
PACIFIC JOURNAL OF MATHEMAΉCS

Vol. 58, No. 2, 1975

THE UNIVERSAL FLIP MATRIX AND THE
GENERALIZED FARO-SHUFFLE

ROBERT E. HARTWIG AND S. BRENT MORRIS

The permutation matrix P which flips a left direct product
of two matrices into a right direct product is investigated on the
basis of the generalized out faro-shuffle. Expressions are der-
ived for the characteristic and minimal polynomials as well as
the determinant and trace of P.

1. Introduction, One of the most interesting and lesser
known matrices in the theory of left direct products, [7] p. 81, is the
permutation matrix P, whose (i,j) block entry is the m xn unit matrix
Eμ = [δsiδή], i = 1, , n j = 1, , m namely

p - p -
•*• •*• m,n

En

Eln

Emί

F

The reason being, that for any pair of matrices Amxm,Bn

(1)

i.e. P flips the order in any left direct product or equivalently converts a
left direct product into a right direct product. If A and B are finite
group representations then P represents the isomorphism relating the
direct products of the two groups. In this note we give a short matrix
proof of this result, which is valid over any commutative ring R with
identity 1, and derive some further properties of the matrix P, after
identifying the permutation Π associated with P with the generalized
out faro-shuffle for a 1-dimensional deck of mn cards [9] [2]. In
particular we shall give expressions for the characteristic and minimal
polynomials of P in terms of m and n.

Throughout this paper we assume that all our matrices are over a
commutative ring R with unity and char R^2. Whenever necessary
we shall first prove the result for real matrices, then specialize to integer
matrices and employ Theorem 11 of [8], p. 49, to obtain the corre-
sponding result for commutative rings with unity. In fact when
working with matrices whose entries are integer multiples of 1 E R, we
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may, if chari? is zero or prime, just as well work with integer
matrices. It is a well known fact that for any permutation matrix
P = [efl, ,e, J , where e, is the ith unit vector, Pτ = P 1 . For a real
matrix P this says that P is real orthogonal and hence normal and
simple.

The all important observation is now that if Π is the permutation
associated with P, then the reduction of Π to a product of cycles,
corresponds to a permutation similarity transformation on the matrix P,
which reduces P to its weak cyclic canonical form, i.e.

(2)

where

1 1 — > To i TO 2 * " #

P = diag [Ckι, , Ckt], kx S k2 ^ § kt ^ 1,

Ck =

0 1

! i. ?

0 1 0

is the k x k cyclic matrix, which is also the lower companion matrix
L (λk - 1), for λk - 1. We remark that this canonical form is in general
not equal to the Frobenius (rational) canonical form since fc, Jί fc,_, is
general. Also since each Ck is irreducible, [3] Vol. 2, p. 62, (as its graph
is strongly connected), the canonical form of (2) coincides with the
canonical decomposition of a non-negative reducible matrix into a
direct sum of nonnegative irreducible matrices.

Since this reduction only involves 0 and 1, it is valid over any ring
with 1, in particular it is valid over any commutative ring R with 1, for
which we may define the concept of the characteristic polynomial Δ(λ)
of P, [8] p. 163. The characteristic polynomial may indeed be written
as

(3) Δ(λ) = Π U*' - 1) = Π [λ' ( p )~ l]ϊlθip) = | P | ANΔ (j) ,

where 0(p) is the order of the element p in the permutation Π, i.e.

(4) Π' ( p ) (p)=l, I Γ ( p ) ^ l for k<p.

Even though in general the minimal polynomial ψ may not exist, i.e. the
null ideal is not principal, [8] p. 166, it will exist for special matrices such
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as permutation and cyclic matrices. It is easily seen that λ* - 1 is an
annihilating polynomial for Ck, and that in fact it is minimal, for if
q(λ) = qo+qιλ + •• + qsλ' is any annihilating polynomial of lower
degree, i.e. s < fc, then

<?o 0 qs qx

qs 0

0 q, q0

= 0 implies that

qxi = 0, i = 0, , s. Since λ* - 1 is therefore a monic minimal polyno-
mial the division algorithm for R[λ] shows that ψ = λk-l divides
every other annihilating polynomial and is hence unique.

Similarly we may define the minimal annihilating polynomial ψx(λ)
for a vector x with respect to the matrix P, [3] vol. 1, p. 176, in particular
(4) becomes in matrix language ψtp(λ) = \θ(p)- 1.

The minimal polynomial may now be written from (2) as

(5) ψ(λ) = LCM (λ*< - 1) = LCM ( λ « p ) - 1),
ι* l, ,ί p = l,—,n

in which the latter may be interpreted in matrix notation as «Mλ) =
LCM(ι/rei(λ)), where the {e,} form a spanning set for Rn, [3] p.
176. Incidentally (3) and (5) are related as usual by ψ|Δ|ψ n , even for
our ring R. Moreover we shall see that we may even talk about the
number of linearly independent eigenvectors associated with the eigen-
values λ = ± 1 .

We note that if r = 0(Π) is the order of the permutation Π, then in
general ψ ( λ ) ^ λ r - l , as may be seen from the example Π =
(1, 2)(3, 4, 5),

0 0 1-Γ0 11 Γ° ° Ί= 1 J H 1 ° ° '
L i υ j Lo l oj

for which 0(Π) = 6, but ψ(λ) = (λ + l ) ( λ 3 - 1).
We shall see, however, that for our particular permuation matrix

this cannot happen. We base this claim on the following result.

THEOREM 1. If P is a permutation matrix over ring R, associated
with permutation Π, which has cycles of order kx ^ k2 ̂  ^ kt g 1, and



448 ROBERT E. HARTWIG AND S. BRENT MORRIS

elements of order 0(ph)§ β(pi2) = ' = θ(pίN)^ 1, and if r = 0(Π)
LCM(ki) = LCM(θ(pii)) then

(i) ψ ( λ ) = λ ' - l
(ii) fci = r
(iii) θ(ph) = r
equivalent.

Proof (ii) => (i) This follows from (2) since /c, | r implies that
λ* - 11 λΓ - 1. (i) Φ (ii) If fc, < r then fc, | r implies that λΓ - 1 =
(λfc« - l)φr(λ)fi(λ), where φΓ(λ) is the rth cyclotomic polynomial, [5] p.
321. On the other hand

λ r - 1 = LCM (λ*< - 1) = LCM(φΓ(λ) (λ*< - 1) •/,)
i = l, ,ί

= φΓLCM((λ* - l )/ l ) ,

which is clearly impossible. Hence kx = r. The last result follows in a
similar fashion.

For the case t = 2, Theorem 1 is a special case of the following
result.

THEOREM 2. Let R be a commutative ring with unity, let /, g E
l?(λ) fee monic polynomials over R and let df^dg, where d denotes
degree.

(a) If one of the following holds:
0 ) f \ g
(ϋ) dfJίdg

then

(*) r = <9LCM(/,g)gLCM(# <9g) = 5.

(b) Equality in (*) implies that df | 3g,
(c) I / / = λ k - l , g = λ ' - l then f \ g if and only if df\dg if and

only if r = s.

Proof. (a)(i) /1 g implies that r = dg^s. (ii) a/ J <9g then s ^ dg
and s o s g 2<9g. Whence s^2dg^df+ dg. ̂  r.

(b) Let r = d LCM(f, g) = LCM(5/, 3g) = s, and assume 5/ X dg so
that 5/ < dg. Now df^dg^r^df+ dg, but 5/ ̂  5g implies that s ^

or 2<9g ̂  s = r ^ df + dg, i.e. 5g ^ df which is a contradiction.
(c) Clear, as (λ* - 1)|(A' ~ 1) if and only if it | /.
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2. The universal flip matrix. The flip property (1) of the
matrix P is based on the following column Lemma, which may be
generalized to commutative rings with 1, [12] [11] [4].

COLUMN LEMMA. // X = [xu ,xn] and col(X) = [x[, ,xΠτ>
then

(6) col(AXB) = (B τ (g) A) col(X).

In particular col(abτ) = b(g)a.

Note also that col( ) is a module isomorphism from i?mxπ onto

It is easily verified that for any m x n matrix M,

(7) Pln col(M) = col(MΓ) = Pn,m col(M),

which is in fact the basis to our card shuffling interpretation for
Π. Combining (6) and (7) we have for all A E Rmxk9 B E JRΠX1, X E Rlxk,

(A (g)B)col(X) = col(BXAτ) = Pn,m col(AXτBτ)

= Pn,m(B®A)col(Xτ) = Pπ,m(B <g) A)Pj,k col(X).

Since this holds for all col(X), equation (1) follows when k = m and

It also follows immediately that if Λ, EjRmxm, Bt EjRnxn then

(8)

Further note that

(9) Pτ(a(g)b) = Pτ co\(baτ) = col(αbτ) = b(g)a.

Let us now turn to a more detailed analysis of the flip matrix P. We
begin by considering the simplest case where m = n, in which case we
only need (7) and no explicit expression for Π(p) is needed.

Case 1. m = n. It is clear that Pτ = P = P'x and hence
λ 2 - 1, and Δ(λ) = (λ - l)p(λ + \)q where p + q = N = mn. To calcu-
late Δ we can either evaluate | λJ - P | directly, which is straightforward
but tedious, or make us of the following important consequence of (7).

LEMMA 1. Over any commutative ring R with unity, there exist a
one-to-one correspondence between the numbers of linearly independent
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solutions to Pa = ± a and the number of linearly independent solutions
to col(A) = ±col(AΓ), in the sense that each side contains exactly the
same number of independent parameters.

Proof. If Pa = ±a, let Amxn = coΓ*(a) and use (7). Conversely
again use (7).

In the case m = n, the number of linearly independent solutions to
col(A) = col(Λ Γ) is exactly the number of symmetric matrices over R,
i.e. \n(n + 1), while the number of linearly independent solutions to
col(Λ) = -col(AΓ) is exactly the number of skew-symmetric matrices
over R, i.e. {n(n - 1). For our real permutation matrix this says that P
has exactly \n{n±\) independent eigenvectors associated with A =
± 1, and since the geometric multiplicity vx of A, is bounded above by
the algebraic multiplicity n, of A, (with equality over the complex field),
it follows that

(10) Δ(λ) = (A + l)n(n"1)/2(λ - 1)"<"+1>'2 = (A - l ) n (λ 2 - 1)"<"-1)/2.

Again this holds also over R since (10) is really a consequence of the
identities σk = Σ |P£ | , between the coefficients σk of Δ and the kth order
principal minors |P£| of P, α = (ot\, -,ak). These identities are also
valid over the integers and hence by Theorem 11, [8] p. 49, remain valid
over JR.

It is further easily seen that the elementary divisors of P over Z are
λ ± 1, with multiplicities n(n± l)/2 respectively. Let us now turn to
the most general case m^n and without loss of generality assume that
m <n.

3. The case mj^n. In this case there is no symmetry, i.e.
P*y P, and we have to examine the permutation explicitly. First we
observe from the structure of P that P = 1 0 Q φ 1 so that Δp =
(A - 1)2ΔO and ψp = ψQ. Hence (A - l)2ψp | Δp. The determinant of P
can also be obtained from the recurrence relation

I P I — ( _ 1\(n-l)m(m-l)/2 I p I
I-Cm,n I ~ V i / I-Γw,n-l| >

yielding

The explicit form of the permutation Π is given by
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/ Ί,2, — 1Γ ' n + l , π + 2 - 2n
\l,l + ra, l + 2ra l-h(n - l)m 2,2-f 2ra 2 + (n -

(m - l)n + 1 mn\ .
in / 1 > e *

(13) Π(nfc + /) = k + 1 + m(/ - 1) fc = 0, , m - 1, / = 1, ,π,

however in this form the 2 parameter permutation is almost intractable.
Instead we shall use the following representation.

(14) Π(p) = m p - m + 1 mod(mn - 1), p = 1, ,mn,

which is exactly the generalized one-dimensional out faro-shuffle
[10]. In this shuffle a deck of ran cards, labeled from top to bottom, is
cut into m portions of n cards, and each portion is given in clockwise
fashion to one of m players seated at a circular table, starting with the
dealer. If, starting with the dealer, in clockwise fashion, each player
plays his top card when it is his turn, until all cards have been played, we
obtain the permutation Π, labeled from the bottom cards up.

When m = 2 this reduces to the classical out faro-shuffle (in which
an even deck of cards is cut in halves and then ruffled such that the first
and the last cards remain in fixed positions) which is the basis to
serveral remarkable card tricks [1], [2], [9].

From (14) we see that

(15) IΓ(p) = m k p - m k + l mod(mπ - 1)

and hence

(16) Uk(p) = p <£> (mk - l)(p - 1) ss o mod(mn - 1).

From this it follows that the order of the element 2, 0(2), is the
smallest integer k such that

(17) mk s 1 mod(mn-l)

and" that if k = 0(2), (16) holds for any p = 2,3, , mn - 1, i.e.

(18) Π«<2)(p) = p or

In terms of annihilating polynomials this says that ψtp(λ) =

λ w _ i |λ*(2>_ i T h u s r = 0(Π)= θ(2)^mn - 1, since the order of a
group element divides the order of the group, and thus by Theorem 1,
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= λ Γ - l . We may simplify (16) by setting d =
gcd(p -\,mn- 1), p = 1,2, , mn, to obtain

(19) (m' - 1) ( ^ 1 ) - 0 mod ( * ϋ ^ l ) or

m = 1 mod

Thus 0(p) is the exponent to which m belongs modulo (ran - X)jd,
which clearly depends on d only. Substituting this in (3) yields Δ. We
note that even though the order of each cycle divides 0(2), they need not
be nested, i.e. need not divide each other, as seen from the example
m = 2, n = 106, 0(6) = 6, 0(8) = 4.

The question that remains is how many cycles of a given order are
contained in Π? This we now examine on the basis of (19). We first
state a result that holds for any permutation matrix P.

THEOREM 3. If P is any N x N permutation matrix over R, with
associated permuation Π, as given in (3), and if φi(λ) is the ith
cyclotomic polynomial of degree dφi(λ) = Φ, (λ), the Euler function at i,
then

(i) Δ(λ) = Πfi! φΓ'(λ), where n, is the number of cycles in Π whose
order is divisible by i.

(ii) ψ(λ) = Πfi, φΓ'(λ), where m, = 1 // Π has a cycle of order
divisible by i, and m, = 0 otherwise.

(iii) // the characteristic of R is zero and i divides some cycle of
order kh then

(20) dimker[<fc(P)] = 3[Φ«λ)] = n(Φ(/).

Proof (i) From (3) we have that Δ = ΠJ=1 (λk> -1) =
Π{=i Πdifcφdίλ). Clearly φ s(λ) will appear exactly once in each factor
Ud]ki φd, for s I fc. (ii) Now φ(λ) = LCM,(λ*' - 1) =
LCM{Udlkι φd, ,Ud]kt φd}. It is easily seen that φi(λ) = λ - 1 appears
in each term, while φs(λ) will appear in the LCM if and only if 3fc, such
that s I ki. Hence

u ί 1 if i Ifc, some j
where mi = \gx 4- ' '.

10 otherwise

In particular m, = l = mkl. (iii) Since φ/(λ) is monic with integer
coefficients, φι(P) is an integer matrix with entries from (I), the subring
generated by 1 E JR. If char R = 0, then (1) is isomorphic to Z, the ring
of rational integers, and we may consider the left hand side of (20) as the
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number of independent solutions to φ,(P)x = 0 over Z. But this
number is equal to the number of independent solutions over Q, the field
of rationals. Now since the φι are pairwise coprime and irreducible
over Q, we may apply the Primary Decomposition Theorem, [6] p. 219,
to yield the desired identity.

When char R = p, a prime, then (1) is isomorphic to Zp, which is a
field, however in this case φ,(λ) may be reducible over Zp, as seen from
φ2(λ) = λ2 + λ +1 = (λ + 2)2 over Z3. As a Corollary to Theorem 3, we
see that the geometric and algebraic multiplicities of the eigenvalue
A = 1 are both equal to the number of cycles in Π. This is indeed valid
over any JR, as seen from (2), because Cfex = x clearly has only one
independent solution [α, α, , α ] Γ , a arbitrary. Hence the total
number of independent parameters in the general solution to Pa = a
equals the number of cycles in Π. Similarly for the eigenvalue λ = - 1,
the algebraic multiplicity in Δ yields the number of even cycles, in Π, if
any, while Ckx= - x has only the zero solution when k is odd and
char R ^ 2, and yields exactly one independent solution [a, - *,α] τ, a
arbitrary, when k is even.

Returning to our flip matrix we conclude from Theorem 3 that the
number of independent solutions to col(A) = Tcol(AΓ) is exactly the
number of (even) cycles in Π.

The trace of the matrix P is exactly the number of cyles of order 1
in π i.e. # {p | ΪΊ(p) = pyp = l, ,mw}. Using (14) this may be calcu-
lated from

(m - l)(p - 1) ss 0 mod(mn — 1) or

1 A (mn - 1 \ . Λ i Λ n
m SΞ l mod ( — - : — 1 , d = g.c.d.(p - 1, mn - 1).

Thus

which in the symmetric case reduces to n as then each Esi = 1, , n
has a 1 on the diagonal.

Since the order of a cycle equals r = 0(Π) if and only if d = 1, it
follows that we have (mn - 1)1r cycles of order r, where Φ(fc) is Euler's
function. Similarly if

and if {dp} are the possible values for gcd(p - 1, mn - 1), as p ranges
from 2 to mn - 1, we can associate through (19) with each dp a unique
order kpy with kp = r corresponding to dp = 1.
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Consequently we have Φ((mn - l)ldp)lkp cycles of length fcp, so that
Δ may be written as

(21) Δ = (λ 2 - 1)
P

and the total number of cycles equals

(22) Vi = 2 + Σ

while the number of even cycles equals

φ
P

kp even

A few of the characteristic and minimal polynomials for Pm π are given
below

m n φ Δ Π

2 3 A 4-l (λ- l ) 2 (λ 4 - l ) (2345)

2 4 A 3 -l (λ- l ) 2 (λ 3 - l ) 2 (235) (476)

3 3 A 2-l (λ 2-l)(λ + l)(λ 2 -l) 3 (24)(37)(5)(6,8)(9)

3 4 A 5 - l ( λ 2 - l ) ( λ 5 - l ) 2 (2,4,10,6,5)
x(3,7,8, 11,9)

The first five cyclotomic polynomials are given by
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