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SOME PROPERTIES OF THE NASH
BLOWING-UP

A. NOBILE

Intuitively, in the Nash blowing-up process each singular
point of an algebraic (or analytic) variety is replaced by the
limiting positions of tangent spaces (at non-singular
points). The following properties of this process are shown: 1)
It is, locally, a monoidal transform; 2) in characteristic zero, the
process is trivial if and only if the variety is non-
singular. Examples show that this is not true in characteristic
p > 0 ; that, in general, the transform of a hypersurface is not
locally a hypersurface; and that this process does not give, in
general, minimal resolutions.

Introduction. In this paper, the term algebraic variety (over a
field k) means reduced, separated algebraic scheme over k; the term
analytic variety means reduced, separated analytic space over C, the
complex numbers. Let k be an algebraically closed field (resp. k = C),
X a reduced closed subscheme of a Zariski open UCAn (resp. a
reduced closed complex subspace of an open U C C ) of pure dimension
r, defined by {/„ ,/m}CΓ(17, ϋυ). By the Nash blowing-up of X we
mean the pair (X*, p) obtained by the following process. Let S(X) be
the set of singular points of X, Xo its complement in X, η: Xo—•X x Gn

r

(Gn

r is the grassmanian of r-planes in n-space) the morphism deter-
mined by TJ(JC) = Qc, TXjc) for each closed point x E Xo (here TXx is the
tangent space of X at JC, which can be identified with an r-plane in
n-space), X* the closure of η(X0) in X x Gn

r (resp. the closure in the
metric topology), p: X*->X induced by the first projection. In the
complex case it is not obvious that X* is an analytic variety; see [7],
Theorem 16.4 for a proof (or see Theorem 1 of this note).

It is possible to prove that (X*, p) is (up to unique X-isomorphism)
independent of the immersion (as a locally closed subset) of X in an
affine space, hence the process globalizes.

Sketch of proof. Working (to simplify) in the algebraic case with
closed points only, and calling Gr{T) = {r-linear planes in Γ} for any
vector space Γ, one verifies that Z = U x e x jc x Gr(TXx) is a subvariety of
X x Gn

n and X* is contained in Z. If X' is a locally closed in A"1', we
have (using notations as above, but with primes): X '*CX'x
Gm

r. Assume q: X—>ΛΓ' is an isomorphism. Then,
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298 A. NOBILE

for (x, L)E Z, defines an isomorphism Z ^Zf. This clearly induces an
isomorphism X*—»X'*, commuting with the projections.

A natural question, which apparently has not been seriously
studied, is to determine the desingularization properties of this
process. In this note we present some very basic results in this
direction: (a) in characteristic zero, p: X* —> X is an isomorphism if and
only if X is nonsingular, (b) in positive characteristic, (a) is false. We
also verify (which allows to show (b) in a very clear way) that, locally, a
Nash blowing-up is a monoidal transform, with center a suitable
ideal. The proof of (a) presented here is analytic, and uses results of J.
Stutz on branched coverings (cf. [4] and [5]). It would be interesting to
have an algebraic proof which probably would throw more light on the
main question: if, in characteristic zero, this process desingularizes (cf.
Remark 3).

We finish with some examples, which indicate other features of the
process (see §3).

1. Monoidal transforms. In this section k is, in the alge-
braic case, an algebraically closed field; in the analytic case k = C. Our
arguments hold in either case.

Recall that given a reduced subscheme X of A? (resp. a reduced
subspace X of an open U in C") and {g0, * ,g*}CΓ(X, 0x), the
monoidal transform of X with center / = (gθ9 •••,&) can be constructed
by taking the closure (in X x P ) of φ(Y), where Y = X\V(I)
(V(/) = locus of /) and φ:Y-*XxPs is defined by φ(x) =
(x, (go(x), - -,&(*))) e X x P\ for any closed point x (see [1], Remark
2).

REMARK 1. We shall use the following notations:

(1) We have two closed embeddings of Gn

r in PN, N = M - 1:

(i) the map Λ, which sends the point corresponding to the r-plane
L, of parametric equations JC, =Σr

d=ί bdtd, i = 1, , n, to the point of PN

of homogeneous coordinates (ΔlV..ir), 1 ̂  iΊ < < ir ^ n, where Δiv..ir is
the r x r subdeterminant of \\bd || formed by the columns /,, , ίΓ.

(ii) the map ψ, which sends the point corresponding to the r-plane
L, defined by the equations Σ"=1 a jjtjf = 0, / = 1, , n - r, to the point of
PN of homogeneous coordinates (Δh...jn_r), where Δjr..jn_r is the (n - r)x
(n - r) subdeterminant of \\a) || defined by the columns /,, ,/n_Γ. In
the terminology of [2], Ch. VII, Λ corresponds to the use of Grassman
coordinates and ψ to the dual Grassman coordinates; cf. Theorem I, p.
294 of [2] for their relations.
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(2) Let X, η be as in the introduction. We shall write

ψo = (idx ψ)η: Xo-*X x?N

Clearly, there are natural isomorphisms:

where cl denotes closure in the corresponding ambient space.
(3) Given integers n g r > 0 , m έ « - r, and an (m x n)-matrix

||flf/|| = A, let 5 (resp. S') denote the set of increasing sequences of
(n - r)-positive integers less than m + 1 (resp. n + 1); if a =
(/,, , in-r) E S, β = (/,, -Jn-r) £ Sr, then Δaβ is the subdeterminant of
A obtained by considering the rows /,,-••,/„_,. and the columns
J 1? * # ? Jn-r

THEOREM 1. A Nash blowing-up is locally a monoidal tranform
(with center a suitable ideal).

Proof. We may assume X is affine (resp. an analytic set in
U CCn); write X as union of its irreducible components, X-
XiU UXi (in the analytic case, shrink U if necessary). Using the
notations of the introduction, let M = \\dfildXj\\, ί = l, ,ra, / =
1, , n. Clearly, for each i = 1, , d, there is (ah βt) ES x Sf such
that Δβl/3l does not vanish on Xx hence W\ - X\ V(Δαi/3l.) is a nonempty
open of Xh For each i = 1, , d, fix Λf ε Γ(X, 0!γ) such that Λ, = 0 on
Uŷ f-X), fti^ 0 on Xh Consider the ideal / generated by {gβ}, β G 5',
where gβ = Σf=1/ι( Δαî . We claim that the monoidal transform with
center / agrees with the Nash blowing-up of X.

In fact, first note that V(I) D S(X). Call W = X\ V(I), then (since
all points in X0\W are non-singular) X*~closure of ψo(W) in
PN. Hence, to show our contention we must check that the maps
W-*PN given by p2ι/'o== Ψι (Pi is the second projection) and by {gβ}
agree. It is enough to check this at an arbitrary z £ Wζ =
(i = 1, , d). But for z G Wi, as points of PN,

(gβW) = ( Σ ΛJ(z)Δβlβ(2)) = (Λ,.(2)Δ^(2)) = (Δαι.,(z)) =

where L is the point of G" corresponding to the r-plane L, defined by
{Σ(dfkι(z)ldXj)Xj =0}, (/c/) = α(, which is the tangent space to X at z
(since Δαiβl^0). As clearly ψ(L') = (/Ί(Z), the assertion is proved.
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REMARK 2. If X (of dimension r) is defined by n - r equations,
then the proof is simpler. In fact, we may take / to be the Jacobian
ideal, formed by the (n-r)x(n-r) minors of ||<?//<?*/1|, i =
1, , n - r, / = 1, , n. In general this is not true, as the example of
two planes in A4, meeting at one point, shows.

In this example also it can be seen that, in general, the support of
the ideal of Theorem 1 is not the singular locus of X.

EXAMPLE 1. Let ch(/c) = 2, consider the plane curve y>2 + x3 =

0. By Remark 1, its Nash blowing-up is the monoidal transform with
center / = (2y, 3x2) = (x2). This is a principal ideal, hence p: X*->X
is an isomorphism.

EXAMPLE 2. If ch(fc) = q >2, the Nash blowing-up of the plane
curve y2-xq = 0 is trivial. The verification is as in Example 1.

2. Proof of the main theorem.

THEOREM 2. Let k be an algebraically closed field of characteristic
zero (resp. k = C), X a pure r-dimensional algebraic (resp. analytic)
variety over k, (X*,p) the Nash blowing-up of X. Then, p is an
isomorphism if and only if X is nonsingular.

Proof. By descent theory we may assume, in the algebraic case,
that k = C. Moreover, it is clear (e.g., from Theorem 1) that (Xh)* =
(X*)h where Xh denotes the analytic variety associated to an algebraic
variety X. Hence, it suffices to prove the theorem in the analytic case.

One implication is obvious. Let us show that if X has singularities
the morphism p is not an isomorphism. Let 5 = S(X) be the singular
set of X We distinguish two cases.

Case a. S has a component of codimension 1.

Let W be a component of codimension 1. We claim that there is a
point jco £ W, such that X can be embedded, locally about x0, in a
polydisk U CCn, in such a way that (with JC,, , xn coordinates in Cn,
and writing, to simplify, X C [/, W C [/, etc.):

(i) JCo corresponds to the origin
(ii) W is defined by xr = = xn - 0.
(iii) Let Xί9 -,Xm be the irreducible components of X. Then,

there are analytic functions /i/(JCi, ,JCΓ), defined on

D = {x e σ i i x i , ,* r,o, ,0)e i/}
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such that

defines a homeomorphism D -> Xh j = 1, , ra.
(iv) The integer s, of (iii) is the multiplicity of X, at any x EW,

and

Λ = Σ af{xu
k=s}

yxr-{)xkr.

This is a consequence of the following results. Let WQ =
{x G W: S is nonsingular at x, dim C4(X, x) = r, dim C5(X,x) = r +
1}. Hence, C (X, JC), i = 4,5, are the indicated Whitney tangent cones
to X at x (see [6], §3 for the definitions). In [4], Proposition 3.6, it is
proved that Wo is a dense open set in W. Propositions 2.5 of [5] and
4.2, 4.6 of [4] imply that for any x0 G Wo, there is a local embedding of
the type described above.

From now on, we shall assume that X is contained in such an open
U CCn. (The result that we are proving is clearly local on X)

Note that now, keeping the notations of Remark 1, the map
Λo: Xo—»XxPN can be described as follows: calling φiS =JC( , 1^/g
r - 1, φή =xp, φΓ+fcJ = /r+feJ, k = 1, , n - r, then, for j = 1, , m:

X x PN,

and Δ^, , ir is the subdeterminant of
, r formed of the rows /,, , fr. Note

where 0 < IΊ < i2 < - - < ir =
\\dφijldxk | |, i = 1, , n, /c = 1,

that Δ?i..,r=s/x?"1-
We may assume p: X* -> X to be bijective (otherwise, the theorem

is trivial). Then, if A = {x E PN/zi,...,Γ-^ 0}, by using condition (iv) of the
parametrization we see that cl(Λ0(X0)) C t/ x A. Let us identify, by
using idxΛ, the varieties X* and cl(Λ0(X0)). Then, the irreducible
components X* of X* CU xA are parametrized by:

(*)

m. By conditionl ^ i i < < i Γ g n (except (1,2, ,r)), / = l,
(iv), (syjcΓ1)"1^, ,ίr are analytic functions.

Now there are two possibilities: (1) A component of X is singular at
JC0; (2) All components of X are nonsingular at JCO

To show that p is not an isomorphism, it clearly suffices to show
that if X(q) is the qth iterated blowing-up of X (i.e., X(0) = X, X(1) =
X*, ,X(q) = (X*"1)*)* then the induced canonical morphism
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pq: Xiq)-+X is not an isomorphism. We shall see that in either
situation (1) or (2) above, this is the case.

Consider (1) first; let X} (j = 1, ,M ^ m) be the components of X
which are singular at JC0. After changing coordinates (if necessary), we
may assume that we have a parametrization of the components of X
satisfying (i) to (iv), and also:

Jr+IA =

k=d

where αί +Vi^O, and d is not a multiple of s = sλ. Write ( i)
(/,,•• , / r ) , and, for / = 1, ,ra,

O) —

let φ$ = φ{f - b\l{0. Consider X* C U x Λ (we maintain the identifica-
tion of X* with cl Λo(Xo)) After an obvious change of coordinates we
may assume that p~\W) is defined, in U x A, by z{ = 0, i g r, and the
parametrization of Xf = p" !(^ζ ) induced by (*) is:

If for some / = 1, ,M, there is an (i) such that b$[k^0 with k < sh

then the multiplicity of XJ, at some point near x0, is less than s, and
hence p is not an isomorphism. If not, then (*) induces a parametriza-
tion of X*C(ί7Xi4), satisfying (i) to (iv). We can repeat the
process. We claim that after at most μ blowing-ups, with μ = [d/s],
either pμ is not bijective, or the multiplicity s of p~μ\Xx), at some point
near p~μ

ι(x0), drops. In fact, were p0 = p,P\, ' ,pμ bijective, then one
of the entries of the induced parametrization of p ~μ

ι(X\) is of the form

/ x ^ i - C c a . i 1 1 J v i • • • V i l J C

where γ*,μ = s"μ Πί=,/c — (i? - l)s. Since a (

q7
}^0, and (d,s)<n, then

0 < rf - μs < s for μ = [d/s], and hence the multiplicity of such X(jμ), at
some point near p~\x0), is less than s.

Consider the case (2). Since we assume that p is bijective, then
for all x E W9 TXιX = TXμ(9 i = 1, , m. We also may assume, after a
further change of coordinates, that, aside from (i) to (iv), we have: Xm is
the r-plane xr+x = = xr = 0 (i.e., fkm(x):=0, k = r + 1, ,n). As
before, we see that if the iterated blowing-ups

pu:X
{u)->X(u-ι\
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were bijective, then we can obtain a parametrization of the components

of X(q\ such that X(

m

q) = p~ι(Xm) and X\q) = p'\X,) are given, respec-

tively, by (JC,, ,x r,0, ,0) and(X], ,JCΓ, ψ,, -,ψL) (for some integer

L ) where, for some i0,

ψio = 2*1 ( ) <?

{K — q)\

If α(

Γ+Vi = 0 for k < d, and nonzero for k = d, then for q = d - 1, ψh has

the form

Clearly, if a{zu , z n ) ^ 0, then Tx\«\zφ Tx<m«\z, and the next Nash
blowing-up has at least two points lying over z. Hence, p cannot be an
isomorphism.

Case b. 5 has codimension > 1 at each of its points.

The only nontrivial case is the following: assume that for all x ES,
for all {jC/}~> JC, / = 1,2, , JC, nonsingular, such that {TXtXι} converges (in
Gn

r), lim TXΛ is a fixed space Tx (otherwise, p"](jc) has more than one
point). Assume this is the case. Pick any JC0 E S, and embed locally X
in a polydisk U in C" (as before, we just write X C U, Set/ ,
etc.). Then, C4(X, x0) has dimension r. In fact, this cone is the set of
limit poisitions of lines, tangent to nonsingular points of X. By [7]
(Part I, Preliminaries), the function d: G ; x P ' - > R where, for an
r-plane LEGn

r and a line £ E P\ d(L, £) = distance between L and £
(intuitively, the sine of the angle between L and £) is
continuous. From this, it follows that C4(X, JC0) C Txo ~ T, hence
dim C4(X, JCo) = r. Since the inequality dim C4(X, JC0) = r always holds,
we get dim C4(X, JC0) = r. By Proposition 2.6 of [4], this equality implies
that, after shrinking U if necessary, the projection π on T, along a
s(n~r)-plane transversal to T satisfies: B(rr) = {x E X/π ramifies at
x} = 5. Hence, dim B(τr) < n - 1. This inequality implies, by the
statement 1.8 of [4], that (after further shrinking of U, if necessary) all
the irreducible components X, of X are nonsingular, and S(X) =
JB(TΓ) = Uiμj (Xt ΠAj). Thus, there is more than a component at JC0

(since JC0 is a singular point of X), and TXltX0 = T for all /. By changing
coordinates (if necessary), we may assume X, = T, and by the implicit
function theorem we may parametrize simultaneously the components

(Xu ,xΓ, φr+u{x'), - , φnJ(x;)), X' =
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Exactly as in part (2) of case (a), we see that after a finite number of
Nash blowing-ups, the components of X get separated, and hence p
cannot be an isomorphism.

The proof of the theorem is complete.
We have the following corollary, which seems to be well known:

COROLLARY 1. IfCis an algebraic curve, defined over an algebrai-
cally closed field a characteristic zero (resp. an analytic curve), a finite
sequence of Nash blowing-ups desingularizes the curve.

Proof. In general, the Nash blowing-up p: C*-*C is a finite
birrational (resp. bimeromorphic) morphism. Then it is clear that after
a finite number of Nash blowing-ups, we reach the
normalization. Since this is nonsingular, the result follows.

As we saw, this is false in positive characteristic.

REMARK 3. In [7], J. Lipman proves, in a purely algebraic way,
that for an algebraic variety X, the monoidal transform with center the
sheaf of Jacobian ideals is trivial if and only if X is smooth. Since, by
Remark 2, for complete intersections this transform agrees with the
Nash blowing-up, it gives an algebraic proof of Theorem 2 in this case.

3. Some r e m a r k s and examples . In general, the Nash
blowing-up of a hypersurface is not locally a hypersurface, as the
following example shows.

EXAMPLE 3. Let char(fc) = 0. Consider the plane curve X of
parametric equations:

x =t\ y = u ι\

Let p: X * - ^ X b e the Nash blowing-up, x0EX the origin. Then
p~](xo) has only one point JC,, and a neighborhood X, of x, in X* is
naturally contained in A 2 xA'CA 2 xGj, and has a parametrization

(cf. proof of Theorem 2). We claim that the embedding dimension of
X, at JC, is 3. In fact, if emb. dimXIX, = 2, it would follow

for some g(jc, u) E k[[x, u]]. An elementary computation shows that
this is impossible.
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Even if it were true that the Nash blowing-up process desingular-
izes, in general one would not get "minimal" resolutions. Consider this
example:

EXAMPLE 4. Let ch(k)^2. Consider the surface X (in A3) de-
fined by y2 - x2z = 0. It is well known that the normalization X' of this
surface is nonsingular. Moreover, this normalization can be obtained
by applying the monoidal transform with center the z-axis. Thus, one
can get a desingularization π: X'^>X, with π finite. However, the
Nash blowing-up p: X*—>X is not finite, in fact p~\0) is a projective
line. But X* is nonsingular; in fact, using Remark 1, and the fact that
(for any ideal /), the monoidal transforms with center the ideal / and I2

coincide, it is easy to see that the Nash blowing-up of X can be obtained
by composing π: X' —»X and the quadratic transform of X' with center
the point π~ι(0).
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