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A REPRESENTATION THEOREM FOR
ISOMETRIES OF C(X,£)

KA-SING LAU

Let X, Y be compact Hausdorff spaces and let E, F be
Banach spaces such that their duals are strictly convex. We
show that a linear map T: C(X, E)—> C(Y, F) is an isometric
isomorphism if and only if there exists a homeomorphism
φ: Y-+X and a continuous map λ from Y to the set of
isometric isomorphisms from E onto F (with the strong
topology) such that Tf(y) = λ(y)-f(φ(y)) for all y E Y,

1. Suppose £ is a Banach space and X is a compact Hausdorff
space, we use C(X9E) to denote the Banach space of continuous
functions from X into E. In [3], Jerison gave a generalization of the
Banach-Stone theorem, he showed that if X, Y are compact Hausdorff
spaces, £ is a strictly convex space and T: C(X, E)->C(Y, E) is an
isometric isomorphism, then there exists a homeomorphism φ: Y->X,
a continuous map λ from Y into the set of rotations of E (i.e. the set of
isometric isomorphisms from E onto E) under the strong topology such
that for each / G C(X, E), y G Y, we have

Tf(y) = λ(y)-f(φ(y)).

Makai [5] and Sundaresan [6] made same improvements of the
result. In this paper, we will consider the isometric isomorphisms
between C(X,E) and C(Y,F) where £ * , F * are strictly convex
spaces. Let E, F be Banach spaces, we use S(E) to denote the unit
ball of E,dS(E) the set of extreme points of S(E),L(E,F) the set of
bounded linear operators from E into F and I(E, F) the set of isometric
isomorphisms from E into F. We will show

THEOREM. Suppose X, Y are compact Hausdorff spaces and E, F
are Banach spaces with £ * , F * strictly convex. Let

T: C(X,E)-»C(Y,F)

be an isometric isomorphism then there exist a homeomorphism
φ: Y—>X and a continuous map λ: Y-*I(E9F) (with the strong
topology) such that
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(*) Tf(y) = λ(y) f(φ(y)) forallyϊΞYJ(ΞC(X,E).

Conversely, if we are given φ and λ as above, then there exists an
isometric isomorphism T from C(X,E) onto C(Y,F) satisfies (*).

We remark that the theorem will not be true for arbitrary Banach
spaces (c.f. §3).

2. We will begin by showing the converse part of the
theorem. The map T defined by (*) is obviously linear and
continuous. For g £ C ( Y , F ) , define τ: X-+I(F,E) by T(JC) =
(λ(φ\x))yι and let / E C(X,E) be defined by f(x) = τ(x)'g(φ'ι(x))
for all x EX. Then Tf = g and T is onto. To show that T is an
isometry, take any / E C(X, E), then

= sup{||Γ/(y)||:yey}

= sup{||/(φ(y))||:yey}

= sup{||/(jr)||:xeX}

= 11/11.
The proof of the first part is divided into the subsequent lemmas.

LEMMA 1. Let X be a compact Hausdorff space and let E be a
Banach space then the set of extreme points of S(C(X, E)*) is of the
form δx,u where x E X, « e a S ( £ * ) , and

Proof C.f. [4], Theorem 3.2.

Under the assumption of the Theorem, the adjoint map
Γ*: C(Y, F)*-» C(X, £ ) * is also an isometric isomorphism. It sends the
extreme points of S(C(Y,F)*) onto the set of extreme points of
S(C(X,£)*), i.e., for y E Y v G dS(F*)9 T*(δyJ is of the form &,„,
where x E l a n d w E dS(E*).

LEMMA 2. (i) For any y <ΞY,v E F*,T*(δ y t ;) is of the form δxu

where x E X, u E E*.
(ii) Let y G 7 , M " e F * and let T*(δ,tV) = δx,U9 T*(δy,ϋ) = δ, i β;

then x = x.
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(iii) For each fixed y E Y, the map v-+u, F*—>E* where
T*(δytΌ) = δXttt is an isometric isomorphism. Moreover, this map is
weak* continuous.

Proof. Since F * is strictly convex, every point of norm 1 in F * is
an extreme point of S(F*). By the preceding remark, (i) holds for all
points of norm 1. Note also that aδyv = δy> av for all α 6 J ? , s o (i) is true
for all v E F*. To prove (ii), suppose x^x and consider Γ*(δy,Ό+ΰ); by
(i), it is of the form δΛ,u for some w'E F * , x ' E X and

Note that x'j£x,x. Indeed, if X '=JC (or x), then we can choose
/ E C(X, F), zEE such that f(x) = z, U(z)ϊ0, but /(*) = 0, then

Since x' ^ x, Jc, by a similar kind of argument, it is easily shown that
there exists a g E C(X,E) such that

a contradiction. In (iii), it follows from (i), (ii) that the map is well
defined and linear. To show that it is onto, we note that if Γ*(δyi, vt) =
δχ,u» T*(δy2V2) = δXM2,then yi = y2 (for we need only consider (T*)'1 as in
(ii)). For U\ELE*, consider δ,tttl where x E X is such that T*(δyt;) =
δx, u,υ E F* (by (ii), the point x is well defined). Since T* is onto, there
exists ί , J ( ί ,eC(y,F)* such that T*(δ,uVι) = δx,ur By the above re-
mark, y! = y and hence T*(δy, Όί) = δx,M1 and vx is the preimage of ux. To
show that the map is an isometry, we need only observe that for any
v E F* such that | | ι ; | | = l , the point δyυ is an extreme point of
S(C(Y,F)*), hence δx,u = Γ*(δy,0) is an extreme point of S(C(X,E)*)
and ||w||= 1. The last assertion of (iii) follows from the weak* con-
tinuity of T*.

From Lemma 2 (ii), we can define a map φ: Y-+X such that
φ(y) = x. For each yEY, we let λ(y)*: F*^> F * be the map in
Lemma 2 (iii). Since λ(y)* is weak* continuous, it induces a map
λ(y): F - ^ F which is also an isometric isomorphism. Hence we can
define the map A : Y -> /(F, F) with y -> λ (y). For any υ E F*, y E y
and feC(X,E), we have
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Thus
= λ(y) /(φ(y)).

It remains to show

LEMMA 3. The map φ is a homeomorphism.

Proof. That φ is onto follows from the fact T* sends the set of
elements of the form δy, V9y EY,v E F * onto the set of elements of the
form δxux EίX,u EE*. That φ is one-to-one follows from the re-
mark in the proof of the onto part in Lemma 2 (iii). It remains to show
that φ is continuous. (φ~ι will then be continuous since X, Y are
compact Hausdorfϊ spaces). Let {yα} be a net in Y converging to
y. Fix v E F * and let T*(δyβ, „) = δXa, Ua then {δXα, Ua} converges weak* to
T^(8yv) = δxu. We want to show that {xa} converges to x. Let
{Xβ},{uβ} be subnets of {xαK{wα} which converge weak* to Jc, u
respectively. For / in C(X,E),

\8xΛf)-δxAf)\
^ I δx,u (/) - δXβ,Uβ (/) I + I δXβ,Uβ (/) - δx,Uβ (/) I

^ IδXM(/) - δXβ,Uβ(/)I + I uβ(f(xβ)) - uβ(f(x))I

+ I M/(*))-"(/(*)) I •

The right side converges to zero as {JC }̂ and {uβ} converge to x and
ΰ respectively. This shows that x = x. The net {jcα} is in the compact
set X and has only one limit point JC, thus {jcα} converges to JC.

LEMMA 4. The map λ: Y -> J(F, F) w continuous with respect to
the strong topology on /(F, F).

Proof. Let {yα} be a net in Y converging to y0. For each z in E,
we can find an / such that /(JC) = z for all x in X, thus

| |λ(yα)z-λ(y 0)z| | = | |Γ/(yα)-T/(y0)| |.

Since Tf is in C(y, F), the right side converges to 0 as {yα} converges to
y0. This shows that λ is continuous.
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3. We give an example which shows that the theorem is not true if
we do not assume that E*9 F* are strictly convex. Let X be a compact
Hausdorff space and let R2 be the two dimensional linear space with the
maximum norm (||(r, s)\\ = max{|r|, |s |}, r, 5 el?)- It is clear that
C(X, R2) is a Banach lattice with an order unit fe where fe(x) = (1,1) for
all x in X Also the norm satisfies ||/ v g || = ||/|| v \\g || for all /, g in the
positive cone of C(X,R2). By Kakutani's representation theorem of
abstract M spaces [2],C(X, JR2) is isometrically isomorphic to C(Y,R)
for some compact Hausdorff space Y. Thus, the theorem does not
hold.
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