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IDEAL LATTICES OF LATTICES

RALPH FREESE

This paper shows that any compactly generated lattice
is a subdirect product of subdirectly irreducible lattices
which are complete and upper continuous. An example of
a compactly generated lattice which cannot be subdirectly
decomposed into subdirectly irreducible compactly generated
lattices is given. In the case of an ideal lattice of a lattice
L, the decomposition into subdirectly irreducible complete
lattices is tied, via a special completion process, to the finitely
subdirectly irreducible homomorphic of images L. It is also
shown that any finite lattice satisfying the Whitman con-
dition is a retract of the ideal lattice of the dual ideal lattice
of a free lattice.

Let L be a lattice and *J^(L) the lattice of all ideals of L, and
the lattice of all dual ideals of L ordered by reverse set in-

clusion. This paper is concerned with the subdirect decompositions
of ^(L) and how they relate to L. First it is shown that ^(L),
and indeed any compactly generated lattice, is a subdirect product
of subdirectly irreducible lattices which are complete and upper con-
tinuous. A special class 3ίί of lattices is defined which contains the
class of all subdirectly irreducible lattices and is contained in the
class of all finitely subdirectly irreducible lattices (a lattice is finitely
subdirectly irreducible if it has no nontrivial subdirect decomposition
into finitely many lattices). Each lattice L of J%Γ has a special com-
pletίon which is subdirectly irreducible, upper continuous and satisfies
all the identities of L. The main result of the paper is that J^(L)
is a subdirect product of the special completions of those members
of 3ίΓ which are homomorphic images of L.

The paper also shows that any lattice satisfying both chain con-
ditions and the Whitman condition free of the generators is a retract
of the lattice of all ideals of the lattice of all dual ideals of a free
lattice. This is used to show that if L is a modular lattice then
every finite dimensional homomorphic image of L must be used in
every subdirect decomposition of J^{^(IS)) into subdirectly irreduci-
bles. Finally, an application to the notion of transferability of lat-
tices is given.

The terminology of the paper is taken from [2]. In particular,
a lattice is weakly atomic if every quotient sublattice contains a
prime quotient. If x > y (x covers y) in a lattice, then we let ψ(x, y)
denote the unique maximal congruence not containing (x, y).
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2* Completeness* The lattice ^(L) is always compactly gener-
ated and every compactly generated lattice is weakly atomic. If
a > b in a lattice K then there is a unique maximal congruence ψ(a, b)
on K such that (α, b) $ ψ(a, b) and ψ(a, b) is completely meet irreduci-
ble. It follows that if K is weakly atomic then it is a subdirect pro-
duct of the subdirectly irreducible lattices K/ψ(a, 6), a > b in K.

In general, homomorphic images of complete lattices need not be
complete even if the lattice is compactly generated. However, we
have the following.

THEOREM 2.1. // K is a compactly generated lattice and a > b
in K, then K/ψ(a, b) is a complete and upper continuous lattice.
Moreover, the natural homomorphism from K to K/ψ(a, b) preserves
arbitrary supremums.

Proof. We first prove the following lemma. Let K, α, b be as
in the theorem and suppose a/b is weakly projective into x/y in K.
Then there exists a compact element c such that c V y tί x and a/b is
weakly projective into c V y/y. Since a/b is weakly projective into x/y
t h e r e e x i s t q u o t i e n t s xo/yo — x/y, %JVi, •••, xjyn — a/b s u c h t h a t a l-
ternately either x% V yt+1 = xι+ί and yt ^ yι+i or yt A xi+i = yι+] and

%i ^ «< + l-

Suppose yn_} A a = b and a ^ xn-^ Choose c a compact element
below a but not below b. Then c V yn-} ^ c V b = a and thus a/b
is weakly projective into yn^.1 V c/τ/TO_1. Let xn_2 — VS where Sis the
set of compact elements below xn_2. Then c ^ yn_λ V xn-2 = Vse^sV
2/Λ_i Since c is compact there exists an seS such that c ^ s V 2/w_!.
Now it is easy to verify that a/b is weakly projective into s V yn-2/Vn-2
and it is also weakly projective into s V y%-z/yn-s- Continuing in this
way we get the desired conclusion. The case where xn_1 V b = a and
6 >̂ 2/Λ_! can be handled similarly.

Let / denote the natural homomorphism from K to K/ψ(a, δ),
where a covers b. We shall show that / preserves arbitrary supre-
mums. The rest of the theorem follows immediately from this. Let
Y be an arbitrary subset of K/ψ(a, b). Since / is onto, there is a
subset X of K such that Y= {f(x):xeX}. Let xQ = \/X. Since /
preserves order, f(xQ) ^ f(x) for all xeX. If f(x0) is not the least
upper bound for Y then we can find z e K such that z < xOf f{z) <
f(x0) and f(z) ^ f(x) for all xeX. Now it is easy to see that a
quotient x/y is collapsed by ψ(a, b) if and only if a/b is not weakly
projective into x/y. Since /(z) < f(x0), a/b is weakly projective into
xjz. By the lemma, we can find a compact element c such that x0 ^
c V ^ and α/δ is weakly projective into c V z/z. Since V ^ — χo S <?>
there exists xh - -, xne X such that ^ V V xn ^ c. Since /(z) gr
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f(x%), i = 1, , n, f(z) = f(z V a?i V V xn). Hence a/b is not weak-
ly protective into ^ V ^ V V xjz. Since c V z/z £ 2 V ^ V V
α?n/«, this is a contradiction. The proof is complete.

It is interesting to note that the lattice K/ψ(a, b) in the theorem
need not be compactly generated. To see this let S be a countable
set and let At be a group isomorphic to the group Z2°° for each ieS.
Let G be the direct product of the A/s. For each subset T of S we
let Gτ be the subgroup of G consisting of all elements of G whose
ith-projection is 0 for all i in T. Let L denote the collection of sub-
groups H of G such that either H contains Gτ for some finite subset
T of S, or H is the zero subgroup. Then L is a complete, upper
continuous, modular, subdirectly irreducible lattice which is not com-
pactly generated. Let K = ̂ {L) and let a and b be principal ideals
corresponding to a prime quotient in L. Then it follows from Lemma
5.1 below that K/ψ(a, b) ~ L. Moreover, Lemma 6.2 below shows
that L must be used in every subdirect decomposition of ^(L) into
subdirectly or even finitely subdirectly irreducible lattices.

3* Projectivities in ^(L).

LEMMA 3.1. Suppose that (a)/J is weakly protective into (c)/J0

in ^(L) and let d e Jo. Then there is a be Jsuch that a/b is weakly
protective into c/d in L.

Proof. Since (a)/J is weakly protective into (c)/J0 there exist
quotients Io/Jo = (c)/JOf IJJl9 , IJJn = (a)/J such that alternately
either It V Ji+ι = It+1 and Jt ^ Ji+1 or Jt A Ii+i = Ji+1 and /, ̂  Ii+1. Let
us assume that J%^ A (a) = J and (α) <: In_x and JΛ_2 V Λ_i = In-i and
Λ_2 ^ Λ_!. Since (α) ̂  /Λ^x = Jn^ V /Λ_2 = Λ_, V VUein_2(

u)> t h e r e i s

β,_26/,_2 such that (α%_2) V Jn-\^ (»)• It follows from induction
now that there is a 6%_2 in (α%_2) Λ Jn-2 such that α^_2/δw_2 is weakly
protective into c/d in L.

Since (α) ̂  (αw_2) V J%_! — VJW_! (an-2 V ^) , there is an element
bn_1 of Jw_! such that α%_2 V δ̂ _j ^ α. Clearly 6W_] may be chosen so
that δΛ_j ̂  δ%_2. Let αΛ_! = α%_2 V &%_j and 6 = α Λ δ»-i Then it is
clear that a\b is weakly protective into an_2/bn__2 in L which is weakly
protective into c/d in L. The case when (a) = In_1 V J and / ^ J ^ !
is treated similarly.

The following corollary shows that any congruence of L can be
extended to a congruence of ^(L) in such a way that the restriction
to L of the extended congruence is the original one.

COROLLARY 3.2. Suppose (a)/(b) is weakly protective into (c)/(d)
in ^(L). Then a/b is weakly protective into c/d in L.
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If L is a modular lattice then the analogous results may be
proved with weakly protective replaced by protective.

4* Subdirect decompositions of ^(L). Let 3ίΓ be the class
of all lattices K such that for some aeK and Je ^(K), (a) >- /and
any nontrivial congruence of K collapses a and b for some beJ.
Notice that J%Γ lies properly between the class of subdirectly irreducible
lattices and the class of finitely subdirectly irreducible lattices. If K
is in 3ίΓ and a and J are as above then we define Kf = ^(K)/ψ((a), J)
to be the special completion of K with respect to a and J. Let 3fΓf

be the subclass of 3ίΓ which consists of those members of J ^ which
are complete, upper continuous, subdirectly irreducible with a prime
quotient which is always collapsed. The next theorem is an easy
consequence of Theorem 2.1, Lemma 3.1, and Lemma 5.1 below.

THEOREM 4.1. Let Ke^Γ then Kf e^Γf and K is a sublattice
of Kf and Kf is in the variety (equational class) generated by K.
Moreover, if KeJ%" then K' — K. In particular, K" — Kf and if
K satisfies the ascending chain condition then Kf = K.

LEMMA 4.2. Let L be a lattice, aeL and Je<J^(L) such that
(a) > J. Let K be the image of L in ^(L)/ψ((a), J). Then Ke
and ^(L)/ψ((a), J) ~ Kf.

Proof. By Lemma 3.1 KeJsΓ. Let / be the natural map from
J?(L) onto J?(K), and let φ be the kernel of /. Since f(a) Φ f(b)
for all b in J, ((a), J) $ φ. Consequently φ :g ψ((a), J) and thus
^(L)/ψ((a), J) is a homomorphic image of ^(K). The kernel of this
map is clearly φ((f(a)), f(J)). Hence ^(L)/ψ (a), J) ~ ^(K)/f(f(a),
f{J)) = K'.

It is not hard to show that if K is a homomorphic image of L
lying in 3ίΓ, then the special completion of K is a subdirectly irre-
ducible homomorphic image of ^ ( L ) . These homomorphic images
are sufficient to form a subdirect product. Indeed, since ^(L) is
weakly atomic the set of congruences on ^(L) of the form ψ(Γ, J')
where /' > J' is adequate to form a subdirect representation of ^(L)
into subdirectly irreducibles. If we choose ceΓ, c$Jf and using
Zorn's lemma, choose Je^(L) such that (c) Λ Jr S J< (c), then
Ψ((<0, J) ^ Ψ(I\ J')' Consequently, congruences of the form ψ{{c), J)
where (c) > J are adequate to form a subdirect representation of
^{L). Combining the previous theorems we have the following
description of the subdirect decomposition of ^{L) in terms of L.

THEOREM 4.3. Let L be a lattice. Then ^(L) is a subdirect
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product of the special completions of the homomorphic images of L
which lie in 5ίΓ.

5* Retracts of ideal lattices of dual ideal lattices of free lattices*
We let (W) denote the Whitman condition which is free of the
generators; that is

(W) a A b <, c V d implies a ^ c V d or b ̂  c V d

or a A b ̂  c or a A b ̂  d .

In this section we show that any lattice which satisfies both chain
conditions and (W) is a retract of the lattice of ideals of the lattice
of dual ideals of a free lattice. Some of the ideas of the proof are
borrowed from R. McKenzie and A. Kostinsky [6]. The principal ideal
generated by x is denoted (x) and the principal dual ideal [x]. Dual
ideals are ordered by reverse set inclusion.

LEMMA 5.1. Let f be a homomorphism of L into K, where K
is a complete and upper continuous lattice. Then f can be extended
to a homomorphism, / ' , mapping <J^(L) into K by /'(/) =
Furthermore, ff preserves arbitrary supremums in

Proof. It is easy to see that / ' preserves arbitrary joins. To see
that / preserves finite meets, let Iu I2 e J^{L). Then since {f(u) | u e /J
is a directed set, i = 1, 2, we have by upper continuity,

/'(/,) Λ / U ) = ( V fM) A ( V fM) = V V fM A f(u2)
/ ^ I I

= V V /(», Λ u2) = V /(«) = /'(/, Λ 70
u1elί u2el2 ueI1ΛI2

T H E O R E M 5.2. Let K be a lattice satisfying both chain conditions

and (W). Then K is a retract of ^^{FL{X)), where \X\ = \K\.

Proof. Let L = FL(X) and let / be a homomorphism from L
onto K. By the dual of Lemma 5.1 / can be extended to a homomor-
phism of ^"(L) onto K, which in turn can be extended to a homomor-
phism of ^^(L) onto K. We let / denote both of these extensions.
Let β be the one-to-one map of K into J^^{L) which maps be K
to the principal ideal generated by the dual ideal {ueL:f(u)^ b}.
Let a mapping K one-to-one into J^^{L) be given by a{b) =
{D e J^iL): f(D) ^ 6}. Clearly a{b) is the greatest element in J^^(L)
whose image under / is b, for all b in K. We claim that β{b) is the
least element of ^^(L) mapping to b under /. Indeed, suppose
f(I) = b for some Ie^^(L). Then by Lemma 5.1 &=/(/) =
VDei f(D). The ascending chain condition in K yields that b = f(D)
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for some Del. Now δ = f(D) = AueDf(u). Hence /(u) ^ δ for all
% 6 D. Thus I)S{%eL: /(%) ^ δ}. Consequently D^{ueL: f(u) :> b}
in ^"(L) and thus (D) ̂  /9(δ). Since J ^ (D) we have J ^ /9(δ).

The map a preserves meets in K. For joins we have the fol-
lowing formula.

( * ) a(bQ V b,) - a(bt) V α φ j V V {([»]): * e X and /(s) £ 60 V δj .

Let Io be the right-hand side of the above equation. It is clear that
f(I0) = bQ V blf so that Io ^ α(δ0 V δj. Suppose that for some 7, /(/) ^
δ0 V δi If Del then /(D) ^ δ0 V δx. Suppose that Z) is principal;
D =z [u]. We shall show that Delo by induction on the length of
the word u. Let T = {ueL:f(u) ^ δ0 V δx implies [w]elo}. Clearly
I S Ϊ 1 and Γ is closed under joins. Let u = ύ0 A uλ with %0, uxe T
and δ0 V 63 ^ /(%) = /(%0) Λ /(^,). It follows from (W) that either
f(u0) or fin,) ^ δ0 V 6, or /(^0) Λ f(u,) ^ δ0 or bx. If /(^0) ^ δ0 V bx

then [̂ o] e Io and thus [u] = [u0 Λ ^J € Jo. If f(u0) Λ /(^i) ^ δ0 then
([%o Λ ^i]) ^ #(δ0) ̂  /0 Now let D be any filter in I. Then AueDf(u) —
f(D) ^ δ0 V δj. Since iΓ satisfies the descending chain condition and
{f(u):ueD} is closed under finite meets, there exists uQeD such that
f(u0) = f(D). Hence f(u0) ^ δ0 V δ3 and thus [uQ] e Jo. Now since
D ^ [̂ o], Delay proving (*).

Momentarily considering β to be a map from K to ^(L), we
let /& be the unique homomorphism of L = FL(X) into ^(L) ex-
tending the map h(x) = β(f(x))f xeX. By the dual of Lemma 5.1
/& can be extended to a homomorphism of ^(L) into J^(L). Since
^{L) is naturally embedded in ^^{L), this extension may be
thought as a homomorphism of ^{L) into J^^(L). By Lemma 5.1
again, this homomorphism can be extended to a homomorphism from
^&~{Jj) into ^^~{L). We use /̂  to denote this homomorphism.
We claim that β(f(I)) ^ A(J) ^ «(/(/)), Ie^^(L)f and consequently
f(h(I)) = /(/). To see this first suppose I is doubly principal, I = ([%]).
We induct on the length of u. The inequalities hold if u e X. Suppose
β{f(nt)) ^ h(Ui) ̂  ^(/(^i)), i = 0, 1. Then, since β preserves joins,
iS(/(wo V iθ) = iβ(/W) V β(f(uΊ)) ^ h(u0) Vhfa) = h(u0 V ux) £ a(f(u0)) V
&(f(ui)) = ^(/hV^i) ) . The calculations for uQAu1 is similar. Now
suppose I = (D). Then £(/(%)) ^ Λ(w) ^ «(/(%)) for all ueD. Hence
hueDβ{f{u)) ^ AueDh(u) ^ AueD<x(f(u)). Since J^ satisfies the de-
scending chain condition, there exists uoeD with /(D) = /(wo) Hence
/(%) ^ / W for all ^ e ΰ . Therefore β(f(u)) ^ β(f(u0)), for all
Thus Λz> iβ(/(tt)) - /3(/(O) - ^ ( / φ ) ) . Similarly An a(f(u)) - α(
Hence β(f(D)) ^ A(D) ^ a(f(D)). Now let I be arbitrary. Then
V//S(/(J5))^ VJHD)^ y/ja(f(D)) and as above this gives
h(I) ^ «(/(!)), as desired.
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Now let g: K~+ ̂ ^(L) be defined by g = ha. We wish to show
that g is a homomorphism. Since both a and h preserve meets, g
does also. To show that joins are preserved it suffices to show that
h(a(b0) V «(&])) ^ h(a(b0 V bj). Now, since h preserves arbitrary joins
i n ^ ^ { L \ h(a(b0 V 6 J ) = h(a(b0)) V fc(«(&i)) V {h(([x])): x e X a n d
f(x) S bQ V δ j . Therefore, it suffices to show that if x e X and f(x) ^
δ0 V bl9 then Λ(α(δ0) V «(&,)) ^ Λ(») F o r such an α?, /(α(60) V a(b$) =

ΛΦo)) V /(α(6ι)) - b0 V 6, ̂  /(a). Hence, α(60) V α(6|)
A(OJ). Thus h(a(b0) V «(&,)) ^ A(M»)) ^ β(f(H%))) = iS(/(α?)) =
5r is a homomorphism.

It is clear that f(g(b)) = δ for all δ e if. The proof is complete.

COROLLARY 5.3. The following are equivalent for a lattice L
satisfying both chain conditions:

( i ) L satisfies (W).
(ii) L is a retract of ^^{FL{X))9 \X\ = \L\.
(iii) L is a sublattice of J?^{FL{X)), \X\ = |

The implication (iii) implies (i) follows from the fact that
satisfies (W) [1]. The rest follows from Theorem 5.2.

6* Applications* The techniques used to prove Theorem 4.3
can be used to prove an analogous result for ^^(L). Again there
is a natural class Sίf of finitely subdirectly irreducible lattices such
that §ίf includes all subdirectly irreducible lattices and a natural
completion of these lattices, satisfying the same properties as the
special completion of the members of ^tΓ. ^^{L) is then a sub-
direct product of the completions of the homomorphic images of L
which lie in £έf.

Since subdirect decompositions are not, in general, irredundant,
the question of which of the members of ^^(resp. £ίf) are necessary
in the decomposition of J^(L) (resp. J^^{L)) is ill-posed. However,
if L is modular then, by a result of P Crawley and R. P. Dilworth,
^(L) and ^^{L) each have a unique irredundant decomposition
into subdirectly irreducibles. Now we can ask which of the special
completions of the homomorphic images of L in J^~(resp. Sίf) are
necessary in representing ^(L) (resp. ^^(L)). The following
theorem partially answers this question.

THEOREM 6.1. Let L be a modular lattice. Then every finite
dimensional subdirectly irreducible homomorphic image of L must
be used in every decomposition of J^^{h) into subdirectly irre-
ducible lattices.
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Proof. Let / be a homomorphism from L onto K, where K is
a finite dimentional subdirectly irreducible lattice. Then K has a
prime quotient ajb which is collapsed by all nontrivial congruences
on K. By Lemma 5.1 / may be extended to a homomorphism of
^^{L) onto K. Define the maps a and β from K into ^\J^(L)
as in the proof of Theorem 5.2. Since a(b) is the largest element of
^^~(L) which is mapped to b under /, and since β(a) is the small-
est element mapping to a under /, it follows that a{b) V β{a) > a(b)
in Jf^ίL). Hence ^^(L)/ψ(a(b) V β(a), a(b)) is isomorphic to K.
The theorem follows from the following lemma. For any lattice A
we let Θ(A) denote the lattice of congruence relations on A and 0 its
least element.

LEMMA 6.2. Let A be a modular lattice with prime quotient
x/y. If S is a set of meet irreducible elements in Θ(A) such that
A S = 0, then ψ(x9 y) e S.

Proof. Since A S — 0, there must be a φ e S such that (x, y)gφ.
Thus, ψ <£ ψ(x, y). Since A is modular, the least congruence collaps-
ing x and y, θ(x, y), covers 0 in Θ(A). Since Θ(A) is distributive,
θ(x, y) V φ > φ. Hence φ = (θ(x, y) V φ) A Ψ(x, y)> Since φ is meet
irreducible it follows that ψ — ψ(xf y), proving the lemma.

A lattice K is called transferable if, for every lattice L, whenever
K is isomorphic to a sublattice of <J^(L)y then K is isomorphic to a
sublattice of L. The next result follows from Theorem 5.2.

COROLLARY 6.3. // K satisfies (W) and both chain conditions
and both K and its dual are transferable then K is isomorphic to
a sublattice of a free lattice.

It should be pointed out that B. Jόnsson has shown that a sub-
lattice of a free lattice which satisfies both chain conditions is finite [5].

Another corollary is the following: if K is a finite transferable
lattice satisfying (W), and K is a lower bounded homomorphic image
of a free lattice (see [7]), then K is a sublattice of a free lattice.
Further applications of Theorem 5.2 and other results related to
transferability are given by H. Gaskill, G. Gratzer, and C. R. Platt
[4], and K. A. Baker and A. W. Hales [1]. For applications of ideal
lattices to lattice varieties, see [3].

The author would like to thank R. P. Dilworth for some sugges-
tions which stimulated this research.
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