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ABSOLUTELY DIVERGENT SERIES AND
ISOMORPHISM OF SUBSPACES

WILLIAM H. RUCKLE

We consider the relation between the following two state-
ments for E and F a pair of normed spaces.

(SI) For each absolutely divergent series Σn xn in E there is
a continuous linear mapping T from E into F such that Σn Txn

diverges absolutely.
(LI) The finite dimensional subspaces of E are uniformly

isomorphic to subspaces of F under isomorphisms which extend
to all of E without increase of norm.

Our main result is that (SI) implies (LI) when F is isometric
to F x F with a certain type of norm. We also observe that if a
normed space E is not isomorphic to a subspace of an Lp(μ)
space, then for each r with 1 ̂  r < oo there is a series Σn xn in E
such that Σn || Txn \\r < oo for each continuous linear mapping T
from E into lp but Σπ ||JCΛ ||

r = oo.

It is not hard to show that (LI) => (SI) (Proposition 4.1). The main
thrust of our work is to prove that (SI) Φ (LI) in some important cases
when F has infinite dimension. (Theorems 4.2 and 4.6). Our most
important result is Theorem 4.6 which roughly maintains that (SI) Φ
(LI) if F is uniformly isometric to F x F in a way which we shall later
clarify (Definition 4.5). The condition we need on F is satisfied for
most familiar Banach spaces (e.g. /p, Lp[0, 1], ( l ^ p ^°°), C[0, 1]).

Sections §2 and §3 are devoted to a basic study of properties (SI)
and (LI) respectively. In §5 we relate our work here with that of other
authors and state some problems.

2. Series immersion.

DEFINITION 2.1. A normed space E is said to be series immersed
in a normed space F if the following statement holds:

(SI) For each absolutely divergent series Σnxπ(Σπ ||xn || = <*>) in E
there is a continuous linear mapping T from E into F such that Σn Txn

diverges absolutely.
If E is series immersed in F then each subspace of E is also. An

easy perturbation argument shows that E the completion of E is also
series immersed in F.
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PROPOSITION. 2.2. The normed space E is series immersed in the
normed space F if and only if the following condition holds for (one) all

(Sip) For each absolutely p-divergent series Σnxn (Σn \\xn \\p = <*>)
in E there is a continuous linear mapping T from E into F such that
Σπ Txn is absolutely p -divergent.

Proof. (SI) Φ (SIP) for all p. Suppose (SIP) fails to hold for
some p. Then there is a series Σnxn in E such that Σn ||jcn ||p = oo but
Σn || Txn \\p < oo for all T in L(E,F). Let (an) be a sequence of
nonnegative numbers in lq(\lp + IIq = 1) such that Σn αn ||jcn || =
oo. Then Σnαnjcn diverges absolutely but ΣnT(anxn) converges abso-
lutely for all T in L(E, F) so that (SI) fails to hold.

(Sip) φ (SI). Suppose (SI) fails to hold. Then there is Σn xn in E
with Σ n | | jcπ | | = oo but Σn || ΓJCΠ || < oo for all T in L(E,F). Let yn =
jcn/||xπ ||1/<7 for each n where l/p + l/q = 1. Then

Σ | | v lip = V / | | χ ||(q-l)/q\p = V II v- || = 00
ii yn ii z L v i i Λ " ii / Zu ι i Λ « ii

n n n

but for each T in L(E, F)

Y ii Tv ii" - y Γ11TXn 111P

2J II i ^ || - Zr || r 111/4

Σ
Γ Γ I l T r II I I T l l 1 / < ? 1 p

J \\lχn I I I I 1 II . I I T V II ui I I T Ύ ιi !/« ι i i χ « ι ι ^
π v L II -* A n II J

Thus (Sip) fails to hold.

PROPOSITION 2.3. (SI) holds if and only if:
(SΓ) Γ/iere is Λf > 0 *MC/I that

Γ E

ixGA

l/(£, F)}

/or eυery finite subset A of E. Here U(E, F) denotes the unit ball of
L(E,F).
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Proof. Let l(E) consist of all (JCΠ) in E for which

H(*.)ll = Σ Ik II < ».
n

Let σF(E) consist of all (JC) in E for which

HI (*„) III = sup ί Σ II Txn II: T e U(E, F)}

<oo.

If E is complete, as we may assume, l(E) and σF(E) are Banach spaces
with their respective norms and

III ( x B ) HI g I I C O I I , ( x j in σF(E).

(SI) Φ (SΓ). If (SI) holds then σF(E) = /(£). Thus the norms
|| || and ||| ||| are equivalent so there is M > 0 such that

(2-1) HOONM HI (xj HI ΛXn)el(E).

But (2-1) implies (SΓ) in the special case when (JCΠ) consists of only
finitely many nonzero vectors.

(SΓ) Φ (SI). Condition (SΓ) implies that (2-1) holds for se-
quences which are finitely nonzero. Since such sequences are dense in
σF(E) it follows that (2-1) holds for all (JCJ in σF(E). Hence l(E) =
σF(E). If Σn || Txn || < oo for each T in U(E, F) then (xn) G σF(E) by the
Uniform Boundedness Principle. Therefore, (SI) holds.

We can imitate the proof of 2.3 using lp(E) the space of all (xn) in E
for which

and σFp(E) the space of all (xn) in E for which

to obtain the following statement.

PROPOSITION 2.4. (SIP) holds if and only if
(Sip There is Mp > 0 such that
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Σ II* ||p =i Mp sup { Σ 1 Tx | h T E U(E, F)}

for every finite subset A of E.

3. Local immersion.

DEFINITION 3.1. A normed space E is said to be locally immersed
in a normed space F if the following condition holds:

(LI) There is a number K ^ 1 such that for each finite dimensional
subspace G of E there is a continuous linear mapping T in U(E, F)
such that

In other words (LI) means there is an isomorphism T from G into
£" with || Γ|| || Γ"1!! ^ K which extends without change of norm to all of
E.

PROPOSITION 3.2. (a) (LI) is equivalent to the following statement:
(LΓ) There is a number D ^ 1 such that for each finite subset A of

E there is T in U(E, F) such that

| |ΓX||^D||JC|| xEA.

(b) IfD satisfies (LΓ') then D + e=K satisfies (LI) for each e > 0. (c)
// K satisfies (LI) then K = D satisfies (LΓ).

Proof. (LΓ) Φ (LI); and (b). If G and e are given, let D be
determined by (LΓ) and let δ ^ el(K2+Ke). Let A be a δ-net in the
unit sphere of G. If T is given by (LΓ) for A and x in G has norm one
there is y in A with ||y - x || < δ. Since || Γ|| = 1 we see

Thus

for x in G.
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(LI) Φ (LΓ); and (c). Obvious.
Condition (LI) is commonly described by saying that E is finitely

represented in F.

4. Series immersion and local immersion.

PROPOSITION 4.1. If E is locally immersed in F then E is series
immersed in F. // D satisfies (LΓ) then M = D satisfies (SΓ).

Proof. The second statement is obvious and implies the first.
If E is a finite dimensional normed space then E is series immersed

in every normed space, but locally immersed in normed spaces of
greater dimenion. Thus the converse of 4.1 is not generally true, but it
is true in certain important cases.

The first case, which we treat in Proposition 4.2 is an easy isometric
condition.

PROPOSITION 4.2. If E is series immersed in F and for some p ^ 1
(Sip holds with Mp = (1 + e) for each e > 0, then E is locally immersed in
F. In this case D = (1 + e) satisfies (LΓ) for each e > 0.

Proof. For A a finite subset of E, and € > 0 let

(4-1) «= ψ

where \A | denotes the number of points in A. Since (Sip) holds with
Λfp = 1 + ί δ there is T in U(E,F) such that

<4-2)

If

for some x in A then since T E U(E, F) we would have
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so that

which contradicts (4.1). Therefore, we conclude

for each x in A.
Let θ be a norm on R2 with the following two properties

0(0, l) = 0( l ,O)=l

0(α1b1α2b2)gmax{|α1 |, |α2|}β(fri, b2). We extend θ to a norm on
Rn for all n by the iterative formula

(4-3) 0(α,, α2, , an) = θ(0(α,, α2, • , an_j), απ).

For convenience we shall speak of θ as an iterative functional. It is
easy to see that (Σ"=i | a, | p ) 1 / p (1 = P < °°) and max{| α, |: i ^ ί ^ n} are
examples of iterative functional. See [7] for other examples.

LEMMA 4.3. For θ given as above let

(4-4) θ'(bl9 b2) = supia.b, + a2b2: θ(au a2) ^ 1}.

Then for θ\the iterative functional determined by θ' we have for all n,

0 ' ( & , , - - s f t n ) = s u p { g α A : θ(au • , α n ) = i l j .

Proof. We use induction. Assume the statement holds for n - 1.
Then
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θ'(bu b2, ••-,&„) = θ'(θ'(bί9 b2, -,*>„_,), bn)

= sup{0'(&,,b l9 , ̂ -Oc, + bnc2: θ(cl9 c2) ̂  1}

= supίc, § dA + ft»c2: 0(d,, ,dn-,)^ 1, ί(t,,W
I 1 = 1

{π-1

Σ flA + ancn: 0(α,, , an-x) ^ c,, 0(c,, αn) ^

{
ί = l

LEMMA 4.4. Lei 0 be an iterative functional, and let θ' be deter-
mined by (4-4). If Ci ̂ 0 i = 1,2, ,n tfiere are a, ̂ 0 and b{ ^ 0
/ = 1,2, , with afri = c, and

Proo/. We use induction on n, first proving our assertion when
n = 2 .

We may assume Ci + c2 = 1. Let

5 = {(iέ,v9x9y): 0^u9υ9x9y^l9 θ(u,v) = θ'(x9y) =

Then 5i is connected in I?2 and

5 = U{So,,,:(iι,!;)eSi}

where

SM = {(iι, i;,x, y): 0^x, y ^ 1, θ'(x9 y) = ux + vy = 1}.

It is easy to see that each S(u,v) is convex, hence connected. We shall
prove S is connected. Let 5 0 be any component of S. Then So and
S - So are compact so both P(S0) and P(S ~ So) are compact subsets of
Si. Here P(w,u,x,y) = (M,U). For each (u,v) in 5j either SiUtV) is
contained entirely in SQ or in S ~ So so P(S0) and P(S ~ So) are
disjoint. But S, = P(S0) U P(5 ~ So) so that P(S - So) is empty and
P(S0)= S,. Therefore, S o = 5 so S is connected. The function
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is continuous and assumes the values 0 and 1 on S. Hence there is
(fli, α2, bu b2) in S such that axa2 = α. This establishes our lemma when
n = 2 .

Now assume the lemma holds for n - 1. Given Σf-i ch we use the
preceeding case to find (α0, an), (b0, bn) with aobo = ΣfΓ,1 c, , anbn = cn and
Σ?=, 0(αo, «n) θ'(b0, bn) = ΣUi ch We then use the inductive hypothesis
to find au , an-x\ bx, , bn-λ with c, = αA and αofeo =
0(<*i, , «n-i) θ'(bu , bn_,). We may assume θ(au , αn-i) = α0 and
θ'(bu - , bn-ι) = b0. Then α/b, = c, for each ί and

n

θ(at, , an) θ'(bu •• ,bm) = θ(a0,an)θ'(b0,bn) = Σ ct.
i = \

DEFINITION 4.5. A Banach space E is called unconditionally
resolveable if E is isometric to E x E with the norm

\\(x,y)\\=0((\\x\\\\y\\))

where 0 is a norm on I?2 with the property that

θ(aίbι,a2b2)^mtιx{\aι\, \a2\}θ(bub2).

Since E x E with the norm (4.5) is isometric to E x E with the
norm

.((fel.LJ))

for all r!r2>0 we may assume 0(1, 0) = 0(0, 1) =1. If £ is uncondi-
tionally resolveable then for each n it is isometric to the n-fold product
ExE x- xE with the norm

where θ is the iterative functional determined by θ.

THEOREM 4.6. (a) // a normed space E is series immersed in a
Banach space F, which is unconditionally resolveable, then E is locally
immersed in F. (b) If M satisfies (SΓ) then (1 + e)M satisfies (LΓ) for
each e > 0.

Proof. Suppose Λf satisfies (SΓ). Given A a finite subset of E
and € > 0 we imitate the development of inequality (5) on p. 1021 of [5],
but using 1/(1 + e )M instead of l/2λ, to obtain a number r numbers
d > 0 with Σ[., Cι = 1 and mappings Tl9 , Tr in l/(£, F) such that
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(4-6) ΣcjΓiOOl^^^φll, x<=A.

(Note that inequality (5) cited is misprinted; it should read

Σ c, ||Tr(jc.)|| > jr \\xn ||; n = 1,2, •,*.)

Next we use Lemma 4.4 to find (d^ ,d r) with

,, , dr) = e'(c,/d,, c2/d2, , cr/dΓ) = 1.

Here θ is the iterative functional for which E is isometric to E x E x
• x £ (r factors) with the norm

We define ΓΛ from E into β x x B by

Then if ||JC | | ^

gsup,

so ITA || g 1. Moreover, iί xEA

Therefore, (1 + e)M = D satisfies (LΓ).
If F is any Banach space /P(F) is unconditionally

resolveable. Thus the lp spaces 1 ̂  p < oo are unconditionally resolve-
able as are m, C[0, 1] and Lp[0, 1], 1 ̂ p <oo.

COROLLARY 4.7. 1/ α normed space E is series immersed in a
Banach space F and F is locally immersed in an unconditionally
resolveable space G and G is locally immersed in F then E is locally
immersed in F.
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5. Remarks and problems.

5.1. In [5] it is proven that a normed space E is not isomorphic to
a subspace of an Lp (μ) space 1 ̂  p < °° if and only if there is a series
Σπ xn in E which diverges absolutely but such that Σn || Txn || < °° for each
continuous linear mapping from E into /p. This proof is based on the
facts that lp is unconditionally resolveable (with θ(a,b) =
(| a \p +1 b \p)λlp) and that a normed space is locally immersed in lp if and
only if it is isomorphic to a subspace of Lp(μ) for some μ (e.g. see
Proposition 7.1 of [61). In [9] P. Saphar announced a result which
implies that E is not isomorphic to a subspace of Lp (μ) 1 ̂  p < oo if and
only if there is a series Σn xn in E such that Σn || Txn \\p < oo for each T in
L (£, /p) but Σπ || xn ||

p = ». By Proposition 2.2 these two statements are
equivalent and in fact equivalent to the following more general state-
ment:

THEOREM. A normed space E is not isomorphic to a subspace of
Lp (μ) (1 ̂  p < oo) if and only if for one (each) r with 1 ̂  r < °° there is a
series Σnxn in E such that Σn ||TJCΠ||Γ <α> for each T in L(EJP) but

As a corollary to this theorem we get the following strengthening of
the Dvoretzky-Rogers theorem [2] due to Pietsch [8] and perhaps also to
Grothendieck [3].

COROLLARY. For every infinite dimensional normed space E and
every r with 1 g r < oo there is a series Σnxn in E such that Σπ \x'(xH)\r <
oo for all continuous linear functionals x1 on E but Σn ||xπ ||

Γ = ».

Of course, this corollary also follows from the Dvoretzky-Rogers
Theorem and Proposition 2.2.

Problem 5.2. To what extent may we weaken the requirement in
Theorem 4.6 that F be unconditionally resolveable? Is the theorem true
if F is merely infinite dimensional? Isomorphic to its square?

Problem 5.3. What Banach spaces are unconditionally resolve-
able? Is the following conjecture true: If F is isomorphic to F x F, then
there is an equivalent norm on F for which it is unconditionally
resolveable?

5.4. If E is series immersed (resp. locally immersed) in F and F is
series immersed (resp. locally immersed) in E we write E ~ SF (resp.
E - L F). Both — s and — L are equivalence relations. Every ~ L
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equivalence class is contained in an ~ s equivalence class. The finite
dimensional spaces constitute the smallest ~ s equivalence class, but
two finite dimensional spaces are ~ L equivalent if and only if they have
the same dimension. By a theorem of Dvoretzky [1], the class of
infinite dimensional Hubert spaces constitute an ~ L equivalence class
which is minimal among infinite dimensional spaces. It is easy to see
that this class is also an § equivalence class, which is the second
"smallest." By the theorem stated in 5.1 the Lp(μ) spaces constitute
distinct ~ L and ~ s equivalence classes.

5.5. The argument (SIP) Φ (SI) in Proposition 2.2 holds for all
p >0, but the argument (SI) Φ (SIP) holds only for p ^ 1.

Problem. Does (SI) Φ (SIP) for all p >0?
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