PACIFIC JOURNAL OF MATHEMATICS
Vol. 58, No. 2, 1975

BIRNBAUM-ORLICZ SPACES OF FUNCTIONS
ON GROUPS

IRACEMA M. BunD

It is natural to ask how far the theory of closed invariant
subspaces for £,(G) can be extended to Birnbaum-Orlicz spaces
2,4(G). If G is a compact group and A satisfies the A,-
condition for u = u,=0, the class of all closed invariant sub-
spaces of 2, (G) is exactly the family {(L4)r: P CZ} where Z is
the dual object of G. Distinct subsets of = engender distinct
subspaces.

The generalization of the classical 2,-spaces foreshadowed by Z.
W. Birnbaum in 1930 [1] was the subject of a long article by Z. W.
Birnbaum and W. Orlicz [2]. In the next four decades their theory has
been extended by many writers, among them G. Weiss [9] and W.
Luxemburg who invented convenient new definitions. More recently
M. Jodeit and A. Torchinsky [7] introduced a generalization of the
concept of Young’s function which we adopt here.

The essential introductory definitions and theorems are stated in
§1; proofs may be found in [3], [8] and [9]. In §2 we show thatif G is a
locally compact group, the Birnbaum-Orlicz space 2,(G) is a left
Banach ¥,-module and a right Banach (2, N £1)-module. Finally in §3
we establish the result stated in the synopsis. Our notation is as in [4],
[5] and [6].

1. Preliminaries. (1.1) A function A on [0,[into[0,]will
be called a generalized Young’s function if it is left continuous on ]0, %[,
A (u)/u is nondecreasing for u >0,and A (0) =0. It easily follows that

(i) A(au)=aA(u) for 0=a=1 and 0=u <.

The zero function and the function A (u)= .y (u)are trivial
generalized Young’s functions. Throughout the remaining of this work
the letter A will denote a nontrivial generalized Young’s function. We
also fix a = sup{u: A(u)=0}.

A Young’s function A, is associated to A by the equality Aq(u) =

J;"A(t)/t dt.

(1.2) Let (X,#,n) be an arbitrary measure space. The set
(X, M, ) of all complex-valued, #-measurable functions defined

w-a.e. on X, such that I A(a|f]) du < for some positive number a is
X
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called a Birnbaum-Orlicz space. Where no confusion seems possible,
we will write ,(X) for L (X, M, ).
The equality

@ paf) = inf{k 61o,w[:fx A(fI/k)dp = 1}

defines a nonnegative finite-valued function on £, (X) which is a norm
in case A is convex. This suggests that we define a norm on £, (X) by
the equality || f|ls = pa(f). With this norm, £, (X) is a Banach space.

If f € 4(G) the following hold:

(i1) "f"A =p.(f)= ZHfIIA >

(i) f A(f|/pa(f) du =1, provided that p,(f)>0.

Denoti;g the Young’s complement of A by A, for f in €,(X) and g
in £;(X) we obtain

(iv) L |fg |dp =2pa(f)pa(g)-

If ©(X) is finite, £, (X) is contained in £,(X) and for f € £,(X) we
have
™ |flh= [4/AY ' A NI £ lla»

where (A)™' denotes the right inverse of A.

(1.3) THEOREM. Let f be a complex-valued measurable function
vanishing outside of a o-finite set. Suppose that

Nt = sup] [ 18 ldu: g € 220X, pa(e) = 1} <.
Then f € ,(X) and we have |f|ls = Na(f).

(1.4) THeorem. Let X be a locally compact Hausdorff
space. Let u be a measure obtained from a nonnegative linear func -
tional on (X)), and let M be the o-algebra of all u-measurable subsets
of X. Then each function f in L,(X) can be written as f,+ f,, where
fi=f & for some o-compact set F, and |f,| = ap,(f) p-a.e.on X. In
particular, if a = 0, then f vanishes w - a.e. outside of a o-con pact set.

2. Birnbaum-Orlicz spaces of functions on
groups. From here on we consider spaces ¥,(G, #,1), where G is a
locally compact group, A is a left Haar measure on G, and # is the

o-algebra of A- measurable subsets of G. We will often write f fdA as
G

L f(x)dx.

Our first theorem follows easily from (20.2) in [4], and the fact that
(G, M, max{1,1/A}r) is complete.
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(2.1) THEOREM. A complex-valued measurable function f belongs
to L,(G)NLYG) if and only if max{l,1/A}f € (G). The equalities
M N =1 1+ 1A/,
and
Q@) I £ [l = [lmax{1,1/A}f[} -
define equivalent norms on the linear space 2,(G) N 2I(G). Precisely,
we have
G I fUIl =lfl=2MfIll for all fE(G)NLHG).
With either of these two norms, ,(G) N LY(G) is a Banach space.

(2.2) THEOREM. Let f be a function in 2,(G) and let s be an
arbitrary element of G. Then the functions .f and f, belong to £,(G)
and we have:

@ paH)=palf);
() pa(f) =max{l,AGs )}p4(f).

Proof. 1t is clear that ,f and f, are A- measurable. Relations (i)
and (ii) trivially become equalities if p,(f) =0. Suppose that p,(f) > 0.

Theorem (20.1.i) in [4], and (1.2.iii) yield the inequality p.(f)=
p4(f), from which (i) easily follows. Using (20.1.ii) in [4], and once
again (1.2.iii) we write

(1) f AL pa(f) dr = AGs™,

which establishes (ii) in case A(s™")=1. For A(s™)>1, use (1) and
(1.1.0).

The following result is part of (20.7) in the Russian edition of
Hewitt and Ross ‘“Abstract Harmonic Analysis”, to be published.

(2.3) LEMMA. Let f be a A-measurable function on G. The
following functions are A X A-measurable on G X G:

x,y)=>f(xy™, (xy)=>f(y'x), (xy)—=f(x),
(x,y)=f(x™), x,y)—=>f(y), (x,y)=>f(y™).

(2.4) THeOREM Let f be a function in ,(G) vanishing outside of
a o-compact set F and let g be a function in £,(G). The integral

0 g*fr)= f F'0)g(y)dy

exists and is finite for almost all x in G. The function g*fis in L,(G)
and we have
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() flg*flla =41flallglh
If g € (G)NLYN(G), the integral

Gi) fre()=[ MGy g ()dy
exists and is finite for A-almost all x in G. The function f*g is in
24(G) and we have

(v) [If*glla=4lfllalgll

where ||-| is as in (2.1.0).

Proof. We may suppose that g vanishes outside of a o- compact
set E. Thus the function (x,y)— f(y 'x)g (y) vanishes outside of the
o- compact set (EF)XE.

Let v be an arbitrary function in z(G). From (2.3) we know that
the mapping (x,y)— v(x)f(y 'x)g(y) is A X A- measurable. Plainly
this function vanishes outside of (EF) X E.

Recalling (1.2.iv) and (2.2.i), we obtain

L f lo(X)f(y'x)g (y)| dxdy
(1)
=2p.(f)pz (W) |glh-

Thus we may apply (13.10) of [4] to conclude that

fflv(x)f(y"x)g(y)ldydx
G JG

@ = [ | 1oeoro gl dsay.
G G

From (13.10) and (13.8) in [4], we see that the integral
f v(x)f(y~'x)g(y)dy exists and is finite for A- almost all x in G, and
G
that

3) x = 0(x) f F g (y)dy.

is a function in &,(G); in particular it is a A- measurable function.
We define g * f(x) by the equality (i), provided the integral exists,
and put g * f(x) = 0, otherwise. It is easy to see that g *f(x) is finite
A-a.e. on G.
In (3) we may take v to be any function in €x(G). Recalling
(11.42) in [4], we see that g *f is A- measurable.
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Consider v in ;(G) with pz(v)=1. Taking account of (1) and
(2), we obtain

§G oG *Hx)|dx = f f lo(x)f(yx)g (y)| dydx

= [ [ Tero-g )l dxdy =20, lg
This implies that

@) Ni(g=H=2p.(Hllg|-

Now we observe that g * f(x) = 0 for x outside of the o- compact
set EF. Thus from (4) and (1.3), we conclude that g *f € €,(G) and
that ||g *flla =2pa(f) g |- Applying (1.2.ii) to this last inequality, we
obtain (ii).

Next suppose that g € £,(G) N LY(G). Consider the function

) (x,y)—= v(x)f(xy g (y)A(y™),

where v is an arbitrary function in 24(G). Asin the previous case, we
see that the function (5) is A X A- measurable and vanishes outside of
the o- compact set (FE)X E. From (1.2.iv) and (2.2.ii) we obtain

L [v(x)f(xy™")|dx =2max{1,A(y)}p4(f)pa(v).

Thus we have

L L lv(x)f(xy g (»)A(y™") | dxdy

<20, (Dps(@) | max {1, A0~ g )] dy

=2pa(f)pa(v)|max{1,1/A}g ||

=2p.(Hpa()llg |,

the last inequality being a consequence of (2.1.ii) and (2.1.iii).
From this point on the proof is completely analogous to that
presented above for g *f and we omit it.
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Theorem (2.4) serves as a lemma for the following general result.

(2.5) THeoreM. Suppose that f € 2,(G) and g € X(G). Then
the integral

O g+ =[ v xgdy
exists and is finite for A-almost all x in G. The function g *f is in
,(G) and we have

Gi) [lg*flla =klfllallgl,

where k =4 if a =0 or if G is o-compact, and k = 6 otherwise.
If g € {(G) N LY(G), the integral

i) frg()= f Ay g (y)dy

exists and is finite for A-almost all x in G. The functionf *gisin L,(G)
and we have

(V) f«gla=klifllllel,

where k is as above and ||| is as in (2.1.i).

Proof. If G is o- compact, the assertion follows immediately from
2.4). If a =0, it follows from (1.4) and (2.4). Thus we may suppose
that a >0 and that G fails to be o- compact.

Using (1.4), we may write f=f,+f,, where f,=f& for some
o-compact set F, and |f,| = ap.(f). It follows that

(1) | 150080 dy = apahlig

for all x in G, and hence that g = f,(x) exists and is finite for all x in
G. A short computation, in which we use (1), gives us

g*f(x)||g *folls =pa(g *f)=a'|g *fol-=2|fla g -

Applying (2.4.i) to f,, we conclude that

| o msmdy + [ fmeay

exists and is finite for A- almost all x in G. Hence the same is true of

g *f(x).
Inequality (ii) follows from (2) and (2.4.ii) applied to f,. The
remaining assertions are similarly established.

(2.6) THEOREM. The space £,(G) N {¥(G) is a Banach algebra.
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Proof. For f and g in £,(G) N LT(G) we obtain

1 ((1/4)g) * (1/8)f) = (1/A)(g *f).

Thus (2.1) and (2.5.i) tell us that g * f € £,(G) N LY(G). We use (1) to
prove that £,(G)NLI(G), with the norm | -|| defined in (2.1.0), is a
normed algebra:

lg £l = llglllfl+ /el /Al = g II£]-

(2.7) THEOREM. The space 2,(G) is a left Banach L,-module
and a right Banach (£, N Y)-module.

Proof. For g in £,(G) and f in ,(G), (2.5.ii) tells us that there is a
positive number k such that ||g *flls =k ||f|l |lg |-

Next we show that, for f as above, and g, and g, in £,(G), we have
g1*(g.*f)=(g1*g,)*f. Using (20.1) of [4], we obtain the equality

fa f7y'x) g, (v)dv = L f(v7'x)g.(y 'v)dv,

which implies that

(1) g1% (g2 % f)(x) = f f F(ox)g:(y "0)g:(y)dody.

By (2.5.i), g, *(g.* f) is in ,(G), and hence the integral in (1) exists
and is finite A- almost everywhere in G. From (1.4) we know that g,
and g, vanish outside of o- compact sets E, and E,, respectively. Thus
the function (v,y)— f(v™'x)g,(y 'v)g,(y) vanishes outside of the o-
compact set (E,E,) X E;. By (2.3) this function is A X A - measurable.

We apply (13.10) in [4] to conclude that for A - almost all x in G we
have

gl*(gz*f)(X)=f f f(v™'x)gAy 'v)gi(y)dydv
G G
- f F(o%)(g1* g)(0)db = (2% 82) * f(x).

It is now clear that £,(G) is a left Banach &,- module. The proof
that €, (G) is a right Banach (£, N L ¥)-module is similar and we omit it.

3. Closed ideals in 2,(G) for G a compact
group. Throughout this section we suppose that G is compact and that
AG)=1.
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(3.1) THeoreM. If f and g are in ,(G) the equality g *f(x) =
f f(y~'x)g(y)dy defines a function in 2,(G). We have
0) lig *flla = Q6/(AY'ANIIf [la llg la-

Proof. Follows from (2.5.i), (1.2.v) and (2.5.ii).

(3.2) THEOREM. The Birnbaum-Orlicz space24(G) is a Banach
algebra under a norm which is a positive constant times |- ||s.

Proof. Define n,(f) = (16/(A)'(1))||f|l. and use (3.1).

(3.3) THEOREM. Suppose that A satisfies the A,-condition for
UZuy=0. Then the space T(G) of trigonometric polynomials on G is
|- |l<-dense in L,(G).

Proof. Our hypothesis imply that G(G) is |:|la- dense in
2,(G): see [3] or [8]. Theorem (27.39.ii) of [S] tells us that £(G) is
uniformly dense in €(G), and it is easy to see that T(G) is also
| la- dense in &(G).

(3.4) THEOREM. Let A be asin (3.3). Suppose that S is a closed
linear subspace of L,(G). Then S is a left [right] ideal in L,(g) if and
only if S is closed under the formation of left [right] translates.

Proof. Since G is unimodular, it follows from (2.1) and (2.7) that
L4(G) is a Banach £, - module with respect to convolution. From (3.2)
we know that £, (G) is a subalgebra of £,(G) which is a Banach algebra
with the norm n,. Taking (3.3) into account, we see that L, (G) has the
‘properties stated in (38.6.a) in [5]. Thus the theorem follows im-
mediately from (38.22.b) of [5].

(3.5) THEOREM. Let A beasin (3.3). Then the class of all closed
two-sided ideals in 8,(G) is exactly the family {(4): P CZ}. Distinct
subsets of X engender distinct ideals.

Proofs. This is a direct application of (38.7) in [5].
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