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ENUMERATION OF WEIGHTED p-LINE ARRAYS

MARGARET J. HODEL

Let Fp(n,k;quq2, • •-,qp) = Fp(n,k) be defined by

where the summation is over all p -line arrays of positive integers
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subject to the following conditions:

max{fl,7: 1 ̂  / ̂  > } = min{ΛiJ+i: 1 ̂  i ^ p},

maxK: 1 ̂  i ^ p} ^ j ,

and

αίn =k,

Assuming Πf=i ^ = 1, formulas for Fp(n,k) and two other
enumerants, which are closely related to Fp(n,k), are obtained
in this paper. These three functions generalize enumerants
which Carlitz has determined.

1. Introduction. We consider the enumeration of p-line
arrays of positive integers

(1.1)

satisfying certain conditions. We first require that

(1.2) max{αiy: 1 ̂  / ̂ p}gmin{αIJ+1: l S / ^ p } , l S / S π - 1 ,
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and

(1.3) maxfoy: l ^ i i p j g / , l ^ j ' ^ n .

We indicate further requirements by defining the enumerants we
seek. Let fp(n9k;sl9s29"-9sp) represent the number of arrays (1.1)
subject to the restrictions (1.2), (1.3),

(1.4) Σalί = sh l^i^P,

and

(1.5) ain=k, l^ i '^P,

and let

Fp{n, k ql9 q2, , qp) = Fp(n, k) = Fp

= Σ * fp(n>k sl9 s29 - - , sp)qί1 qϊ qp%

where Σ* is the sum over the p-tuples (s,, s2, * * s *p). (We may view
(sϊ9s2i' "9Sp) as the weight of the array (1.1).) Let
gp(n9k;sι,s2,' , *P) denote the number of arrays (1.1) satisfying (1.2),
(1.3), (1.4) and

(1.6) max{αιπ: l g i S p } = /c,

and let

Gp(n, k ql9 q2, , qp) = Gp(n, k) = Gp

= Σ * Spin, k su s2, , sp)qV qϊ" qs

P

p-

Finally, we use hp(n, k sl9 s29 , sp) to represent the number of arrays
(1.1) subject to conditions (1.2), (1.3), (1.4), (1.6) and

(1.7) ai+ίJ ^aih 1 ̂  / g p - 1, l^j^n,

and we let

Hp(n9k'9ql9q29 --9qp) = Hp(n9k) = Hp

= Σ * M"> k si, s29 - , jp)ήfί« q22 qs

P

p.

The functions F1? G, and Hx coincide, and if qλ = 1, they enumerate
what MacMahon [7, p. 167] called two-element lattice
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permutations. Carlitz and Riordan [6] have studied these functions
and a q-generalization. A related q-generalization, in fact Fγ{n, k qx),
has also been investigated by Carlitz [5]. If p = 2 and q{ = q2=l,
F2, G2 and H2 are the enumerants /, g and h which Carlitz [4] has
explicitly determined.

In this paper we first generalize some identities which Carlitz stated
for /, g and h. Then, by assuming

(1.8)

we are able to use these results and Carlitz's technique for finding /, g
and h to obtain formulas for Fp, Gp and Hp. In general these formulas
are in terms of functions t(n,k) which are defined by

where Φ(JC) is a known function. In some special cases the enumerants
can be expressed in terms of binomial or q -binomial coefficients. For
example, if qx = q2 = q and q2 = 1,

F2(n + 1, k + 1) = -J- Σ (n -j)b2(n,j;q)

and

where

n \(2n+m —
b2(n,k;q)=Σ{k_m)(

Jψ I n \(2n+2j-l\ l(kψ2] ( n \/2n+2A
/ t ί U - 2 / A 2/ Γ h \k-2j-\)\2j + l)q'

We also find that

rr/ i , ix n -k s~y In 4-fc - m - l\ /n + m - l\ mff2(n,fc + l) = Λ . ύf7
n ^ o \ k-m \ m Γ*
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if qxq2 = 1, and

-k
k q

if q{ = q2 = = qP = q and qp = I. In §6 we interpret the formulas
for Fp, Gp and /ίp as partition theorems. It would be of interest to
determine these enumerants without the restriction (1.8).

In a subsequent paper we shall consider

where ip(n,k;sus2, - - -,sp) represents the number of arrays (I. I) satisfy-
ing (1.2), (1.3), (1.4) and (1.7), and having k columns in which

0 i , = a 2 j = ••• = a p j .

Carlitz [3] called such columns coincidences and has proved that

for q{ = q2= = qp = 1.

2. P r e l i m i n a r y r e s u l t s . Generalizing (2.1)-(2.4), (2.7) and
(2.9) of [4], we have

(2.1)

ΓUΓ Σ f Π
ί = 1 J m = 1 L ί = 1 ι = I

where
k-\

•Σ

— lk A
2^ Gp(n,m
1 = 1

A: — 1

iq> / /

(2.2) Fp(n + \,k)=\UqX i
L i = 1 J m =

k

Π Vi Π in 4- 1 £ϊ — V
fπ = 1
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(2.4) Gp(n,k)=Σ fΠ [fc - m + 1],, - (l + f u ) Π [k - m]qι

i = \ i = ]

(n+fc-m)(m-I)

(2.5) Gp(n + k,k)= 2

Gp(m,m)Gp(n + k — m,k - m + 1), n δ l ,

and

(2.6) Fp(n+k,k) = Σ ΓΠ qY
n+k'm)(m~l)

Gp(m,m)Fp(n + k — m, k - m + 1), n ^ l .

L e t

P

i = 2

where the summation is over all (p - l)-tuples (a2n, a3n, -,apn) with the
ain satisfying 0gf l p n g ^fl 3 n=fl2n= k. Then corresponding to (6.3)
and (6.8) of [4] we have

(2.8) Hp(n,k)= Σ \flqX'qkrmθp(k-m;q2,q39 ,qp)Hp(n-l9m),
m = l Li = l J

where it is understood that Hp(n - 1, n) = 0, and

(2.9) Hp(n +*,*) = Σ [Π φ] '"^ ' " 3 0 "" 1 '

Hp(m9rn)Hp(n + k - m,k - m + \), n g l .

The proofs of (2.1)-(2.6), (2.8) and (2.9) are simply generalizations
of the proofs of their analogues in [4]. To prove (2.1) it suffices to
assume k ^ n since Fp(n 4-1, n + 1) = Fp(n + 1, n). For I c ^ n w e con-
sider the array
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« 2 1

αpl

a n •••

«22

a p 2 •••

ain k

a2n k

apn k

satisfying (1.2), (1.3) and

(2.10)

Let

(2.11)

max{αin: 1 ̂  i ^ p } ^ k.

Using (2.10), (2.11) and the definition of Fp(n,fc), we have

(2.12) Fp(n + 1, k) = fΠ 9ιl* Σ Σ Π 9Ϊ7-^,
L J i

where the inner summation is over all arrays (1.1) satisfying (1.2), (1.3),
(2.10) and (2.11). From (2.12) we get

(2.13) Fp(n Σ ' Π <??'""
f l

where Σ' is the sum over all p-tuples («m, α2π, ,Λpn) subject to
conditions (2.10) and (2.11). Since

= Σ lWm- Σ

= Σ iW- Σ
O k i l O ^ f e

= Πik-

(2.1) follows from (2.13).
Equation (2.2) follows immediately from the definitions. The

proof of (2.3) is similar to the proof of (2.1), but to obtain (2.3) we
consider the array
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au

a2ι

ap\

an •••

a22 •

ap2 •

aλn

a2n

apn

#I,n + l

flp.n + 1

where conditions (1.2) and (1.3) (with n replaced by n + 1) are satisfied
and where

(2.14) max{αjn: l g ί g p } = m

and

(2.15) max{α,,π+l: l^i^p} = k.

As (2.14) and (1.2) imply that

(2.16) { J

we find that

(2.17) Gp(n + 1, k) = Σ Σ Π ^?
k P

m = l i = l

where the inner sum is over all p-tuples (flu+1; α2,n+i; •; ap,n+i) satisfy-
ing (2.15) and (2.16). From (2.17) we get (2.3).

To prove (2.4) consider the array (1.1) subject to conditions (1.2),
(1.3), (1.6) and (2.11). Corresponding to (2.13) and (2.17) in the
previous proofs, we have

(2.18)
k P

Σ
m = 1

Gp(n, k) = Σ Σ Π qt"-mFp(n, m),

where the inner summation is over the p-tuples (au, a2n, , apn) satisfy-
ing (1.6) and (2.11). From (2.18) we get

cP(n,k)= Σ \mΣskΠ^'"""-^Σ^,Πq?"-m

and (2.4) follows.
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Since the proofs of (2.5), (2.6) and (2.9) are similar, we shall only
establish (2.5). To this end we observe that

implies that there exists a greatest m such that

max{tfim: 1 ^ / ̂  p } = m.

Therefore

and we can divide our original array into two sub-arrays as follows:

(2.19)

By subtracting m - 1 from each entry in the right sub-array of (2.19), we
get

1

1

1

••• α l m

••• au.

• apm

m ••• 0i,π+fc

Ή ' 02,n+fc

W * 0Γ,ΠΦ/C

gp(n +k,k;sl9s2, -,sp)

k

= Σ gP(m,m;uuu2,- +k-m,k-m + 1; vί9v29' ,t>p),

where ut + vi=sι-{n+k - m)(m - 1), 1 ̂  i g p. Now (2.5) follows
immediately.

We obtain (2.8) by considering the array

au

021

flpl

012

022

0 p 2

m

* * ' 02,n-I

* " * 0p,n-l

02n

apn

where (1.2)-(1.4), (1.6), (1.7) and the condition

Λ-i = m
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are satisfied. Clearly

hp(n9k;sl9s2,- ,sp)
k

= Σ Σ " K(n ~ l,m;sι-kys2-a2n, •• -,sp -apn),

where Σ" is the sum over all (p - l)-tuρles such that

m ^apn^ ap-Un g ^ a2n ^ k.

Thus

k P

i=2
Hp(n,k)=Σ qϊΣ"

l

and we have (2.8).

3. Techniques for determining the enumerants. To
obtain the following results we use Carlitz's method [4] for finding /, g
and h in a somewhat more general setting. Assuming (1.8), Theorem 1
provides formulas for Gp and Hp while Corollary 1 yields an expression
for Fp.

Before stating the theorem it is convenient to define some
functions. Using N to denote the nonnegative integers and N* to
represent the positive integers, let r(n, k) be a function from N*xN*
into a field F and φ{n) be a function from N into F. Let

and

Furthermore we define t(n,k), a function from N x N into F, by

Φn00 = Σ t(n,k)xk.
fc=0

THEOREM 1. If r(n,k) and φ(n) satisfy

(3.1) r ( l , 1 ) = 1 ,
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n<k,(3.2)

(3.3)

(3.4) rl[n + l , k ) = Σ

r(n, k) = 0,

φ(0)=l,

φ(k -m)r(n,m),

and

k

(3.5) r(n + fc, /c)= Σ r(m,m)r(n +k - r a , fc - m + 1), n g 1,

(3.6)

if Φ(z) is analytic about z = 0,

,x n - k

n

• By (3.5)

k

Σ r(m,m)r(n

k = \
= § r(m,m)xmΣ r(n +k - l,k)xn+k~ι

m = \ k \

= R,(x)Rn(x).

Thus

Using (3.1)-(3.4), we find that

= l + Σφ(n)Σr(n+k-\, fc)x"
n = \ k = \

= l + ΣΣφ(n-k)r(n-l,k)xn-
π=2 k = l

oc

= 1 + Σ r{n,n)xnλ

n=2

= x'Rι(x).
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It follows that

x =

where z = R{(x).
By the Lagrange expansion formula [9, p. 125] the equation

where Φ(z) is analytic in a neighborhood of z = 0, implies

(3.7)

Since

z=O

we can determine Rm(x) by letting f(z) = zm in (3.7). Thus we have

RΛx) = Σ Γ7 f r a (wz-1) Σ ί(π, fc)zΛl
π = i r i : laz k=0 j

= 2J x t(n, n - ra),
n = ! 1

and

(3.8) J r(n,n-m + 1)JC" = J xn™t(n,n-m).
n=m-\ n = l W

We obtain (3.6) by equating coefficients of xn in (3.8).
To state the corollary we must introduce two more functions. Let

s(n, A:) be a function from N* x N* into F and define Sn(x) by

Sn(x) = Σ s(n+k- l,k)xn+k\ n δ l .

COROLLARY 1. Ifr(n,k), s(n,k) and φ(n) satisfy (3.1)-(3.5),

(3.9) s ( l , 0 = 1 ,

(3.10) s(n, n) = s(n, n - 1), n^2,
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and

k

(3.11) s(n +fc, k)= 2 r(m,m)s(n + fc-m, fc-m + 1),

(3.12) s(n + 1, k + 1) = -J- Σ (π - j) ί(π, j).

Proof. Using (3.9)-(3.11), we find that

5,(x) = x + Σ xfc+I Σ r(m,m)s(k-m + l,
/c = l y = l

and from (3.11) we get

Thus

= xRϊ(x)

or

JC 1 - 2 '

where 2 = R,(x). Again making use of (3.7), this time with

f(z)= Z>

1 - 2 '

we see that
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Hence we have

t» Qo i n-m

Σ s(n + l ,π-m + l)jc" = δ m , o + Σ * n - Σ (m+j)t(n,n-m-j)
n = m - l n = l »* /=0

and (3.12) follows.

4. The functions F p and G p . Throughout the rest of this
paper we assume condition (1.8) holds. With this assumption we can
use the results of the two previous sections to determine Fp, Gp and
Hp. In this section we consider Fp and Gp and in §5 we find Hp.

THEOREM 2. // Πf=1 <& = 1, then

(4.1) Gp(π,fc + l) = ! L ^ f r p ( π , k )

(4.2) Fp(π + l,fc + l) = ^2(n- j ) fc p

bp(n,k;qu -,qp) = bp(n,k) is defined by

1 = 1

= Σbp(n,k)xk.
fc=0

Proo/. This theorem is an immediate consequence of Theorem 1
and Corollary 1, for (1.8), (2.3), (2.5), (2.6) and the definitions of Fp and
Gp imply that the hypotheses of these results are satisfied if r(n, k) =
Gp(n, k), s(n, k) = Fp(n, k) and

Π

Instead of Corollary 1 we can use (2.2) to obtain (4.2). We remark that
by virtue of (1.8) it is possible to reduce

and thus bp(ny k), to a function of p - 1 <j, 's.
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Now

r P P ~\

T r / _ L 1 1 "ΓT r / 1 * — - i Γ j r - i | \
[ [K "T AJφ ~~ 1 1 \.k\q, \x ~~ x *ip\X I ̂ fi? qif' * *? ήfp/5
1 i = 1 J

where ί/p(x | q,, q2,
 > ,qP) = Hp(x) is the generalized Eulerian function

defined and studied by Roselle [12]. Because Hp(x) is quite compli-
cated for p ^ 3, in general it is not feasible to find a simple formula for
bp(n, k) in terms of more familiar coefficients. However, we can find
b2(n, k) without difficulty.

COROLLARY 2. Let p = 2. // qλq2 = 1, then

and

Proof. Since

(x -qd(x -q2)

and qιq2= 1, we find that

Thus

m-i ) q ι x

and (4.3) follows.
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Another special case of interest is that in which qx = q2 = = qp =
q. In this case condition (1.8) becomes qp = 1 and the possible values
for q are the pth roots of unity. Let Hp(x \ qu q2, , qp) = Hp{x \ q)
and bp(n,k;quq2,--,qP) = bp(n,k;q) when qλ = = qp = q. We
also require the notation

and

UJ LmJ,-M

Carlίtz [2] has proved that

(4.4) Hp(

where AN(q) are the q-Eulerian numbers defined by

Now (4.4) implies

χ-iHp(χ->\q) = Σ

If we define ap(n,k\q) by

(4.5)
L/ = l J /c=0

then

Σ
it=0
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Thus we have proved

COROLLARY 3. // qx = q2 = = qp = q and qp = 1, then

and

where

(4.6) bp(n,k;q)= Σ ap(n,k - m;q)\np

m=0 l_

ap(n,k;q) is defined by (4.5).
The following result follows immediately from Corollaries 2 and 3.

COROLLARY 4. Lef p = 2. If qx = q2 = q and q2 = 1,

G(nk + l) b(nk;)

and

F2(n + I, k + I) = ±Σ (n - j)b2(n,j;q),
n /=o

where

(In +m - 1

(4.8) W«^^) = Σ ( f c 2 / ) ( 2 /

-2/-1JV2/
n + 2 i
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or

(4.9) »*•.*:«>-£u-jrT« ' κ *
Proof We deduce (4.7) from Corollary 2 by using the hypothesis

q 2 = 1 and a binomial identity found in Riordan [10, p. 9]. Because
q2= 1, (4.8) follows from (4.7). We get (4.9) from Corollary 3 by
observing that

If q = 1 in Corollary 4 we have

COROLLARY 5. Let p = 2. / / gj = (j2 = 1,

(4.10) G2(n,fc + 1) =

and

(4.11) F2(n + 1,* + 1) = - Σ ( » - J ) Σ (, m ) ( m

We note that (4.10) is precisely Carlitz's formula for g(n, k + 1), while
(4.11) is equivalent to his formula for f{n + 1, k -f 1).

If p = 1, condition (1.8) implies qx = 1. In this case we get

COROLLARY 6. Lei p = 1. If qx= \, then

(4.12) F,(n, fc + 1) = G,(π, /c + 1) = ^

Proof. Letting p = 1 and q = 1 in Corollary 3 we obtain

(4.13) G,(n, /c + 1) = —^- Σ «I(Λ, fc - m

Since

α,(n, fc; 1) = δ M ,
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(4.13) reduces to

^ / i , i\ n—k(n+k —

Then (4.12) follows because Fλ(n, k + 1) = G,(n, /c + 1) by
definition. Formula (4.12) is the result given by Bertrand [1] as the
number of two-element lattice permutations.

5. The function Hp. By virtue of (1.8), (2.8) and (2.9), the
hypotheses of Theorem 1 are satisfied if r(n,k) = f/p(n, k) and

where θp(n q2, <?3, , qp), or more briefly 0p(n), is defined by (2.7) for
p g 2 and by θp(n) = 1 for p = 1. Thus we can express Hp(n, k) in
terms of the coefficients cp(n,k) = cp(n,k;q],q2,''^Qp) defined by

(5.1) Σ p
fc=0

where

ΘP(JC) = βp(x I $„ q2, , <ϊP) =

In fact we have

THEOREM 3. / / Πfβ, *• = 1,

(5.2) #p(n,fc + l)

cp(n,k) is defined by (5.1).

(In view of condition (1.8) it is possible to express ΘP(JC) and
cp(n, k) as a function of p - 1 φ's.)

Since the coefficients cp(n,k) are so closely related to θp(k) and
Θp(x), we reduce θp(k) from a (p - l)-tuple summation to a single
sum. Using this simplification of θp(k), we can write ΘP(JC) as a single,
finite sum.



(5.3)
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THEOREM 4. If p = 2, then

θp{k) = —(—- r

where

Ύi(q2, • QP) = ( 1 - <?2)(1 - Qiqύ ••'(l~q2' q P ) ,

and

(5.4) γ,(q2, ••',qP) = (l-q2 φ ) ( l ~ fls ' * ) ' ' 0 ~ Φ)O ~ φ+i)

• (1 - qί+1 <ϊί+2) (1 - φ + 1 qp), j g 2,

wiίΛ ί/ie understanding that

(5.5) ( 1 - φ , •••*)= 1 if ί > / .

Proof. We use induction on p. From definition (2.7) we get

Σ
m=0

Thus

and we have verified (5.3) for p = 2. Using first the definition of 0p+i(fc)
and then (5.3) (as the induction hypothesis), we find that

k a2 <*p

t/p + iy/C , tf2> * * *j τίp + 1/ / j τ[ 2 x J *1 3 * ^ j r ιp + 1

k

Σ q22

az=0

» g.+.)''i
+i) J
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,
(1 - <?2)γ,(<?3,' ' *> <?P+I) & ( l - <?2 * ) r / ( i 3 , * % <7P+I)

To complete the induction it suffices to prove

LEMMA 1. We have

1 f ,
(1 - <7i)(l - q2){\ - q2q?) * (1 - q2 * qp) f^2 γ,(<7i, * * ,qP)

(5.6) = 1

where γ,- is defined by (5.4) «nrf (5.5).

Proof. This proof was suggested by Carlitz. In the expression

_j_ N

fix q2, , qp. Then (5.7) is a polynomial in q, of degree p - 1. Since
this polynomial is 1 for p values of qI? namely

< ϊ i = ! , — , • • - ,

it is identically 1 and (5.6) follows. Using the definition of Θp(x) and
(5.3), we find that

θ (Λ)_- 1 i f (I)i+lqqlqr
Λ {\qx)y{q q) & qr -

In general θp(x) is quite complicated and it is not feasible to
determine the coefficients cp(n, k) explicitly. However, for p = 2 and
q]q2

z= 1, we have
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Θ 2 (x)= 1

(\-qix)(ί-q1) ( 1 -

1
(\-qιx)(\-x)'

It follows that

^ A (n+k-m-l\(n+m-l\ k

~ h h λ k-m )\ m ) q ι X
, ̂ o V k-m

and

n+k-m-i\/n+m-i
fc-m j( m

Hence, as a corollary of Theorem 3, we have

COROLLARY 7. Lei p = 2. // qxq2 = 1,

< 5 . 8 ,

If, in addition to (1.8), we assume qλ = q2 = = qp = q, Θp(x) is
considerably simpler. In this case let ΘP(JC) = θp(x \q)9 θp(k) =
θp(k',q) and cp(n, k) = cp(n, fc q). From the definition of θp(k\q) it
follows that

where the summation is over all (p - l)-tuples {a2, ",aP) such that
l S α p g g α Sfc + l, and

P

m + p - 1 = 2 α.
i=2

Hence it is evident that θp(k;q) generates the number of partitions of
m +p - 1 into p - 1 parts with each part at most k + \. It is well-
known (see, for example, [8, p. 5]) that such a function is

rr'l Thus
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Therefore

k = ]

Since qp = 1,

p-l

fc=0

and

p - l

A:=0

np-1

*=0

= Y Γnp+Λ-Π
ί=Ό L k J J C f e .

and we have proved

COROLLARY 8. // q{ = q2= = qp = q and qp = 1, then

(5.10) Hp(nΛ + l) = ^

We observe that if q is a primitive p th root of unity, say ξ, (5.9) reduces
to

Then

(5.1D Θ;(χ\ξ) = Σ
k=o
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From (5.11) it follows that

( In + k/p - 1\ .r ,.
i if p k

\ n-\ I κ

0 otherwise

As an immediate consequence of Corollary 8 we have

COROLLARY 9. //<?,• = 1, 1 ̂  / ̂ p , then

ίz ΛΊ\ tr / i . i\ n - k ίnp + k - \

(5.13) Hp(n,k + l) = —^~ [ y

 fc

can α/so obtain (5.13) fey viewing θp(k;l) as the number of
(p - \)-combinations with repetition of k -I-1 distinct objects. Then we
know that (see Riordan [11, p. 7])

(5-14)

From (5.14) we can deduce (5.13).

If p =2, qι = q2

 = q and q2 = 1, the formulas for ίί2(w, fc + 1), given
in the following corollary, are particularly simple.

COROLLARY 10. Let p = 2. If qλ = q2 = 1,

(5.15) H2(n,k +1) = — — (

if qλ = q2= - 1,

(n-k ίn+k/2-l\ .. f .
1 ) if /c is even(5.16) H2(n,k + l) = \ n \
I 0 if A: is odd .

Proof. From either (5.8) or (5.13) we get (5.15), while (5.16)
follows from (5.12). Carlitz's result for h(n, k + \) coincides with
(5.15).

Since (5.13) is valid for p = 1, we have the expected result

COROLLARY 11. Let p = 1. // q, = 1, then

, ..=n-k(n+k-\
' n
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6. Part i t ions. From the definition of gp(n, k sί9 s2, " 9 sp) it is
clear that this enumerant is the number of partitions of the p -partite
(sl9s29 -,sp) of t h e f o r m

n

Σ aa = s» l^i^p,
i = \

where the ai} are positive integers subject to conditions (1.2), (1.4) and
(1.6). Thus Gp(n, k) generates these partitions. If we replace (1.6) by
(1.5), these statements are true for fp(n, k) and Fp(n, k). Adding (1.7)
to the conditions for gp(n,k), we have a partition interpretation for
hp(n,k) and Hp(n,k).

Since we have only obtained Fp9 Gp and Hp under the assumption
(1.8), we describe how this restriction affects the partitions. If Πf=1 qt =
1 and p ^ 2,

Gp(n,k) = Σ * gp(n, k su s2, , sp)qV~Spqs

2

2~Sp qs

P

p-fSp,

where Σ* is as defined in §1. Thus we have

THEOREM 5. // Πf=Iq, = l, the function Gp(n,k) generates the
number of partitions of the (p - \)-partite (m^ m2, , mp-x) of the form

7 = 1 7 = 1

where the aV] are positive integers satisfying (1.2), (1.4) and (1.6).

We have corresponding interpretations for Fp and Hp.
For example, by Corollaries 2 and 7 we have

, . „ n~k Λ [(fc^)/21

2(n,k+ 1) = —— Σ Σ
n m=-k 7=max{0,-m}

27V 7

Σ
x{m

B + s - l \ / n + m + s - l
A

Σ Σ
' * m=-k 7=max{m,-m} s=max{0,-m}
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and

H2{n, k + 1) = n -k v In +k - m - l\/n +m - 1
Σ { k_m

n m=o \ K m
m

<ϊ7.

Thus

(6.1) G2(3, 2) = 2q-ι

ι + 2 + 2qu

(6 2) F(3 2) = fl"' + 2 + fl

and

(6.3) H2(3, 2) = 2 + 2<j,.

The following arrays are enumerated by G2(3, 2):

(1) (2)

(4)

1

1

1

1

1

1

2

2

1

2

2

2
(5)

1

1

1

1

1

2

2

1

2

2

2

2

(3)

(6)

1

1

1

1

1

1

1

1

2

2

2

1

Now arrays (1) and (2) satisfy

3 3

1 Ẑ  αij Ẑ

for (3) and (4) we have

o = Σ«./-Σ

while (5) and (6) are subject to the condition

= Σ au ~ Σ 02/.
/=! /=!

The arrays counted by F2(3, 2) are (2) -(5). Array (2) accounts for the
coefficient of q~x\ (3) and (4) are enumerated by the constant term, and
(5) is counted by the coefficient of qx. Finally, Ji2(3, 2) counts arrays
(3)_(6). The first two of these are enumerated by the constant term;
(5) and (6) account for the coefficient of qx.
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If we assume q, = = qp = q,

Gp(n, k) = Σ*gp(n>k>sι>"'<>sp)qΣ*-ι\

Then condition (1.8) implies qp = 1 and we have

p - l
1 H L " i = > > O [ f l k C . . . C ϊ / 7 m

p V,»t? »v ^ X j / j g p V *? Λ j Λ l , ) Op )H

m=0

where the inner sum is over all p -tuples satisfying

P

Σ sι = m (mod p).

Therefore, we have

THEOREM 6. // qx = q2

= = qp = q, qp = 1, αnrf Πp,n,fe (r) w ίΛe
number of partitions of the form

P P n

' ZJ Λi ZJ /.J U U '

where the αo «r^ positive integers subject to conditions (1.2), (1.3), (1.4)
and (1.6), ίfteπ Gp(n,k) generates

Σ Πpπfc (m +tp), O^m ^ p - 1.

For example, from Corollary 4 we see that

and

n l, [(fc-l)/2] / „ X / O M J - ^ Ϊ

We have corresponding results for Fp and ίζ,.
Returning to the illustration used above, if q\ = qi = q^ we may

write (6.1), (6.2) and (6.3) as

(6.4) G2(3, 2) = 2 + 4q,
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(6.5) F2(3,2) = 2 + 2<j,

and

(6.6) H2(3, 2) = 2 + 2g.

Since the sums of arrays (3) and (4) are even, these arrays are counted
by the constant term in (6.4)-(6.6). In each case the coefficient of q
enumerates the arrays having an odd sum.
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