y2 E Z(R), the center
of R, or 2 y ^ 0 and 2y E Z(R) (see the proof of Lemma 1.3 of [4] or
Lemma 2 of [7]). In particular, A Π Z(R)^ 0 unless A is nil of index
2. But this would force 5 to contain a nonzero nilpotent ideal, by
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Levitzki's Theorem [4; Lemma 1.1], which is impossible since S is
semi-prime [6; Theorem 3.5]. Therefore A Γ)Z(R)^0. Hence, for
y G A Π Z(R), we have dy = yd E dS Π A, and dy / 0 for y / 0 since d
is regular. Thus dS Π A / 0 when A ̂  0, so c/S is an essential right
ideal of S.

When Q(R) exists, then dR is an essential right_ ideal for d
regular. Hence, when JR is also semi-prime, then dS will be_ an
essential right ideal of S when d is regular in S. Thus a~ι(dS)=^
{y E S I ay E dS} is an essential right ideal of S. To conclude that_S
has a quotient ring, it suffices to know that the essential ideals a~ι(dS)
contain regular elements.

THEOREM 12. Let R be semi-prime and satisfy the ascending chain
condition on right annihilators. If Q(R) exists, then Q(S) exists.

Proof. Since I? has an involution, R also satisfies the ascending
chain condition on left annihilators. By a Theorem of Johnson and
Levy [3], each essential right ideal of R has a regular element. The
same holds true for S since the chain conditions on annihilators are
inherited by subrings, and since 5 is also semi-prime. As in the
discussion^ preceeding the Theorem, for α, d E 5_ with a ̂  0 and d
regular, dS is essential in 5 by Lemma 11, so a~\dS) contains a regular
element. Thus ad'j= da' toτa'.d1 E S and d' regular, the right Ore
condition holds in S, and Q(S) exists.

Lastly, we turn to a description of how Q(S) and Q(R) are related
when they both exist. Given _that R satisfies the regularity condition,
then the natural injection of S into JR extends to an isomorphism of
Q(S) into Q(R) [1]. Thus, we can consider Q(S) as a subring of
Q(R). We are able to give a precise description of how Q(S) sits in
Q(R) in two special cases. The first of these is when S is commuta-
tive.

DEFINITION. If I? is a ring, and T is a nonempty, multiplicatively
closed subset of regular elements in Z(JR), the center of R, then RT~ι is
the localization of R at T.

THEOREM 13._ Let R be semi-prime with either 2R =0 or R 2-
torsion free. If S is commutative then Q(R) = R or Q(R) = RT~ι for
T = {y eZDS\y is regular}.

Proof. If R has no regular elements then Q(R) = R. If R has
regular elements, then so does S, and each such element is regular in JR,
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by Corollary 3. Since S = 5 is a commutative Lie ideal of R, and JR is
semi-prime, as in the proof of Lemma 11, we have for each s E S, that
s2GZ if 2R =0 and 2s E Z is JR is 2-torsίon free. In the latter case it
easily follows that s EZ. Hence, it is always true that s2 E Z for each
s E S, and so, T is not empty.

Should Q(S) = S, then Q(R) = R by Theorem 6. Otherwise,
consider R'~RT~ι. R' has an involution extending *, given by
(rz~1)* = r*z~!. Note that if s E S is regular, then s(s(s2)'1) = 1 in JR\
so Q(S(i?')) = S(l?'). Applying Theorem 6 again yields Q(J?') =
JR'. But it is clear that R'^Q(R), since if r e jR is regular, then in

R, Γ(Γ* r r*(( r σ*)*)-*) = i.
Another case in which we can describe the relation between Q(R)

and Q(S) is when JR is a semi-prime Goldie ring. Q(R) exists by
Goldie's Theorem [2, Theorem 4.1], and the existence of Q(S) follows
from Theorem 12. One can also obtain the existence of Q(S) from the
fact that S is itself a semi-prime Goldie ring [7, Theorem 1].

We recall two facts about quotient rings which are required
below. Assume that R is a semi-prime Goldie ring and I is an ideal of
R containing a regular element of R. Then I is also a semi-prime
Goldie ring, both R and / have quotient rings, and these quotient rings
are isomorphic via the map r-+rc c"\ for r GR and c E /, a regular
element of R. The second fact, easily verified, is that given rings A
and B with quotient rings, then Q(Λ φJ9) = QG4)φQ(J3).

THEOREM 14. Let R be a semi-prime Goldie ring with either
2JR = 0 or R 2-torsion free. Then either

(i) Q(R) = Q(S)or
(ϋ) There exist *~ideals I and J = Ann I of R so that Q(S) =

Q(ΌΘQ(JnS) and Q(R) = Q(I)®Q(J) Furthermore, JDS is
commutative, and if P = {x E 5 Π Z(/) J x is regular in /}, ffterc Q(J) =

Proo/. If S is commutative, take 7 = 0 and apply Theorem 13. If
S is not commutative, then it contains the *-ideal J of I? generated by all
xy - yx for x, y E S. First assume that Ann / = 0. Then for any right
ideal 7V 0 of R, TI^ 0 and TI C T Γ> J, so J is an essential right ideal of
1?. It follows that / contains a regular element of JR [2, Theorem
3.9]. By the remark preceeding the Theorem, Q{R)^ Q(ί), and also,
Q(I) SΞ <2(5), since S is a Goldie ring [7]. Therefore (i) holds, so we
may assume that / = Ann Ij^O.

It is easy to show that / φ J has no left annihilator in R. Thus
J φj is an essential right ideal of JR, so contains a regular element of JR,
say c = C] + c2, with c, regular in / and c2 regular in /. Using the
remarks above once again, we have that Q(R)^Q(Iφ/)s
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Q(I)®Q(J) The latter quotients exist since / and J are semi-prime
Goldie rings._ Also, cc * is regular in R and is contained in / $ ( / Π S),
an ideal of S. Consequently, Q(S) = Q(I) 0 Q(J Π S).

J Π S is commutative, for if x,y ELJΠS, then xy - yx E / Π J -
0. As J is a *-ideal, S(/) = 5 Π /, so Q(/) = JP ι by Theorem 13.

COROLLARY 15. If R is a prime Goldie ring, then Q(R)^Q(S).
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