SECOND ORDER DIFFERENTIAL OPERATORS WITH SELF-ADJOINT EXTENSIONS

Arnold L. Villone

Let \mathscr{H} denote the Hilbert space of square summable analytic functions on the unit disk, and consider those formal differential operators

$$
L=p_{2} \frac{d^{2}}{d z^{2}}+p_{1} \frac{d}{d z}+p_{0}
$$

which give rise to symmetric operators in \mathscr{H}. Examples have been given where the symmetric operators associated with these formal operators have defect indices $(0,0)$ and $(2,2)$ and hence are either self-adjoint or have self-adjoint extensions in \mathscr{H}. In this note a class of symmetric operators with defect indices $(1,1)$ is given.

Let \mathscr{A} denote the space of functions analytic on the unit disk and \mathscr{H} the subspace of square summable functions in \mathscr{A} with inner product

$$
(f, g)=\iint_{|z|<1} f(z) \overline{g(z)} d x d y
$$

A complete orthonormal set for \mathscr{H} is obtained by normalizing the powers of z. From this it follows that \mathscr{H} is identical with the space of power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ which satisfy

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|a_{n}\right|^{2} /(n+1)<\infty . \tag{1.1}
\end{equation*}
$$

Let L be such that it maps polynomials into \mathscr{H} and has the property $\left(L z^{n}, z^{m}\right)=\left(z^{n}, L z^{m}\right), n, m=0,1,2, \cdots$. Let \mathscr{D}_{0} be the subspace of polynomials and set $T_{0} f=L f$ for f in \mathscr{D}_{0}. Then T_{0} is symmetric and the defect indices m^{+}and m^{-}of its closure, S, are just the number of linearly independent solutions of $L u=i u$ and $L u=-i u$ respectively which are in \mathscr{H}. See [2]. In [2] and [3] examples of such symmetric operators S with defect indices $(0,0)$ and $(2,2)$ are provided. We now give a class of operators with defect indices $(1,1)$.

2. Consider the operator L,

$$
\begin{equation*}
L=\left(c_{1} z^{3}+\bar{c}_{1} z\right) \frac{d^{2}}{d z^{2}}+\left(\left(c_{2}+3 c_{1}\right) z^{2}+\bar{c}_{2}\right) \frac{d}{d z}+2 c_{2} z \tag{2.1}
\end{equation*}
$$

In [3] it is shown that L gives rise to symmetric T_{0}. Concerning the defect indices of its closure S, we have the following.

Theorem 2.1. Let L be the operator of (2.1) then S has defect indices $m^{+}=m^{-}=1$.

Proof. The idea of the proof is to show that the equation $L \phi=$ $\pm i \phi$ has precisely one power series solution $\phi(z)=\sum_{j=0}^{\infty} a_{j} z^{i}$ and that there exists a $K>0$ and a positive integer p such that $\left|a_{j}\right| \leqq K j^{-1 / p}$ for j sufficiently large. Consequently the series $\sum_{j=0}^{\infty}\left|a_{j}\right|^{2 /} /(j+1)$ converges and ϕ belongs to \mathscr{H}, and $m^{+}=m^{-}=1$.

Dividing $L \phi= \pm i \phi$ by c_{1} we have the differential equation

$$
\begin{equation*}
\left(z^{3}+\omega z\right) \phi^{\prime \prime}+\left[(3+\alpha) z^{2}+\beta\right] \phi^{\prime}+2 \alpha z \phi=\lambda \phi, \tag{2.2}
\end{equation*}
$$

where $\omega=\bar{c}_{1} / c_{1}, \alpha=c_{2} / c_{1}, \beta=\bar{c}_{2} / c_{1}$, and $\lambda= \pm i / c_{1}$.
Substituting $\sum_{j=0}^{\infty} a_{j} z^{j}$ into (2.2) we obtain

$$
\begin{gather*}
\beta a_{1}+\sum_{i=1}^{\infty}\left[(j+1)(\omega j+\beta) a_{j+1}+\left(j^{2}+j \alpha+\alpha-1\right) a_{j-1}\right] z^{j} \tag{2.3}\\
=\lambda a_{0}+\sum_{j=1}^{\infty} \lambda a_{i} z^{j} \quad \lambda \neq 0 .
\end{gather*}
$$

If $\beta=0$ we have $a_{0}=0$ and (2.3) can be solved recursively for a_{2}, a_{3}, \cdots, in terms of a_{1} since $\omega j+\beta$ never vanishes. Thus we have but one analytic solution

$$
\phi(z)=z\left(1+a_{2} z^{2}+\cdots\right) .
$$

If $\beta \neq 0$, we have $a_{1}=\lambda a_{0} / \beta$ and (2.3) can be solved recursively for a_{2}, a_{3}, etc., provided that $(\omega j+\beta)$ never vanishes for $j=$ $1,2, \cdots$. Thus we are able to obtain the single formal power series solution $\phi(z)=1+a_{1} z+a_{2} z^{2}+\cdots$. The case when $(\omega j+\beta)$ vanishes for some positive integer j presents some complications and will be considered later in the proof. Solving (2.3) for a_{j+1} we have

$$
\begin{equation*}
a_{j+1}=\frac{1}{\omega}\left\{\frac{-\left[j^{2}+j \alpha+(\alpha-1)\right] a_{j-1}+\lambda a_{j}}{j^{2}+\left(1+\frac{\beta}{\omega}\right) j+\frac{\beta}{\omega}}\right\} . \tag{2.4}
\end{equation*}
$$

But $\beta / \omega=\bar{c}_{2} / \bar{c}_{1}=\bar{\alpha}$, hence (2.4) becomes

$$
\begin{equation*}
a_{j+1}=\frac{1}{\omega}\left\{\frac{-\left[j^{2}+j \alpha+(\alpha-1)\right] a_{j-1}+\lambda a_{j}}{j^{2}+(1+\bar{\alpha}) j+\bar{\alpha}}\right\} . \tag{2.4}
\end{equation*}
$$

Thus we obtain the estimate

$$
\begin{align*}
\left|a_{j+1}\right| & \leqq \frac{1}{|\omega|}\left|\frac{j^{2}+j \alpha+(\alpha-1)}{j^{2}+(1+\bar{\alpha}) j+\bar{\alpha}}\right|\left|a_{j-1}\right| \tag{2.5}\\
& +\frac{|\lambda|}{|\omega|} \frac{1}{\left|j^{2}+(1+\bar{\alpha}) j+\bar{\alpha}\right|}\left|a_{j}\right| .
\end{align*}
$$

Since $|\omega|=1$ we have

$$
\begin{equation*}
\left|a_{j+1}\right| \leqq\left|u_{1}(j)\right|\left|a_{j-1}\right|+\left|u_{2}(j)\right|\left|a_{j}\right|, \tag{2.6}
\end{equation*}
$$

where

$$
u_{1}(j)=\frac{j^{2}+j \alpha+(\alpha-1)}{j^{2}+(1+\bar{\alpha}) j+\bar{\alpha}}
$$

and

$$
u_{2}(j)=\frac{\lambda}{j^{2}+(1+\bar{\alpha}) j+\bar{\alpha}} .
$$

We now estimate $\left|u_{1}(j)\right|$ and $\left|u_{2}(j)\right|$ for large j. Since $\left|u_{2}(j)\right|$ tends to zero as j^{-2} it follows that there exists an $M>0$ such that

$$
\begin{equation*}
\left|u_{2}(j)\right| \leqq \frac{M}{j^{2}}, \quad \text { for } j \text { sufficiently large. } \tag{2.7}
\end{equation*}
$$

Concerning $\left|u_{1}(j)\right|$ we obtain, upon dividing,

$$
u_{1}(j)=\left(1-\frac{1}{j}\right)+\frac{2}{j} \operatorname{Im}(\alpha) i+O\left(j^{-2}\right)
$$

Thus $\left|u_{1}(j)\right|^{2}=1-2 / j+O\left(j^{-2}\right)$, and hence by a direct calculation,

$$
\left|u_{1}(j)\right|=1-\frac{1}{j}+O\left(j^{-2}\right)
$$

For $\xi>0$, we note that $\left|u_{1}(j)\right| \leqq 1-\xi j^{-1}$ for j sufficiently large if and only if $-1<-\xi$, or $\xi<1$. Hence we have

$$
\begin{align*}
& \left|u_{1}(j)\right| \leqq 1-\frac{\xi}{j}, \quad \text { for } j \text { sufficiently large } \tag{2.8}\\
& \text { and } 0<\xi<1
\end{align*}
$$

Using (2.6), (2.7), and (2.8) we obtain, for j sufficiently large,

$$
\begin{aligned}
\left|a_{j+1}\right| & \leqq\left(1-\xi j^{-1}\right)\left|a_{j-1}\right|+M j^{-2} \| a_{j} \mid \\
& \leqq\left(1-\xi j^{-1}+M j^{-2}\right) M(j), \quad 0<\xi<1
\end{aligned}
$$

where $M(j)=\max \left\{\left|a_{j-1}\right|,\left|a_{j}\right|\right\}$.
Thus, for sufficiently large j, we have

$$
\begin{equation*}
\left|a_{j+1}\right| \leqq\left(1-\gamma j^{-1}\right) M(j) \tag{2.9}
\end{equation*}
$$

where $0<\gamma=\xi / 2<\frac{1}{2}$.
Now consider the expression $\left(1-\gamma j^{-1}\right)(j-1)^{-1 / p}$, where p is a positive integer. This is dominated by $(j+1)^{-1 / p}$ for j sufficiently large if and only if

$$
j^{p+1}+(-p \gamma+1) j^{p}+\cdots \leqq j^{p+1}-j^{p} .
$$

Hence, if and only if $-p \gamma+1<-1$ or $-p \gamma<-2$. Since $\gamma>0$, $p>2 / \gamma$. Thus we have

$$
\begin{equation*}
\left(1-\gamma j^{-1}\right)(j-1)^{-1 / p} \leqq(j+1)^{-1 / p}, \quad p>\frac{2}{\gamma} . \tag{2.10}
\end{equation*}
$$

We now show that there exists a positive constant K for which $\left|a_{j}\right| \leqq K j^{-1 / p}$ for $j \geqq 1$. Let j_{1} be such that (2.9) and (2.10) hold for $j>j_{1}$. Let $K=\max _{j \leqq j_{1}}\left|a_{j}\right| j^{1 / p}$ so that $\left|a_{j}\right| \leqq K j^{-1 / p}$ for $j \leqq j_{1}$. Using (2.9) it follows that

$$
\left|a_{j_{1}+1}\right| \leqq\left(1-\gamma j_{1}^{-1}\right) M\left(j_{1}\right),
$$

where

$$
\begin{aligned}
M\left(j_{1}\right) & =\operatorname{Max}\left(K j_{1}^{-1 / p}, K\left(j_{1}-1\right)^{-1 / p}\right) \\
& =K\left(j_{1}-1\right)^{-1 / p} .
\end{aligned}
$$

Hence,

$$
\left|a_{j+1}\right| \leqq\left(1-\gamma j_{1}^{-1}\right) K\left(j_{1}-1\right)^{-1 / p}
$$

and using (2.10) we have

$$
\begin{equation*}
\left|a_{11+1}\right| \leqq K\left(j_{1}+1\right)^{-1 / p} . \tag{2.11}
\end{equation*}
$$

We now proceed inductively to establish

$$
\begin{equation*}
\left|a_{j_{1}+k}\right| \leqq K\left(j_{1}+k\right)^{-1 / p}, \quad k=2,3, \cdots \tag{2.12}
\end{equation*}
$$

Let

$$
\begin{aligned}
K_{1} & =\max _{j \leqq j+1}\left|a_{j}\right| j^{1 / p} \\
& =\max \left\{K, K\left(j_{1}+1\right)^{-1 / p}\right\} \leqq K,
\end{aligned}
$$

making use of (2.11). Using (2.9) we have

$$
\left|a_{j+2}\right| \leqq\left(1-\gamma\left(j_{1}+1\right)^{-1} M\left(j_{1}+1\right)\right.
$$

where,

$$
\begin{aligned}
M\left(j_{1}+1\right) & =\operatorname{Max}\left(\left|a_{j+1}\right|,\left|a_{j_{1}}\right|\right) \\
& =\operatorname{Max}\left(K\left(j_{1}+1\right)^{-1 / p}, K\left(j_{1}\right)^{-1 / p}\right) \\
& =K\left(j_{1}\right)^{-1 / p} .
\end{aligned}
$$

It follows from (2.10) that

$$
\begin{aligned}
\left|a_{j_{1}+2}\right| & \leqq\left(1-\gamma\left(j_{1}+1\right)^{-1}\right) K\left(j_{1}\right)^{-1 / p} \\
& \leqq K\left(j_{1}+2\right)^{-1 / p} .
\end{aligned}
$$

Continuing on in this manner we establish (2.12). Hence any solution $\sum_{j=0}^{\infty} a_{j} z^{j}$ whose coefficients satisfy (2.4) is in \mathscr{H}. To complete the proof we have only to deal with the case where $j \omega+\beta$ vanishes for some positive integer j.

We now consider the case when $j \omega+\beta$ vanishes for some positive integer n. The analytic solution obtained from (2.3) by taking $a_{0}=a_{1}=$ $\cdots=a_{n}=0$, and solving recursively for a_{n+2}, a_{n+3}, \cdots, in terms of a_{n+1} is, as we have seen, in \mathscr{H}. If there were a second analytic solution corresponding to $a_{0} \neq 0$ it would be in \mathscr{H} as well, and $m^{+}\left(m^{-}\right)$would be 2. We now show that this is not the case, i.e., $m^{+}=m^{-}=1$. To do this we make use of the following result.

Let μ be such that $\operatorname{Im}(\mu)>0$ and let \mathscr{D}_{μ}^{+}be the nullspace of the operator $S^{*}-\mu$. Then the dimension of \mathscr{D}_{μ}^{+}is equal to m^{+}. Similarly,
let $\operatorname{Im}(\mu)<0$ and let \mathscr{D}_{μ}^{-}be the nullspace of the operator $S^{*}-\mu$, then the dimension of \mathscr{D}_{μ}^{-}is equal to m^{-}, [1, p. 1232].

Using this we see that m^{+}is just the number of linearly independent solutions of $L \phi=\mu \phi$ in \mathscr{H} for any μ such that $\operatorname{Im}(\mu)>0$. Similarly, m^{-}is the number of linearly independent solutions of $L \phi=\mu \phi$ in \mathscr{H} for any μ such that $\operatorname{Im}(\mu)<0$. Hence, if we can show that there exist μ such that $\operatorname{Im} \mu>0(\operatorname{Im} \mu<0)$ for which there is no analytic solution corresponding to $a_{0} \neq 0$ we will have shown that $m^{+}=m^{-}=1$.

Consider (2.3), where λ is now μ / c_{2}, and suppose that $\beta=$ $-n \omega$. Taking $j=1,2, \cdots, n$ we obtain the following set of $n+1$ linear equations in a_{0} thru a_{n} :

$$
\begin{aligned}
& -n \omega a_{1}=\lambda a_{0} \\
& (j+1)(j-n) \omega a_{j+1}+\left(j^{2}+j \alpha+\alpha-1\right) a_{j-1} \quad=\lambda a_{j}, \\
& j=1,2, \cdots, n-1 \\
& \left(n^{2}+n \alpha+\alpha-1\right) a_{n-1}=\lambda a_{n} .
\end{aligned}
$$

Thus we are led to consider the homogeneous system

$$
\begin{aligned}
-\lambda a_{0}-n \omega a_{1} & =0 \\
2 \alpha a_{0}-\lambda a_{1}+2(2-n) \omega a_{2} & =0 \\
\left(n^{2}+n \alpha-2 n\right) a_{n-2}-\lambda a_{n-1}-n \omega a_{n} & =0 \\
\left(n^{2}+n \alpha+\alpha-1\right) a_{n-1}-\lambda a_{n} & =0
\end{aligned}
$$

Since the parameter $\lambda=\mu / c_{2}$ appears only on the diagonal the system determinant $D_{n}(\lambda)$ is a polynomial in λ of degree $n+1$,

$$
D_{n}(\lambda)=(-1)^{n+1} \lambda^{n+1}+\cdots .
$$

Thus $D_{n}(\lambda)$ vanishes at most $n+1$ points in the complex plane, and we can find μ in the upper half-plane and lower half-plane for which $D_{n}\left(\mu / c_{2}\right) \neq 0$. Thus $a_{0}=a_{1}=\cdots=a_{n}=0$ and there is only one analytic solution of $L \phi=\mu \phi$.

References

[^0]Received March 27, 1974 and in revised form May 24, 1974.

[^0]: 1. N. Dunford and J. Schwartz, Linear Operators, Part II, Interscience Publishers, 1963.
 2. A. L. Villone, Self-adjoint differential operators, Pacific J. Math., 35 (1970), 517-531.
 3. ——. Self-Adjoint Extensions of Symmetric Differential Operators, Pacific J. Math., 49 (1974), 569-577.
