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PLESSNER'S THEOREM FOR RIESZ
CONJUGATES

G. E. PETERSON AND G. V. WELLAND

Plessner's theorem states that if a trigonometric series
converges everywhere in a set E of positive measure, then its
conjugate series converges almost everywhere in E. Recently,
Ash and Gluck have shown that this theorem is false in two
dimensions by exhibiting a Fourier series of an V function which
converges almost everywhere, but each of its conjugates is
divergent almost everywhere. We show that if instead of the
usual conjugates in two dimensions, one uses Riesz conjugates,
then Plessner's theorem remains true provided the conjugates
are required only to be restrictedly convergent almost
everywhere in E. The techniques used to obtain this result are
similar to those used in the one-dimensional case and involve the
notions of stable convergence, nontangential convergence, the
theory of Riesz conjugates as developed by E. M. Stein and G.
Weiss, and a Tauberian theorem for Abel summability.

1. Introduction. In [1], J. M. Ash and L. Gluck presented
some results for Fourier series in several variables. They proved in
dimension 2 that each of the conjugate series of a Fourier series of a
function in Lp(p > 1) converges almost everywhere in the set where the
Fourier series converges. In the case p = 1, however, they exhibited a
function whose Fourier series converges almost everywhere such that
each of its conjugates is also a Fourier series of an V function, but is
square divergent almost everywhere. Furthermore, in dimension 3 or
greater, they found a continuous function whose Fourier series con-
verges almost everywhere such that each of its conjugates is also a
Fourier series of a continuous function, but is restrictedly divergent
almost everywhere.

On a philosophical level, this distressing state of affairs can be
explained by the fact that the "singularity" of each conjugate transfor-
mation they use, thought of as a "singular integral operator", has
changed from a point to a pair of lines as the dimension of the space was
increased from 1 to 2. This can be altered by using instead of the
ordinary conjugate series, the Riesz conjugates. This is done also to
take advantage of the theory of conjugate transformations developed by
Stein and Weiss in [3] or [4] and [5]. By doing this, we are able to retain
Plessner's theorem in its original form except that the conjugates will be
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required only to converge restrictedly almost everywhere in the set
where the original series converges.

The arguments will be presented in two dimensions. However,
similar arguments should obtain for higher dimensional spaces.

2. Definitions and statement of the main theorem.
Bold face letters such as N will represent two-dimensional vectors with
coordinates Nλ and N2. However, we will not use bold face letters for
variables x, t in the torus. The norm ||N|| is (N] + Nl)m. The notation
N > M means NΊ > M and N2 > M, whereas N > k means that JV, > kx

and N2 > k2. For each vector N of integers, let SN be a scalar. Then,
we speak of {5N} as a sequence. By SN-> S as N—>o°, we will mean
that for every e > 0 there exists M such that N > M implies 15N - S \ < e
(this is unrestricted rectangular convergence and in this case we speak
of convergence without qualifiers). We will say that SS-*S as N->o°
restrictedly if for every δ > 0 and e > 0 there exists Λf such that N > M
and δ - 1 < NJN2 < δ imply 15N - S | < β. To say that SN is restrictedly
bounded means that for every δ > 0 there exists H such that δ~ !<
NJN2<δ implies |S N |<ίf . The notation SN = o(ΛN) will mean that
SJΛN is bounded and —»0 as N—>oo. Finally Σζ=0 means ΣΓ,=0ΣΓ2=0.

Let

+ ckcos/c,x, sink2x2 + dksinkιxι sin/c2x2),

Γk = (cos fc,x, cos /C2JC2, sin /c,Jd cos /C2JC2,

cos k2x2 sin k2x2, sin k}x} sin fc2jc2)

and Vk = (ak, bk, ck, dk), then we can write t = Σ(Vk, Γk) =
where ( ?) is the standard euclidean inner product in 4 dimensional
space, E4.

Let
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and M3 = MXM2. By using M, and M2 as transformations on E4 we can
define the Riesz conjugate series

ι \ ~ 2LJ l i tII \ m \ v k ' *k) — ZJ l i tII &k\χ)
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and

*2 = Σ j jt | (M2 Vk, Tk) - Σ jjljj Ck(x).

We will also use the double conjugate series

In these definitions and elsewhere, 0/0 is interpreted as 0. The essen-
tial difference in these definitions and those used by Ash and Gluck is
that the factors kj\\k ||, kj\\k || and fc,/c2/||k||2 do not appear in the
definitions of conjugates they use.

THEOREM 1. Suppose ΣΛk(x) converges in a set E of positive
measure. Then

ir \ζ \r ίr

each converge restrictedly almost everywhere in E.

3. LEMMAS. Let SN(JC) = Σk^Ak(x), then straight forward calcu-
lations show that

(2.1) SN(xι + tι,x2) = Σ (Ak(x)cos fc,ί, + Bk(x) sinkxtx),

(2.2) SN(JCI, x2 + t2) = Σ (Ak(x) cos k2t2 + Ck(x) sin k2t2),

(2.3) 5N(JC, + tl9 x2 + h) = 2) (Ak(jc) cos fc,ί, cos fc2ί

•f J5k(x) sin kλtx cos /c2r2 -f Ck(x) cos kxtx sin /c2ί2

+ Dk(jc) sin k{tλ sin /c2ί2).

The sequence {5N(JC)} is said to converge stably to 5 at x° as N—>°o
(unrestrictedly) if for each sequence tN = (tNι,tN2) for which tNi =

We need the following lemmas for which the proofs follow in much
the same way as those in [7, vol. 2, pp. 216-219]. In these lemmas it is
to be understood that convergence or stable convergence of double
series also means that the partial sums are bounded.



310 G. E. PETERSON AND G. V. WELLAND

LEMMA 1. A necessary and sufficient condition for
Σ ancos n{xx cos n2x2 or ΣαncosrtiJCi or Σancosn2x2 to converge stably
to s at x = 0 is that Σ an converges to s.

LEMMA 2. (i) A necessary and sufficient condition for
Σbnsinnιxι or Σbnsinnιxιcosn2x2 to converge stably to zero atx = 0 is
that

f Σ Σ v,κ = o{\).

(ii) A necessary and sufficient condition for Σcnsinn2x2 or
ΣCnCOsn,*! sinn2x2 to converge stably to zero at x = 0 is that

— Σ Σ p2cv = o(i).

LEMMA 3. A necessary and sufficient condition that
Σdnsinn,x, sinn2jc2 converge stably to zero at x = 0 is that

n, n 2

rτr Σ Σ

LEMMA 4. The series ΣAk(x) is stably convergent at x° to the sum
s if and only if

(i) ΣAk(xo) converges to s,
(ii)
(iii)
(iv)

Proof Suppose ΣAk(x) converges stably at x° to s. Then (2.1),
(2.2) and (2.3) (with JC = JC°) each converge stably to s at t = 0. Part (i)
is obvious. Since ΣΛk(jc°) converges, Lemma 1 implies that
ΣΛk(x°)cos/c,ί, is stably convergent at t=0 and by (2.1),
ΣJBfcCOsin/ci/, is stably convergent to 0 at t - 0 and Lemma 2 gives
(ii). Similarly we obtain (iii). Using these results and similar reason-
ing applied to (2.3) gives (iv). The converse follows easily.

LEMMA 5. // Σ Ak(x) converges stably at x° to the sum s, then the
harmonic function ΣAk(x)rH tends to s as (JC, r) tends to (x°, 1)
nontangentially that is, with \\x - x°\\^= C(l - r) asx ->x° andr-* 1.

LEMMA 6. // Σ Ak{x) converges for x E E, where E is of positive
measure, then it converges stably at almost all points of E.
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The final two lemmas come from different sources.

LEMMA 7. [2, Theorem 2.1 and Lemma 2.3] Suppose ΣAk(x)
converges (no hypothesis on the nature of the partial sums) in a set E,
I E\ > 0. Then, for almost all points x E E, all the partial sums of
ΣAk(Jc) are bounded. Furthermore, the coefficients of ΣAk(jt) are
bounded.

LEMMA 8. If t(x, r) = ΣAk(x)rm converges nontangentially in a
set £, I £ I > 0 then

and

converge nontangentially for almost every point in the set E.

The proof is achieved by appealing to the following theorem which
we list as a lemma.

LEMMA 8'. [3, page 213] Let W(JC, y) be a function which is defined
and harmonic on EJ = {(JC, y)\x GE2, y >0}. Let ux and u2 be the
conjugate harmonic functions associated with u (see [3] for
definitions). Assume u converges nontangentially ((JC, y)—>(JC°, 0) with
||JC - JC°||< Cy) in a set E, \E\ > 0 . Then ux andu2 converge nontangen-
tially almost everywhere in the set E.

In order to see how Lemma 8 follows from this, we first point out
that after a simple change of variable, we may think of ΣΛk(x) as a
distribution on T2 = [0, 1) x [0, 1), since by the hypothesis of our
theorem and Lemma 7 the coefficients of Σ Ak(x) are bounded. Extend
Σ Ak(x) periodically so that it is defined on E2. In this case, we will also
denote the resulting distribution by t(x). Since we now have a
tempered distribution on E2, we will be able to "convolve" it with the
Poisson kernel for the upper half-plane EJ. In general, suppose that φ
is a rapidly decreasing function and that Λ is the 2-dimensional lattice
plane. Define Φ( ) = ΣmGΛ<p( + m). In this case, Φ is an infinitely
differentiate function which is periodic on E2 and hence defined on
T2. We then obtain (t * φ)(x) = ΣΦ(m)Λm(jc) where the Φ(m) are the
Fourier coefficients of Φ expressed in the real form. In particular, if
Pv( ) is the Poissson kernel for the half-plane E} and Fr( ) is the
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Poisson kernel for the torus T2, we have Pr( ) = Σ m e Λ P y ( + m) [see 6,
page 255] and (t *Py)(x) = ΣmeΛPr(m) Am(x). The following identifica-
tion between r and y is necessary for the above formulas, r =
e~2iry. With these preliminaries one can see that t *P y is a periodic
function on E2 which as a function of (JC, y) is a harmonic function on
E3. With the additional remark that Pr(m) = r w ι we see that nontangen-
tial limits for t *Py(Jc) and Σ Ak(x)rM for x ET 2 are the same.

Again for φ a rapidly decreasing function and with the Fourier
transform defined in the appropriate normalization, the Fourier coeffi-
cients Φ(m) = φ (m) where these are understood now in complex form.
It then follows with u = t * Py that the conjugate functions ux and u2 are
ί * Py,i and t * Py,2 with

r y , Λ s / - II tII *y a n α ry>2

Expressing these results in series form and writing the coefficients in
real form gives iι1(x) = Σ(fe1/||k||)Bk(jc)rINI and

The nontangential convergence of these series now follows directly
from Lemma 8'. By repeating an application of this lemma we get that
Σ(fc,/c2/||k||2)DkOc)rl|k|1 also converges nontangentially almost everywhere
in E.

4. The Tauberian theorem. Before we can prove
Theorem 1, we must have available a Tauberian theorem for Abel
summability so that results about nontangential convergence can be
translated to results about restricted convergence. This is the purpose
of Theorem 2. We need a preliminary lemma.

LEMMA 9. Suppose A& is a scalar for each two vectors of
nonnegative integers n and k. //

00

(4.1) 2 l^nkl^O as n-»oo restrictedly for each fc3_,(/ = 1,2),
kι=0

and

(4.2) 2 |Λnk| is restrictedly bounded,
k=0

then σn = Σk=oAnkek-»O as n-*°° restrictedly whenever ek = o(l).

Proof Choose δ > 0 and suppose during the rest of this proof that
δ"1 < AT, IN2 < δ. Suppose ek = o(l). By (4.2) Σ | A*! is bounded, say
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by H, and since ek is bounded, σn exists for each n. Choose € >
0. Since ek->0 we may choose an M such that k > M implies
\ek\<el2H. By (4.1) we can choose M' such that N > M ' implies
ΣN.SMorjv2s3#|ANk€kI < β / 2 . If N > Λ Γ , then

k=M +

THEOREM 2. Suppose

(4.3) lim 2
k=0

(4.4) e N Ξ i π φ ί r Σ ||k||'flfc = o(l), i = l or i = 2,

then SN = Σ k = 0 ak-> S as N—»°° restrictedly.

Proof. We will first prove the theorem in the case / = 1. Let
r = 1 - 1/Ni and consider

N oo oo

k=0 k=0 k=0

where £N k = 0 if k = 0, BNk = (1 - rIN)/||k|| if O ^ k ^ N , M O , and
#Nk= -r l | k | l/||k|| otherwise. The proof will be completed by showing
that AN-^0 as N->oo restrictedly. Using summation by parts we
obtain (with ίk = ||k||€k)

[ J-l Jι~l

2J tkΔ
u J5N k-f 2J tkιj2Δ

10BN.kιj2

V oi 1
k2=0 J

= lim [C\ 4- C2 + C3 + C4].

However, lim.,^ C4 = lim^oc ( - e3 r
m) = 0 by (4.4). Furthermore,
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whereD is independent of J. Therefore, sincefc, + /2^λ/2||(fci, J 2)| |,

kι=O

^Dp'-Σ \eklΛ\pk

where p = r1/V2. Since ekuJ2 is assumed bounded, it follows that
limj-̂ c C2 = 0. Similarly, lim.,^ C3 = 0. This leaves

k=0

and we may complete the proof by showing that ||k||Δ11
 J3NW satisfies

conditions (4.1) and (4.2) of Lemma 9.
We will first obtain bounds on Δπ BNk. If k < N(k / 0), then

I Γfc, + 1 Γk2+\ Λ2 Γ

I Δ " B - ' - I 1 L i^l

y \ y

whenever r>\.
If kx>N{ or k2> N29 then using integration by parts we obtain

|Δ"B« |= | Γ ' ίk2+l Γ
I J * , J * 2 Jo

= II II rf*i

] r ] rIM rIM

- l o g 2 7 W
] r ] rIM rI

2 + 3 1 o g + 3
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A short calculation shows that if kλ = Nί9 k2 < N2 or if kλ < Nl9 k2 = N2,
then

Finally, if k = N, it is easily seen that

Combining these estimates, we find that

k N k
Σl||l| §
k=0 k=0

Σ 2 Σ^ 4(1 - r)3 Σ likjl + 2(1 - r)
k=0

Λ Γ , - 1

Γ l ΰ g 2 i , 3 1 o g r , 3 π i i «• i

L1 O g r min(N,, N 2 ) + (min(JV1? N 2 ) ) 2 J L1 - r + j I"*" 21og2 r J

and if δ ' ̂  NJN2 ^ δ, then this is easily seen to be bounded. Thus
condition (4.2) of Lemma 9 is satisfied. In a similar, but easier,
manner, one can also show that condition (4.1) of Lemma 9 is
satisfied. The proof of Theorem 2 in case / = 1 is, therefore, complete.

The proof is similar in case i = 2. Only the changes will be
noted. The 2?,* will be defined as in the previous case except that the
denominator will be ||k||2 instead of ||k||. In showing that lim/^ocC2 = 0
it is necessary to estimate

Λ Ic -4~ί J \Ur I ill
I *i * /i pn\*'J2'n

( 4 5 ) TΓΓ »/,. Fxii2 dx
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instead of the similar term of the previous case. Carrying out the
differentiation and proceeding as before we find that (4.5) is majorized
by

h)\\2

and the rest of the proof of this part of the theorem proceeds as
before. In obtaining bounds on Δ11 Bnk, note first that if k<N(k^0),
then

, Jk2 dxi

dx,dx2

Carrying out the indicated differentiations and using estimates as
before, we find that

I Λ Π D | ^ r ( l r ) 2 ( 1 )

If kx > Ni or k2 > N2, then we have

I Γ*,+ I Γk2+[ Γr 1 fy

| Δ " β n k | = I I
I Jki Jk2 Jo y Jo

\ dX2

and we may proceed through several integrations by parts and some
simple estimates to obtain

1 r N i rIMI r N
A ' I tj I * ^ * 1 s*%g*γ£ I ^1 A/γ 1 V

\ Lλ ±Jnk \ = l O g i i . | |Λ ~T J i U g i t . i n i O
I "•» I C7 y, || 1^. ||Z C7 j . || | ^ |p

Ξ P(r, k).

In case /cj = Nu k2 < N2 or kx < Nu k2 = N2 we find

1 nk|s= ( ' } I M P '
and if k = N, then

|Δ"J5*|^P(r,k)+ ί

Multiplying these estimates by ||k||2, summing and proceeding as before
will complete the proof for the case i = 2.

5. Proof of Theorem 1. Suppose Σ Ak(x) converges in a set
E with positive measure. By Lemma 7 the partial sums of ΣΛK(JC) are
bounded almost everywhere in E. By Lemma 6, ΣAk(x) converges
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stably at almost all points of E. By Lemma 5, ΣAk(y)r l w tends to
ΣAk(x) as (y, r) tends to (JC, 1) nontangentially almost everywhere in
E. By Lemma 8,

V AL Ώ rrϊrl |k|1 V -^- Γ (xΛr^ and V ^2J IItil &*yχ)r » ZJ IIKii ^ k W r ana ^
llκll llκll

each converge as r—» 1~ almost everywhere in E* Furthermore, the
Tauberian conditions

2 lc,JBk(jc) = o(||N||), 2 ^Ck(jc) = o
k0 k0
2 lc,JBk(jc) = o(||N||), 2
k=0 k=0

and

Σ
k=0

follow from Lemma 4. Thus Theorem 2 is applicable and yields
Σ k,/1| k || Bk(x) and Σ kj || k || Ck(x) converge restrictedly almost
everywhere in E by the use of case / = 1, and that Σ/c1/c2/||k||2Dk(Λ:)
converges restrictedly almost everywhere in E follows from an applica-
tion of Theorem 2 in the case / = 2.
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