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RADICALS OF SUPPLEMENTARY SEMILATTICE SUMS
OF ASSOCIATIVE RINGS

B. J. GARDNER

This paper deals with the effect of radicals (in the Kur-
osh-Ainitsur sense) on supplementary semilattice sums of rings
as defined by J. Weissglass (Proc. Amer. Math. Soc, 39 (1973),
471-473). It is shown that if Ŝ  is a strict, hereditary radical
class, then 91 (R) = Σ α e Ω £%(#«) for every supplementary semi-
lattice sum R = Σ α G Ω £ α with finite Ω. If 91 is an A -radical
class or the generalized nil radical class, the same conclusion
holds with the finiteness restriction removed. On the other
hand, if $(Σ«e ΩjRα) = Σa&ίϊ9l(Ra) for all finite Ω, then 91 is
strict and satisfies

(*) RG91 Φ the zeroring on the additive group of R

belongs to 91,
a condition satisfied by both hereditary strict and A -radical
classes.

Introduction. Semilattice sums of rings were introduced by
Weissglass [11]. Let Ω be a semilattice, a commutative semigroup in
which all elements are idempotent. A ring R = Σ α e Ω Ra is a supplemen-
tary semilattice sum of its subrings Ra if (i) R+ = 0 a en#« (here ( )+

denotes the additive group) i.e., JR is a supplementary sum in the
language of [3], and (ii) RaRβ C Raβ for all a,βEΩ. Examples include
direct sums, polynomial rings and semigroup rings over semilattices.

In [11], Weissglass considered the inheritance of properties by a
supplementary semilattice sum R = Σ α e Ω # α from its subrings Ra. In
[8], Janeski and Weissglass proved that R is regular if and only if each
Ra is. Their arguments need minimal modification to obtain corre-
sponding results in which regularity is replaced by various other
hereditary radical properties, including quasi-regularity, nilness and
local nilpotence.

We shall be concerned with a stronger condition on a radical class
91: 2fc(ΣaeaRa) = ΣαEΩ£%(JRα) (supplementary semilattice sum) for all
(finite) supplementary semilattice sums ΣaGςχRa.

For general information about radical classes the reader is referred
to [31. A radical class 9t is strict if every £%-subring S of a ring R is
contained in 91{R), or equivalently every subring of an έ%-semi-simple
ring is 9i- semi-simple. See [9] for further details. An A-radical class
[5] is one which contains with any ring R all ring 5 with 5 + = JR*. We
denote the additive group of a ring by ( )+, the zeroring on an abelian
group by ( )°; < signifies an ideal. All rings considered are associa-
tive.
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The results.

THEOREM 1. Let 01 be a radical class.
(i) If 0i is strict and hereditary, then for any supplementary

semilattice sum R = ΣaenRa, where Ω is finite, the rings 0l(Ra) form a
supplementary semilattice sum and 0t(R) = ΣaEίϊ0i(Ra).

(ii) If 01 is an A-radical class the same is true without the finiteness
restriction on Ω.

Proof, (i) We prove this by induction on |Ω|, making use of the
construction described in Lemmas 2 and 3 of [8]. Suppose firstly that
Ω = {a, β}, aβ = β and thus Rβ < R. Then

0i(Ra)0i(Rβ) C R0ί(Rβ) C 0ί(Rβ)

since 0l(Rβ) < R [1]. Similarly 0i(Rβ)0i(Ra)Q 0l(Rβ) and so
0l(Ra) + 0l(Rβ) is a supplementary semilattice sum.

We next show that 0i(Ra) + 01(Rβ) < R. Now Ra9t(Ra)C0t(Ra),
while 9l(Ra)C9ί(R) (9t is strict) whence Rffi(Ra)C<3l{R) Π Rβ =
9t(Rβ) (0t is hereditary). Thus RSt(Ra)C9t(Ra) + 9l(Rβ). Since
31 (Rβ) < R, we have R [01 (Ra) + 01 (Rβ)] C 9? CRα) + ̂  (i?β) and a similar
argument on the right completes the proof that 01 (Ra) + 01 (Rβ) < R.

Since & ( « , ) < &(!*«) + 9l(Jϊβ) and

α)/[^(i?J n

it follows that 0l(Ra) + 0l(Rβ) E. 01.
Since the sum Ra + J?β is supplementary we have isomorphisms

RJ0i(Ra) = [R/Rβ]l[[Rβ 4- <%(l?α)]ARβ] s ί / [ J p + 0l(Ra)l

It therefore follows from the exact sequence

0 -> [Rβ + 01 (Ra )]l[0i (Ra) + 01 (Rβ)] -> R \\0i (Ra) + 01 (Rβ)]

Rβl0t(Rβ) -

\\l
RJ0l{Ra)

that i?/[^(i?α) + ̂ (i?β)] is 01-semi-simple.
Thus 01 (Ra) + 01 (Rβ) = 01 (R) and we have proved (i) for | Ω | = 2.
Now consider | Ω | = k and assume (i) for smaller semilattices. Let
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Ω = ΛUfl where Λ and 0 are disjoint subsemilattices and 0 is an ideal
of Ω, as in [8], Lemma 3. Then

= Σ

and all these sums are supplementary semilattice sums. It follows that
and

Π Rα = Sft(R) Π RΛ Π Rα = 2ft(R) Π Rα

for every a<ΞA, M(RΘ) = 9t(R)Γ) Rθ and <3l{Ra) = 3?(1?) ΠR. for
α G (9. If α, j3 G Λ, then $fc(Ra)0l(Rβ) C $CRαβ) and the same conclu-
sion is true if a, β G 0. If a G Λ and β G 0, then aβ Eθ and
m(Ra)$i(Rβ)CRaRβCRaβ. Also, ^(i? Λ )C 38(JR), so

Thus
C 9t(R) Π jRQ̂

Similarly 9l(Rβ)9t(Ra)C <3ί{Raβ), so Σ α e Ω ^(l? α ) is a supplementary
semilattice sum.

Finally,

(ii) Since l?+ = 0 a e n ^ : , we have 9t{R) = Σα G Ω^(i?α) (cf. the
proof of Proposition 1.5 in [5]). The sum is a supplementary semilat-
tice sum, because 9l(Ra)9l(Rβ)C0l(R)ΠRaβ = 0l(Raβ) for any α,

Whether or not hereditary strict radicals commute with formation
of supplementary semilattice sums in general remains an open question.
Some information is given by our next result, in the course of the proof
of which we show that strict radical properties satisfy Weissglass'
condition (F) [11].

PROPOSITION 2. Let 01 be a hereditary, strict radical class, R =
ΣaEίϊRa a supplementary semilattice sum. Then ΣaGίϊ0l(Ra) is a sup-
plementary semilattice sum and an 01-ideal of R. Furthermore,
RlΣaen^(Ra) = ΣaGςiRal0l(Ra) where the latter is a supplementary
semilattice sum.

Proof. For any finite subsemilattice Ω' of Ω, we have
&(Σ β e ί y JO = Σ β e α 9l(JRβ) by Theorem 1. Thus Σasa9t(Ra)e9t for
every such Ω'. But then each such ΣαeΩ>0l(Ra) C 3£(ΣαeΩ &(Ra)), so 0i
contains Σ α e Ω &(Ra) (not assumed to be a semilattice sum at this stage).



390 B. J. GARDNER

Let β, γ E Ω generate the semilattice Γ. Then Γ is finite so by
Theorem 1, 0i (Σα GΓ Ra) = Σα GΓ ^ (Ra) (supplementary semilattice
sum). Hence

Σ a) n
αEΓ /

and similarly 01 (Ry )Rβ C 01 (RβΎ). This shows that ΣαGΩ 9Ϊ (JR« ) is both a
supplementary semilattice sum and an ideal of R.

Now for any β E Ω, we have

Σ /Σ
αEΩ J/ αEΩ

Let / = Σα€ΞΩ 01 (Ra). It is a routine matter to show that the supplemen-
tary semilattice sum structure on R induces a similar one on

cxSίϊ

Two facts about strict hereditary radical classes may help to put the
foregoing results into perspective:

(i) Such a class 01 (if nontrivial) must contain some zerorings.

Proof, If 0i doesn't contain zerorings, then every ring in 3? is
idempotent. The class $ ( 1 ) = {R \R[x] G 01} is also a radical class ([4],
Theorem 1). Theorem 10 of [4] implies that 0i(l) = {0}, but Proposition
3.1 of [9] implies that $ ( 1 ) = 38.

(ii) If $1 contains all zerorings, then Jίg C Si, where Jίg is the
generalized nil radical class of Andrunakievic and Rjabuhin [2] and
Thierrin [10] (cf. Theorem 3.7 of [6]).

We can improve on Proposition 2 for 01 = Jf8.

PROPOSITION 3. Let R =ΣaEίϊRa be a supplementary semilattice
sum. Then Jίg(R) = ΣαGΩjVg(JRα) (supplementary semilattice sum).

Proof. By Proposition 2, I = Σ β € ί i^(JJ β ) is a supplementary
semilattice sum and an Ng- ideal of R and R/I is isomorphic to a
supplementary semilatice sum Σ α € Ω I α of Jfg- semi-simple rings. The
Jίg- semi-simple rings are those without nonzero nilpotent
elements. Suppose x G Σα G Ω L is a nonzero nilpotent element. Let Γ
be the (finite) subsemilattice of Ω generated by the a appearing in the
representation of x. Then x E Σ α e Γ 4, so x E ΣβeΓΛfg(l«) = Λ^(Σα€ΞΓ D*
contradicting the Ng-semi-simplicity of the Jα. Hence R/I is ^-semi-
simple, so I = Jfg(R).
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COROLLARY 4. A supplementary semilattice sum ΣaeίιRa has no
nonzero nilpotent elements if (and clearly only if) each Ra has none.

A special case of this corollary is given in [11].
Proposition 3 holds for strict, hereditary radical classes 0t such that

the property of 5?-semi-simplicity satisfies condition (F) of [11].
Our final result is to some extent a converse to Theorem 1.

THEOREM 5. Let 01 be a radical class such that

(supplementary semilattice sum) for every supplementary semilattice
sum Σα€ ί ll?α with finite Ω. Then

(i) 0i is strict.
(ii) 0i satisfies

(iii) If in addition 01 contains all zerorings, then 01 is hereditary.

Proof, (i) Suppose 0t is not strict. Then there is a ring Y with a
subring Xέ0 such that X G 3? and 0i(Y) = 0. Define a ring R by

(α, b)(c, d) = (ac + αd + be,

Then 1? is a supplementary semilattice sum of Y and X, while
$ ( Y) + »(X) = X is not an ideal of R unless XY = 0 = YX. But this
would imply that X < Y, whence ί% (X) = 0. Not being an ideal,
0l(Y) + 0l(X) cannot coincide with $ ( J R ) .

(ii) If 0i does not satisfy (*), let A G $ , (Λ+)°€S%. Then
0l[(A+)o]+ is the additive group of an ideal I of A (cf. Propositions 1.1
and 1.3 of [5]) and (A +)°l0ί [(A +)°] = [(A /I)+]° and 0 ̂  AIIG 0t. Thus
we may assume that (A +)° is 01- semi-simple. The ring R defined by

is a supplementary semilattice sum of (A+)° and A, with CA+)° an
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ideal. Now 0i (A) + 9t [(A +)°] = A, while since A V 0, A is not an ideal
of R. Hence A^3l(R).

(iii) Suppose 01 contains all zerorings, but is not hereditary. Then
91 contains a ring Y with a nonzero ideal X £ <3i. Since §t (X) < Y [1],
we have 0^X/3ί(X) < Y/&(X)e Si, so it may be assumed that
9t(X) = 0. Define the ring R by

(α, b) (c, rf) = (ac + αd 4- fee, ftd).

This makes 1? a supplementary semilattice sum of X and Y, where
»(X) + « ( Y ) = Y. But Y is not an ideal of R unless XY = 0 =
YX. But then X2 = 0, so X G &.

Both A-radical classes (clearly) and hereditary, strict radical clas-
ses [7] satisfy (*), but no example of a strict radical class satisfying (*)
which is neither hereditary nor an A- radical class is known to the
author.
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