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NONLINEAR HOLOMORPHIC SEMIGROUPS

T. L. HAYDEN AND F. J. MASSEY, III

Conditions are given on a nonlinear operator 4 in a
Banach space X under which the semigroup, S(¢), generated
by — A has the property that S(¢)x is analytic in ¢ for |argt| <@
for each fixed zecl(D(A4)). Analyticity in ¢ of solutions
of 4’ 4+ Tu = Fu where —T generates a linear holomorphic
semigroup in X and F maps D(T*%) analytically into X for
some a <1 is also established. These results are applied to
establish analyticity in ¢ of solutions to dw/dt + Lu + S(u) =0
where jB: R — R is real analytic, monotone increasing and
Bp(0) =0, and L is a second order elliptic operator.

1. Introduction. Hille and Yosida proved that if 4 is a densely
defined linear operator on a Banach space X such that, for » >0,
I+ 2\A is an isomorphism from D(A) onto X and (I + NA)™* is a
contraction, then —A generates a strongly continuous semigroup
{S(¢): t = 0} of contractions on X. If X is a complex Banach space
and the above conditions hold for |arg )| < 4, instead of just for
A > 0, then S(f) has an analytic extension in ¢ to the sector |argt| < 4.
These holomorphic semigroups have a smoothing property, namely
S(¢t) maps X into D(A) for ¢ == 0 so that u(t) = S(t)x is a solution
to w'(t) + Au(t) =0, w(0) = 2 for any initial data ze€ X. For the
linear theory of semigroups see Yosida [24], Kato [12], and Hille-
Phillips [11].

A number of authors (see Komura [15, 16], Kato [13, 14], Crandall
and Pazy [6], Brezis [2], Crandall and Liggett [5], and the references
listed there) have generalized the theory of semigroups to nonlinear
operators. They have shown that if AC X X X is a (multivalued)
nonlinear operator such that, for sufficiently small » >0, (I + 2vA4)™
is a contraction and the range of (I + NA) contains cl(D(4)), the
closure of the domain of 4, then — A generates a strongly continuous
semigroup {S(¢):t = 0} on cl (D(A4)). In the case when X is a Hilbert
space, Komura [16] has given conditions under which S(¢f) extends
analytically to a sector |argi| < 6. Brezis [2] has shown that if
A =09 is the subdifferential of a lower semicontinuous, convex
functional on a Hilbert space then the semigroup {S(¢)} generated
by — A has a regularizing property similar to the linear case, namely
S(t) maps cl (D(4)) into D(A) for ¢t > 0.

In this paper (§ 2) we give an extension of Komura’s result to
the case where X is a Banach space by establishing conditions under
which S(f) extends analytically to |argt| < . These conditions also
imply S(t) maps cl (D(A)) into D(A) for t = 0; in other words, S(t)
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has a smoothing action.

In §3 we establish local analyticity in ¢ of solutions, u(t), of
equations of the form du/dt + Tu = F'u where — T is the generator
of a linear analytic semigroup in a Banach space X and F maps
D(T*) analytically into X for some a <1. We use the integral
equation approach developed by Sobolevskii [23], and Fujita and
Kato [9]. In §4 we give applications to semilinear parabolic equa-
tions.

We wish to thank H. Brezis, M. Crandall, D. Henry, T. Kato,
J. W. Neuberger and A. Pazy for their many valuable conversations
and useful suggestions concerning this work.

2. A class of holomorphic nonlinear semigroups. In the
following X is a complex Banach space. Let Cc X, and 3, ={z¢
C:largz| < 6,z + 0} be an open sector in the complex plane. A
holomorphic semigroup on C is a function S on X, U {0} such that
S(z) maps C into C for each ze X, U {0}; S(z + w) = S(z)S(w) for
2z, we 2, U{0}; and, for x <€ C, S(z)x is a holomorphic function of z€ 3,
with S(z)x— S(0)x =z as 2—0 and zc X, If there is also a real
number @ such

2.1 18()e — Syl = e |lz —yll ,

z,yeC, 2z, we will write Se 57, o(C). Note that we do not require
S(z) to be holomorphic for fixed z as did Komura [16]. Komura
noted that a contraction mapping which is holomorphic on all of a
complex Banach space must be the translate of a linear operator (a
consequence of Liouville’s theorem). Hence we wish to avoid the
hypothesis that S(z) be a holomorphic map.

The generator, A, of a nonlinear semigroup is, in general, a
“multivalued” operator which is regarded as a subset of X x X.
For such operators we use the notation and definitions of Crandall
and Liggett [5, page 266].

THEOREM 2.1. Let Ac X X X, w, 0, ¢ be real numbers such that
A + wl 1s accretive for || <8 and R(I + MNA)Decl(D(4)) for
largn| < @ and M| <e. Let J,=(I+ NA)™" and suppose, for
x € D(A) and n a positive integer, the map N+ JIx is a holomorphic
function of N for |arg\| < 6, |n| <min(e, |w]|™). Then
(2.2) lim J7,x = S(2)x
exists for weecl(D(A)) and zeZX, and Se 57, ,(cl(D(4). If, in
addition, A is a closed subset of X X X then for each x¢€ cl(D(4))
and z€ X, we have S(z)xe D(A) and —(d/dz)S(z)x e AS(2)x.
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Proof. Let K,, = (I + ae**A)™ be the resolvent of ¢**A. For
|@| < 6, the operator ¢*A satisfies the hypotheses of Theorem 1 of
Crandall and Liggett [5], so lim K, ,x = T,(¢t)x exists for x e cl(D(A4)),
t=0, and {T,(t):¢ =0} is a (strongly continuous) semigroup with
each T,(t) Lipschitz with constant e*’. Since J; = K;ure1 it follows
that the limit (2.2) exists, S(z)x = Tue.(] 2 |)z, and S(z) satisfies (2.1)
for =, y € cl (D(4)).

Now let z€ D(A). Applying the inequalities (ii) and (iii) on p. 268
of [5] to e*A, we get || Koz — 2|| S t(1 — tn™ |0 |) ™| e*Ax|, t =0,
t|w| < n. Substituting ¢ =|z|, » =argz, and using J, = K, aree»
and the fact that (1 — a/n)™" < e'*, ac R, we obtain ||J2,z — z|| <
|z] e | Az, |arg 2| < 0, |zw| < n. Thus when z is restricted to
lie in a bounded subset of 3, the sequence {J,x} is a uniformly
bounded sequence of holomorphic functions of z which converge
pointwise to S(z)x. It follows (see [11], p. 104) that S(z)x is holo-
morphic in z and ||S(z)x — z|| < |2] e'*"'*' | Az |. In particular, S(z)x—z
as z—0.

Now let zeecl(D(4)) and choose {x,} © D(4) with x,—x. Then
{8(2)x,} is a sequence of functions holomorphic on %, and continuous
at 2 =0. If z is restricted to lie in a bounded subset of 3, U {0}
then the S(z) are Lipschitz with constant independent of z and, hence,
{S(z)x,} converges uniformly to S(z)x. Thus S(z)x is holomorphic on
2, and continuous at z = 0.

In order to show the semigroup property, let we 3, be fixed and
@ =argw. If {T,(t):t=0} is the semigroup generated by —e**A
then S(te*?) = Ty(t),t = 0. By Crandall and Liggett, T,(t) is a semi-
group for real t, so S(te*? + 7e*) = S(te**)S(ze*?). Thus S(z + w) =
S(z)S(w) for z=tw, t=0. If xeccl(D(4)) then S(z + w)r and
S(z)S(w)x are holomorphic functions of z€J3, which agree on the
ray z =tw,t = 0. By the identity theorem for holomorphic functions
S(z + w)x = S(z)S(w)x for all z.

In the real case (see [5]) a strong solution to the Cauchy problem

2.3) Ocdu/dt + Au, 0=t=T, uw0)=cz,

is a function u: [0, T] — X so that (i) » is continuous, (ii) » is the
indefinite integral of a function which is strongly integrable on
compact subsets of (0, T'), (iii) #(0) =z and (iv) «'(¢) € —Au(t) for
a.e. t in (0, 7).

Crandall and Liggett, and Miyadera [20] have shown the following
result. Let B be closed in X X X, B + wI accretive for some real
number w, R(I + tB) Decl (D(B)) for sufficiently small ¢ > 0, and for
z€cl (D(B)) let T(t)x = lim (I + (¢/n)B) "z be the semigroup generated
by —B. Then if zecl(D(B)) and T(t)x is strongly differentiable at
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t >0, with y = (d/dt)T(t,)x, then [T(t,)x, —y]e€ B. Then using the
fact that for xe€ D(B), S(t)x is Lipschitz continuous on bounded sets
of t, they are able to conclude that if S(¢)x is differentiable a.e. then
% = S(t)x is a strong solution of (2.3).

In our case, since we have shown that S(z)x is a holomorphic
function for x€cl(D(4)), it is immediate that S(z)x can be recovered
as the indefinite integral of an analytic function along a ray.

To finish the details of the proof, let A be closed, x ¢ cl (D(4)),
zeX, with @ = arg z, and {T,(f); ¢ = 0} be the semigroup generated
by —e*A so that S(te*?) = Ty(t),t = 0. If xecl(D(A)) then u(z) =
S(z)x is holomorphic for zeX, which implies that v(¢) = T, (t)x is
differentiable for ¢ >0 and v'(t) = e**u/(te*).

Since —e™*A is closed, it follows from the above results of Crandall
and Liggett that —v'(t)ee’*Av(t). Hence —u/(te’¢)e Au(te’?), and
together with the comment on holomorphy of S(t)x for z e cl (D(A4)),
we have established a strong solution to the Cauchy problem for
x € cl (D(4)).

REMARK. We will show in an example that J, may not be defined
on an open set, so that J, is certainly not a holomorphic map in
general. However in case J, is a holomorphic map, then the hy-
pothesis Jrx is a holomorphic function of A for all n is satisfied.
We may argue as follows. First since J, is locally Lipschitz, both
Komura [16] and Neuberger [21] have established that Jyz is
holomorphic in X\ when J, is a holomorphic map. Next let
Iy Ny o vy M) =y o oyt Sy oo o, @ Then for fixed Ny, gy <0y Ny, g
is holomorphic in A\,. If N, Ng <+, N, are fixed, then Jy, - J;, -+« J;,
is holomorphic in A, and therefore when composed with the holo-
morphic map J,, g is holomorphic in A, and so forth. Hence, as is
well known [11], p. 107, g(\, \, A, --.) is a holomorphic function
of \.

ExaMPLE. Let 8: K— C be continuous where K is the closure
of an open, convex set Uc C. Suppose 0 K, 3(0) =0 and B is
analytic on U. Assume there is & > 0 such that |arg 8'(z)| < 7/2 — 6,
ze U. Finally suppose there is ¢ <0 such that for |argi]| <4,
M| <€, one has (I + AB)K)D Kand (I +1p)(U)DU. Here I(z) =z
is the identity map on C.

Let X = L*(2; C) where 2 is any measure space and 1 < p < co.
Let D(A) ={ucX:u(x)e K a.e. and B(u)e X}, where B(u) is the
composition of B and u. Let Auw = B(u) for ue D(A). We shall
show that A satisfies the hypotheses of Theorem 2.1 with @ =0 and
6, ¢ as above.
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The hypothesis |arg 8'(z) | £ /2 — 0, z € U, implies ¢**B is accre-
tive for |@| < 6. In particular I 4+ AR is one-to-one and (I + ApB)™!
is a contraction for |arg A | < 6. Let S={MeC:largr| <8, |N]| <e}.
The assumption that (I + AMB)YK) D K, v€ S, implies the function
J(w, N) = (I + AB) "(w) is well defined for we K, ve S. It is a con-
traction in w for fixed . Since g is analytic on Uand (I +2»8)(U)D U,
the implicit function theorem implies j: U x S— U is analytic. Since
B(0) =0 we have j(0,x) =0. Since j(-, M) is a contraction we have
[j(w, V)| = [w].

Let 7w, ») = j(w, N), we K, xe S and j"(w, N) = j(7" (w, \), N),
weK,neS,n=2. Since j(w, \) is a contraction in w, it follows
that j"(w, \) is a contraction in w for fixed N. Since j: UXS— U
is analytic, it follows that j*: UXS — U is analytic. We claim that
4™(w, \) is analytic in A for fixed w, even if we K. To see this,
choose a sequence {w,}c U with w, —w. Then {j"(w,, \)} is a
sequence of functions each analytic in N and j"(w,, ) — 7*(w, \)
uniformly in X\ since j*(w, \) is a contraction in w. It follows that
g"(w, \) is analytic in A. Finally we note that | 7*(w, \)| < |w| since
[(w, M| = |wl.

Now consider the operator A. We have v = (I + AM4)u if and
only if v(x) = (I + AB)(u(x)) a.e. If |argh| <@ then [+ 1B is 1—1
so v = (I + NA)u is equivalent to u(x) = (I + AB8)'(v(x)) a.e. In
particular I +XA4 is 1 —1 and J, = (I + 2MA)™' is contraction. It
follows that e**A is aceretive for |[p| < 6.

To show cl(D(A))c R(I + MA), note that cl(D(A)) © F where
F={weX:v(x)e K a.e.}. The assumption K< (I + A8} K), »€ S and
the definition of j implies that F'c R(I + AA) for A e S, and Jv(x) =
jw(x), N), ve F, neS.

To show Jjv is analytic in A for fixed ve F, note that Jv(x) =
j"(v(xz), v). It follows from |j*(v(x), N)| < |v(x)| and the Cauchy
integral formula that

(2.4) | 73(v(@), M| = |v(@) | dist (x, 6S)
(2-5) | 7%v(@), M) | = [ v(2) | [dist (v, 9S)]°

where j7 = 0j™/oN, 7%, = 0°5™/0N%. In the case 1 < p < « in order to
show J7v is analytic in A it suffices to show weak analyticity, i.e.

@/an) |, (@), Vw@ds = | i), Ni@ide for all we LY@), p™ +

¢' = 1. This is true because j"(v(x), ) is analytic in \ for fixed z,
and the estimate (2.4) implies that differentiation under the integral
sign is valid. In the case p = « we must show r(x#) —0 as ¢#£—0
where r(¢) = || [7"(v, M + #£) — 7"(v, M)t — 7%(v, \) ||.. Note that (2.4)
implies that j%(v,\) is in L=(2) for each \. Since j"(v, N + p) —
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2+
JMv, N) = S pj?(v, n)dn a computation shows that
2

r(#) < sup {| 75(v(®), M + t) — Ji(v(x), M) [1xeR,0=<=¢ < 1}
s |plsup{| jh(v(@), » + )| :2xe 2, 0=t < 1}.

Using (2.5) we get r(p)=<4|plllv]l.[dist(n, 0S)* for |p|<
27t dist (\, 8S). Thus r(¢) — 0.

A special case of this example is B(z) =2}, 2€c K={z2cC:|argz| <
w/4} U {0}. We have |arg 8'(z)| < /4, x € K, so we can take 6 = 7/4.
Note that (I + A8)'w =[—1+4+ (1 4+ 4w)”?]/2x for we R + \R),
larg N | < w/4. A simple geometric argument shows that if |arg \| <
/4 and |arg w| < 7/4 (resp. |arg w| < w/4) then [arg (I + AB)'w | £
/4 (resp. < w/4). Thus Kc({ +AB)K) and Uc(I+ Ag)(U),
|argn| < /4, where U is the interior of K.

To obtain an “unbounded generator” version of the above
example, let X = 1%, D(A) = {xcl® Axcl’ |arga,| S w/4}. Let Xy =
{neC:larg )| < m/4} and let A(x, %, s, ---) = (}, 225, 322, -..). The
hypotheses of Theorem 1 are easy to verify in this case.

Our results include some, but not all, of the linear theory of
holomorphic semigroups. If A is an m-sectorial operator in a Hilbert
space with vertex zero (so that its numerical range is a subset of a
sector |arge| =7m/2 — 0, 6 < w/2), then A satisfies the hypotheses of
Theorem 2.1.

3. A perturbation theorem. In this section we consider the
equation du/dt + Tu(t) = Fu(t), t = 0, u(0) = z, where T is a linear
operator in a complex Banach space X and F is a function with
domain and range in X. Equations of this type have been studied
by Sobolevskii [23], Fujita and Kato [9], Friedman [8], Henry [10]
and others. We establish analyticity in ¢ of solutions wu(f) of this
equation under suitable conditions on T and F. In particular, we
assume that

The resolvent of T exists for Re M < 0 and there exists
(8.1) a constant C such that [[(A — T)7'|| < C(1 + [A])7,
Rern=<0.

Using the Neumann series representation for the resolvent [12,
pp. 37, 173] it is not hard to show that there exists C,, ® > 0 such
that the resolvent of T exists and satisfies ||(A — T)7'|| = C, | M| for
larg v — 7| < (7/2) + w. This is a well known ([12, p. 488], [8, p. 101])
condition for — T to generate a holomorphic semigroup { U(t): |arg t| <w}.
The map ¢t — U(t) is a bounded holomorphic map from {t: |argt¢| < 0,
t = 0} into B(X) for any 0 < .
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The assumption (3.1) implies that T has fractional powers, 77,
for ve R (see [24, 8,18]). For v <0, T"e B(X). For v =0, 7" is a
closed operator in X with domain, X, = D(T"), dense in X. For all
v, T7 is invertible with (77)™' = T"7; see [8, pp. 168-159]. For v>0, we
define || z||,=]| T"x ||, x € X, (cf. [10, p. 29]). The fact that (7)™ € B(X)

implies || ||, is a norm on X, which is equivalent to the graph norm,
Il 1ll, of T7, since |||l = || T'|| + [lzll = A+ [|T7 DI T=]]. X;
is a Banach space with the norm || ||, since 77 is a closed operator.

In §4 we shall need the following imbedding theorem for domains
of factional powers.

If Y is a Banach space with D(T)cYcXand 0<8<1

and there exists C such that ||ully < C|| Tull} || u|/5?,

w€ D(T), then D(T*) is continuously imbedded in Y

for p<a=s1.

(3.2)

(See Sobolevskii [23, p. 22], Friedman [8, p. 177], and Henry [10,

p. 29].)

We shall also need the following facts which relate the semigroup
to the fractional powers. For all ¥ = 0, U(T) maps X into D(T7)
and, for 6 < w there exists a constant M, such that

(3-3) NT" U@ = M ¢, largt|<6.

(See [8, pp. 105-106, 158-160] where this is proved for real ¢. The
same argument works for complex ¢.)
For 0 <7 <1, 60 < one has

(3.4) | U®x — || = M,y |t ]| T ],
largt| <8, xe X,. (To prove this, note that (d/ds) U(s)x = — TU(s)x =
— T U(s)T'z. Thus Ut)w — @ = —S T~ U(s) T"eds. Using (3.3) to

estimate || 77 U(s) ||, one obtains (3.4). This proof is due to Henry
[10].)

Let 1<p =0, 0=7<1—9",0<e<7. Then there exists a
constant M such that if w:[0, 7] — X is differentiable, wu(t) e D(T),
0=t=7, and w'(t) + Tu(t) = f(t), 0 =t < 7, with f e L?(0, 7; X) then

(3.5) 1) = M| 1w | + ([ 1761 ds) "],
e<t<rt. To prove (3.5), first note that
a(t) = UE)u(0) + S Ut — )f(s)ds

(see [12, p. 486]). By (3.3) we have || T7U(t)u(0)|| < M,e" || u(0) ||,
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e<t<r7, and S: || TTUE — s)f(s)]|ds < M, S: NF@&) (¢ — s)7ds <
M, (S: | £(s) H”ds>w<gz ¢ — s)-r«)”q < const. (g:n £(s) H?’ds>”p, 0o<t<r,

pt+4+ ¢ =1. Note that 7¢ < 1sinceY < ¢7' =1 — p~*. This proves

THEOREM 3.1. Assume T satisfies (3.1), 0 a < 1,0 < w, and F
s a function whose domain, D(F'), is an open subset of X, and
F: D(F)— X 1is Frechet analytic (as a map from X, to X). Then
for each x e D(F) there exists r >0 and a unique function u mapping
W,={teC:|largt| < 0,0 < |t]| <r} analytically into X, = D(T) such
that for each te W,, w()e D(F) and u'(t) + Tu(t) = Fu(t), and
[[u(t) — |l,—0 as ¢t —0.

Let Uc D(F)N X, for some Y > a and suppose there exists é >0
and K such that if xeU and ||y — 2|, <d then yec D(F) and
| Fy|l < K. Suppose also that U is bounded in X,. Then the value
of r can be chosen independently of xe U.

If, in addition, F maps D(F)N X,., analytically into X, for
0 < s<m, then w is analytic from W, to X, ...

Proof. The differential equation du/dt + Au = Fu is transformed
into the integral equation (3.7) below. This method was introduced
by Sobolevskii [23] and Fujita and Kato [9] and is now standard.
We use methods similar to Henry [10], and therefore we are as brief
as possible.

Choose ¢ > 0 and K so that ||y — x|, < J implies y € D(F') and
|| Fy|| £ K. Using the Cauchy integral formula, one has

(3-6) | Fy, — Fy,|| < 4Ko™ [l y: — ¥ |l

if ||y, — x|l <0/2,7=1,2. Let S, be the set of all analytic functions
u: W, — X, such that [|u(t) — x|, <6/2, te W, and || u(t) — x|/, —0
as t—0. S, is a complete metric space if we define d(u, v) =
sup X {||u(t) — v() |l.:te W,}, u, veS,.

For ue S, put

(3.7) Gu(t) = Ut)w + S Ut — s)Fu(s)ds, teW,,

where the integral is taken over the line segment {s =, 0 <\ < 1}
joining 0 to . We shall show G is a strict contraction from S, into
S, if r is chosen small enough.

First consider the integral on the right of (3.7); we denote its
value by v(f). Putting s =N, 0 =M< 1, we get v() = ¢ Sl g (&, N)dx
where g(t, \) = U(t — t\)f(t\), where F(t) = Fu(t). Using (3.3) one
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sees that there is a constant C such that [|g(¢, \)|l. < C|t]™*@ — 1),
te W,, 0 <A < 1. Thus the integral in (3.7) is absolutely convergent
in X, and ||v(®) || < C.|t]"% te W,. In particular, ||v(t)||,—0 as t—0,
and we can make |[v(®) ]|, = 5/4 t € W,, by choosing r sufficiently small.

Since || U(t)x — x ||, = || U(t)T*x — T*x|| approaches 0 as t—0,
we can make || Ut)r — x|, < 6/4 by making r small. If ze X, for
some Y > «, then the size of r necessary to make || Ult)x — ||, < §/4

is determined by || «]||,. This is because (3.4) implies
| U@)x — @ |l, < const. [¢[7*|| T"*T*x || < const. [t [~ [|z|], .

Combining these results, one has ||Gu({) — z||,—0 as t—0, and
| Gu(t) — x|, < /2, te W, for r small.

Since U(t)x is analytic in ¢, it remains to show the integral v(t)
is analytic in ¢ with values in X,. For fixed A e (0, 1), g(¢, ») is an

analytic function of ¢ with values in X, and
9:t, M) = —(L = N)TUE — N S@EN) + Ul — o)t ,

where g, = dg/ot. The function f is bounded by K, so by the Cauchy
integral formula || f'(t)]| < K|t|cse (0 — |argt|). Using this and
(8.3), one sees that || g.(¢, \)||. is bounded by const. (1 — A)™* for ¢ in
a compact subset of W,. Thus the difference quotients || [g(¢, A) —
9(s, M]/(t — s) ||, are similarly bounded. Using the dominated con-
vergence theorem, it follows that v: W, — X, is analytic. Therefore
Gu: W,— X, is analytic.

We have shown G maps S, into S, for r small. To show G is
a contraction, we use (3.3) and (3.6) to get

Il Gu(t) — Go(®) [l = M. S [t —s|™[[ Fu(s) — Fu(s) || d [s]

< const. | ¢t|""*sup || w(s) — v(s) ||,

teW,, u,veS,. By making r sufficiently small we can make G a
strict contraction. By the fixed point theorem for strict constractions
on a complete metric space, there is a unique u € S, such that Gu = u.
In order to show u satisfies the differential equation «'(£)+ Tu(t) = Fu(t)
we will use a known result (see Kato [12], Theorem 1.27, p. 491) on
solutions to inhomogeneous equations for holomorphic semigroups. In
order to apply this theorem it is necessary to make two changes of

variable. Fix te W, and define v(\) = u(\t) = U(\t)x + S t U\t — s) X
Fu(s)ds. Putting s=0at, 00\, we get v(\)= V(x)x—i-s V(x—o0)f(o)do
where V() = U(M) is the (holomorphic) semigroup generated by —¢7T,
and f(o) = tFu(ot) is continuous on [0, /| t]) and analytic on (0, r/|t])
with values in X. Fixing 7 < 1, it is not hard to show »(A» + 7) =
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V() + Sa VO — 0)f (0 +7)dp, 0 <\ < 7/|t| —7. The function
o+ f(o + 7) is Holder continuous on [0, /|| — 7). By the above
mentioned theorem in [12], it follows that v(s)e D(T), t < s < #/|t|,
with 2'(s) + tTw(s) = f(s). Putting s =1 shows u(t)e D(T) and
w'(t) + Tu(t) = Fu(t). So far we know u: W, — X, is analytic. If we
rewrite the equation as w = T '(Fu — ') it follows that u: W,— X, is
analytic. The solution of v’ + Tw = Fu, u(0) = z is unique because any
u satisfying the conclusions of the theorem must also satisfy Gu = u.

Suppose F'is analytic from UNX, ., to X,,0<s<mn. If uw is
analytic from W, to X, ., for such an s, then the equation = T"'(Fu—u')
shows u: W, — X,,, is analytic. Repeating this argument shows that
u: W, — X,., is analytic.

4. Semilinear parabolic equations. In this section the results
of §3 are applied to the mixed problem ou/ot + Lu + Gg(uw) =0,
(x, t) e 2 X [0, 0); u(x, 0) = p(x), v 2; wlx, t) =0, (x, t) €0 X [0, =);
where L is a second order elliptic operator of the form Lu =
— 3 05[a0.u] + X 0.lau] + au. Here 0; = d/dx; and sums are from
1 to n. £ is the closure of a bounded, open subset of R*, and Q has
smooth boundary 62. The a,;, a,, @ are real valued functions on 2
with a;; = a;;; a5, o, € C(2), a € C(2) and there exists ¢ > 0 such that

5l S | & EeRY, xe. B is an analytic function whose
domain, D(B), is an open subset of the complex plane containing the
real axis; B maps the real line into itself; for ¢t real, G(f) is an
increasing function of ¢, and B(0) = 0.

Equations of this type have been studied by Brezis, Crandall
and Pazy [3], Brezis and Strauss [4], Da Prato [7], Konishi [17],
Ouchi [22], and Brezis [2]. Our main result is that the solution of
the mixed problem above is an analytic function of ¢ > 0; see Theorem
4.4 below. This result is similar to those of Ouchi, but he only
considers the case where B is a polynomial.

W ?(Q2; R) (resp. W5?(2; C)) is the Sobolev space of real-valued
(resp. complex-valued) functions whose derivatives up to order % lie
in L?(2; R) (resp. L?(2; C)). We write W*?(Q) if it is clear from the
context whether R or C is intended. The norm in W*?(2) (resp. L?(2))
is denoted by || ||s,(resp.|| [lp). WEr(2) is the closure of Cy(2°)
in the space W*?(2). Here 2° is the interior of 2. If wis a function,
then B(u) = Bou is the composition of B and w.

For 1 < p< co, let D(T,) = W»?(2; C) n Wy?(2) and, for p =1,
let D(T) = {ue W-{2; C): Lu € LY(2)}, where Lu is understood in the
sense of distributions. Let T,u = Lu for uwe D(T,), 1 < » < «, For
1< p <o, let DA, ={uecl*(2; R):ue D(T,), B(u)c L*(2)}, and
A = Tu + B(u), we D(A,).
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PROPOSITION 4.1. If 1< p < = and ke R is sufficiently large,
then X = L*(2,C) and T = T, + kI satisfy (3.1) and there exists a
constant C, such that ||ul|ls, = C, || Tull,, we D(T). If 0<a =1 and
Pt — 2an"' < q7 then X,= D(T*) is continuously imbedded in L*(Q)
(or C(2) if ¢ = oo;q = oo corresponds to n/2p < a < 1).

Let D(F)={ue X,: uw(x) € D(B), v € 2} and Fu = ku—B(w), w € D(F).
If n/2p < a <1 then D(F)c C(2) and B(u)e C(R) for each we D(F).
Furthermore X, T, @ and F satisfy the hypotheses of Theorem 3.1.
Let R>0 and 4 be a compact subset of D(B) and U ={ue
W22(2; C): || ls,, < Byu(x)e 4, 2€ 2},  Then U also satisfies the
hypotheses of Theorem 3.1.

Proof. The assertions in the first sentence are well known, see
Sobolevskii [23, p. 54] and Friedman [8, p. 101]. If p' — 2an™ < ¢!
then it follows from Friedman [8, Theorems 10.1, 11.1] that W*?(Q) C
LY(Q) (or W>*(2)c C(2) if ¢ = ) and there is ¢ < @ and C such
that |||l = Cllulli, ][5, we W»?(2). Thus |[ull, < C|| Tull;[|«][;™,
uwe D(T). Thus X, c LY2) follows from (3.2).

Now let n/2p < a« < 1. The fact that D(F') < C(2) follows from
the first part of the proposition, and B(u)e C(R), we D(F') follows
from the fact that B is continuous. To show that D(F') is open in
X,, let ue D(F). Then u(Q) = {u(x): x € 2} is compact and contained
in D(B) which is open. Thus, the distance, d, from u(2) to C\D(B)
is greater than 0. It follows that wv(z)e D(B) if ||v — u|. < é.
Since X, C C(2) one has ||v — ull. <0 if the X, norm of v — u is
sufficiently small. Thus D(F') is open in X,.

To show F: D(F')— X is analytic, it sufficies to show || F'(u + k) —
F(u) — (kh — B'(wWh) ||, = e(h) || T*h|| where &(h) —0 as || T*h|| —0.
In view of the imbeddings X,c C(2)C X, it suffices to show || B(u+h)—
Bu) — B (W) |l. = (k)| h||l. where e(h) — 0 as || £ ||..—0. By writing
B + &) — B()) as the integral of £’, one can show |B(n + &) — B(n) —
B'(m)E| = <D |&l, eu(@), where &(|£))—0 as [&]—0 and &(¢]) is
independent of newu(2). Replacing 7 by wu(x) and & by k(z) and
taking the supremum over £, one obtains the desired result.

Note that U is a bounded subset of D(T) = X,. Since 4C D(B)
is compact, there exists 0 >0 such that 4, ={z +{: z€ 4, || £ p} = D(B).
Using an argument similar to the proof that D(F') is open in X,, one
can find a 6 > 0 such that if we U and the X, norm of v — u is less
than 6 then v(x) € 4,, z€ 2, and hence, ve D(F). One has || Fv|| < K
since B is bounded on 4,.

PRroPOSITION 4.2. Ifke R s sufficiently large, then (I+MA,+k))™
exists and is a contraction in the morm of L*(Q) and the range of
I+MA4,+k) is L2, R) for 1<p<oo,n>0. Furthermore
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18w [, = [ (A, +E)ullp, [ (T, + E)ull < 2[[ (4, + B)ull,, we D(A4,). If
Y: R— R 15 increasing and continuwous with ¥(0) =0, p™ + ¢ =1,

ue D(T,) N L*(2; R) and Y(u) e L(Q) then SQ(T,,u + ku)Y(u)dz = 0.

Proof. Most of the assertions follow from the results of Brezis
and Strauss [4], so we are quite brief and only indicate how to apply
their results. Let k be such that a(x) + k= 0 and a(x) + X.; 0,a;(x) +
k=0,zc 2. Then the operator L + k satisfies the hypotheses of
Theorem 8 of [4]. Thus T, + k (when restricted to D(T,) N L'(2; R))
satisfles Proposition 7 of [4], and Lemma 3* of [4] can be applied
to (I +MT, + k))™*. It follows that the range of I + M4, + k) is
LY(2; R), (I + MA, + k))™* exists and it is a contraction with respect
to any norm || |[,, 1 < p < . In particular, (I + M4, + k))"* maps
L*(2; R) into D(A4,) N L*(2). Since A, is an extension of 4,, (I +
MA, + k)t exists and is a contraction in the norm || ||, 1 =< p < .
We still need to show that the range of I 4+ M4, + k) is L?(2). Note
that the linear operator AT, + k) and the monotone function u —
% + MB(u) satisfy the hypotheses of Theorem 1 of [4]. Let fe L”(2; R)
and u = (I + M4, + k))™*f. As noted above Lemma 3* of [4] implies
ue L*(2) N D(4,), and Proposition 4 of [4] implies u + MB3(u) € L*(2),
and, hence, B(u) and Tu belong to L?(2). Using regularity theorems
[1] for linear elliptic operators we conclude w e W*?(2), and, hence,
u € D(A,). Thus, the range of I + N4, + k) is L*(2).

To prove the last part of the proposition, note that 7T, + & satisfies
the hypotheses of Theorem 1 of [4]. Let ue D(4,) and f = (4, + k)u.
By Proposition 4 of [4] we have ||Bw)]|l, £ || (4, + k)u ||, and, hence,
(T, + Eul, =2/ (4, + k)u|[,» Using Lemma 2 of [4] we get

SQ (Tyu + kwyr(w)de = 0 .

PROPOSITION 4.3. Let k be such that Propositions 4.1 and 4.2 are
true.

(1) If peLY(2; R) then lim_..,(I + (¢/n)A) "¢ = u(t) = S(t)p
exists in LY(Q) for all t = 0. If ¢ L*(2; R) for some p,1 <p < oo,
then this limit exists in L*(2), w: [0, o) — L?(2) is continuous and
S(t): L*(2) — L*(2) s Lipschitz with constant e¢*. In particular,
u@) ], = e[l 2|l

(2) If1<p<co and @€ D(A,) then u(t)e D(4,),t=0,u: [0, «)—
L*(2) is absolutely continuous, the right derivative, D,u(t) exists and
18 equal to —A,u(t) for all ¢ = 0, and || A,u(t) ]|, < ¢* || 4,2,

(3) If n/2p < a <1 and u(t)e DT, + k)*) N L*(2; R) for some
to = 0, then wu: (t, o) — W?(Q) N WP (2) is analytic.

Proof. The first part of Proposition 4.2 says that A, + kI is
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m-accretive as defined by Kato [14, p. 138]. The assertions in part
(1) are a direct application of the results of Crandall and Liggett
[5, Theorem 1]. The fact that 8(0) = 0 implies 4,4 =0 for 4 = 0.
Thus S(E)yw =0 if 4 = 0. This fact combined with the fact that
S(t) has Lipschitz constant e** proves [|u(t) |, < e || ®il,.

If 1< p< o then L?(2) and its dual are uniformly convex and,
if o€ D(4,), the results of Kato [14, Theorems 7.1, 7.5 and first line
of last paragraph of p. 147] imply » has the properties in (2). (Note
that the solution constructed by Kato in [14, Theorem 7.1, 7.5] coincides
with u(¢) by virtue of [5, Theorem 2].)

To prove (3), let n/2p < a <1 and wu(t,) € D(T, + k)*) N L*(2; R).
By Proposition 4.1 and Theorem 3.1 there exists » >0 and a con-
tinuous function v: [¢t,, t, + r) — L?(2) such that v: (¢, t, + r) — W»?(2)
is analytic, v, + (T, + k)v = kv — B(v), t, < t <&, + r, and v(¢,) = u(t,).
Since v satisfies Definition 2.2 of [5] for being a strong solution of
v, + A0 =0, v(t,) = ul(t,), it follows from Theorem 2 of [5] that
v=u on [&, t, + 7). In particular, u(t)c D(4,) for & <t <t, + r.
By part (2), u(t) € D(A,), t, <t < o, and || A,u(t)||, is bounded for ¢
in any interval of the form ¢ <t <¢, where ¢, <t <it, < . By
Propositions 4.1 and 4.2, || T,u(®)|l,, || w(t)|l., and ||u(t)]|. are also
bounded for ¢, <t <t, Therefore 4 = {u(t)(x):2€2,t, <t=<t,} is a
bounded subset of R. Again using Proposition 4.1 and Theorem 3.1,
one sees that there exists » > 0 such that for any ¢, € [{,, t,] there is
a continuous function v: [t,, ¢, + r) — L?(2) such that v: (¢, & + r) —
W=>?(Q) is analytic v, + A,0() =0, ¢, < t < t; + r, and v(t;) = u(ts).
As above, it follows from Theorem 2 of [5] that w = » on [¢;, ¢, + 7).
Since 7 is independent of ¢;€ [¢,, ¢,], it follows that wu: (¢, t.) — W»?(Q)
is analytic. Since ¢, ¢, are arbitrary, it follows that u: (£, o )—W>?(2)
is analytic.

THEOREM 4.4. Let pc W»?(2; R) N W;*(2) and B(p) e L*(2), i.e.
@€ D(A,), for some p,1 < p< co. Then there exists a differentiable
Sfunction wu: [0, o) — L*(2; R) such that u: (0, o) — W>%(Q; R)N W (Q)
is analytic for all ¢, 1 <q < oo, u, + Lu + Bu) =0,0 < t < o, and
u(0) = @. In fact u(t) = S(t)p is constructed from @ by Proposition
4.3.

The proof of this theorem uses the a priori inequality in the
following lemma. The authors wish to thank Professor H. Brezis
for many helpful suggestions regarding this inequality.

LEMMA 4.5. Let k be such that Propositions 4.1 and 4.2 are true.
Let 1<p=qg<oo,02a<l—-q,0<e<t. Then there is an
wnecreasing function 1: (0, o) — (0, ) such that if @€ W (2: R)N
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Wi (2) = D(T,) = D(A,) for some r = q, r > n/2 then || (T, + k) u(t) ||, =
WIA2, + | 2llp), e £t <7, where u(t) = S(t)p is obtained from @
by Proposition 4.3.

Proof of Lemma 4.5. It follows from Proposition 4.3 that
u: (0, o) — W>"(2) N Wy(2) is analytic, wu: [0, o) — L"(2) is differ-
entiable, || A,u(t)|], is bounded for ¢ lying in any bounded interval
and w, + (T, + k)u = ku — B(u) holds for all ¢ = 0. From Propo-
sition 4.1 and 4.2 it follows that || B(u(t))|l,, || T,u(®) ||, and || w(t)|s,n,
are bounded for ¢ lying in any bounded interval. According to
Proposition 4.1, the map u — B(u) is analytic from (an open subset
of) W*(2; C) to L(2). Thus ¢t— B(u(t)) is an analytic function from
(0, ) to L(2) and bounded for ¢ lying in any bounded interval.

For 1 < p < r we may apply inequality (3.5) with X = L°(2) and
T=T,+ k to obtain

(T + Bruc®)lle < C[Iu@) o+ ([ 1w — sao11zde )" ],

o+¢e25t<7,0=p<1~—p'. Using Minkowski’s inequality on
the integral and estimating |[u(t)|, in terms of || u(o)]||, (by Propo-
sition 4.3) one obtains

@) T+ vl s el luol+ ([ 1swiza) ],

c+€e2<t=s7,0=p<1—p*. Applying Proposition 4.1 to the left
side, one obtains

“.2) a1l = 1@l + ({116 12 ae) ]

o+ €e2ZtsT, 028 >0 = 2unT > 07 — 207 (1 — o). This is
equivalent to p<s<p[l—2n(0o—1]*if 1 -2 (0o —1)= 0, and
to p£s o if1—-2n"" —1)<0.

We now show that there is an increasing funection 7: (0, o)—(0, «)
such that

3 (lu@llo+ 18w lzdt < i uo)ll, + | 116113 db),

o+e<t=<rt. Let (&) =|B(&)]|"*B(&), £c R. Multiplying the equa-
tion B(u) = —u, — (Tq + k)u + ku by 7(u), integrating over 2, and
using Proposition 4.2 kuv(u) < Clw|? + 27'|B(u)|% one obtains
| B@)|ls < ——2Sun’(u)dx + Cllulls, 0 <t <oo. Letl:R— R be smooth,
0<(£1,{=00n(—o,0+¢/2],and{ =1on [0 + ¢ ). Multiply-
ing the above inequality by { and integrating from o to z, one obtains
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@y | swizde s -2 @ (woredeat + ¢ jluizae .

Let I'() = S:v(s)ds, neR. Then I" =7, I'(0) =0, = 0. Since I"
is convex, we have I'(0) — I'(%) = Y@)(0 — ) i.e. I'() = Y())n. Using
the same argument that was used in the proof of Proposition 4.1,
one can show that the map G:u — I'(u) is Fréchet differentiable from
W*(2; R) to L'(2), and its differential is given by DG(u)v = Y(w)v.
Therefore the map ¢ — I'(u(t)) is differentiable from (0, «) to L"(2)
and its derivative is Y(u(t))u.t). Thus SV(u)utdac = (d/dt) Sf(u)dx.
If we integrate the first term on the right of (4.4) by parts, we get
gr ') g I'(u)dxdt — S I'(u(z))dx (since {(z) = 1,{(0) = 0). Using the
Fact that 7" = 0 and I” ) = | B(M) |1**B(n)n, one sees that the preceding
integrals are dominated by C S;s/zs | B )| |u|dxdt. Applying
Holders inequality, one sees that this integral is dominated by
C g | B(w)||%2a | || dt, where a™* 4+ b™" = 1. Using zy < a™'2° +
b‘ly”, one sees that this is dominated by CS || B(w) |[{azhe dt +
CS [lw|} dt. Let p be fixed and choose b so that (4.2) holds with

g+el2

o replaced by p, ie. 0 =<2 —b'<min{227(1 — »™), p™'}. Then
choose ¢ so that (¢ — 1)a = p, i.e.¢ = p(1 + p* — b™Y). This implies
p=<qg<min{p+ 1 p+ 2n7'(p — 1)}. Then the integrals above are
dominated by (|| u(o)|], + Srll,e(u)llgdt) where [: (0, ) —(0, ) is
increasing. Putting this togéther with (4.4) gives

@5 [ lswlizdtsuwiue)ll, + [ 16@izan +cf jular.

We restrict ¢ so that (4.2) holds with s replaced by q and o replaced
by ». Then the second term on the right of (4.5) can be estimated
by the first term and we obtain the desired inequality (4.3) for
p=Zq<min{p+1,p+2n(p — 1), p[l + 2n'(p — 1)]"}. However,
we may now proceed to argue inductively on p and ¢ to obtain
(4.3) for all p,q, 1 <p =g < oo.

To finish the proof of the lemma, note that Proposition 4.3 implies
(4, + k)|, = C(| 4,21, + [|#]l,), 0 = ¢t < 7. Combining this with

Proposition 4.2, one obtains || ¢ ||, + E [l B) 3 dt<l(HA,,¢Hp+H§DH,,)
Combining this with (4.3), one obtains ||(¢) ]|, + (§ H,B(u)]["dt) <

WA, +l®ll), /2 <t <t. Using (4.1) with p replaced by ¢ and
/¢ replaced by «, one obtains the inequality in the lemma.

Proof of Theorem 4.4 Since 2 is bounded it suffices to prove
the theorem for all ¢ sufficiently large. We choose ¢ so large than
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n/2¢ < a <1 — q7*, and then pick @ so that »/2¢ < a <1 —q™'. For
such ¢ and @ we can apply Proposition 4.3 (part (3)) and Lemma 4.5.

There exists a sequence {p,} C W>(2; R)N W,"(2) such that
?,—® and A,@,— @ in L?(2). (For example, we can take @, =
A, +k+ D)y, = (4, + &k + 1)y, where {y,} is a sequence in L(£2)
with ¥, — (4, + k + 1)@ in L*(2) and k is chosen so that Proposition
4.2 holds.) Let u(t) = S(t)p and u, = S(t)p, be constructed from ¢
and @, by Proposition 4.3. Since the S(¢) are Lipschitz maps, u.,(¢)
converges to u(t) in L?(2). By Lemma 4.5, {(T, + k)u.(t)} is a
bounded sequence in L°(2), for fixed ¢ > 0. Since L(Q) is reflexive,
there is a subsequence {u,(t)} such that {u, (¢)} and {(T; + &)“u.,(?)}
converge weakly in L%%2), say wu, () —v and (T, + k)u, () ~w
weakly in L(2). It follows that {(u.;(¢), (T + k)*u.,(?))} converges
weakly to (v, w) in L%(Q) x L(2). Since the graph of (T, + k)*
is closed (and, hence weakly closed), v€ D((T, + k)*). However, we
must have u(t) = v, since (u,(¢), ¥) — (u(?), ¥) and (u, (), ¥) — (v, ¥)
for every test function v. It follows that w(¢)e D((T, + k)*). From
part (3) of Proposition 4.3 it follows that u: (£, «)— W>(Q) is analytic.
Since ¢t > 0 is arbitrary, this proves the theorem.
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