
PACIFIC JOURNAL OF MATHEMATICS

Vol. 60, No. 1, 1975

ON SEMIGROUPS IN WHICH X = XYX = XZX
IF AND ONLY IF X = XYZX

ZENSIRO GOSEKI

A semigroup 5 will be called quasi-rectangular if the set of
idempotents of S is non-empty and a rectangular band ideal of
S. The theorems of this note prove in part that the following
are equivalent. (1) 5 is a semilattice of semigroups each of
which is either idempotent free or quasi-rectangular. (2) Every
/-class of S is either idempotent free or a rectangular subband
of S. (3) Every 2)-class of S is either idempotent free or a
rectangular subband of 5. (4) S is a semigroup in which for
any x, y, z E S, x = xyx = xzx if and only if x — xyzx.

Recently M. S. Putcha and J. Weissglass ([4]) have given a
characterization of a semigroup each of whose 2 -classes has at most
one idempotent. Using results in [4], this note gives also a character-
ization of a semigroup each of whose 3) -classes is either idempotent
free or consists of a single idempotent. Also, 2 may be replaced by β
in the above statement.

Throughout this note 5 will denote a semigroup and E(S) the set of
idempotents of S. Let the set-valued functions / and / on S be defined
by /(JC, S) = {e \ e E E(S), e = exe} and I(x, S) = {y | y E 5, y = yxy},
respectively. We shall write E, I(x) and I(x) for E(S), /(JC, 5) and
/(jc, S), respectively, when there is no possibility of confusion.

PROPOSITIONI. The following are equivalent.
(1) /(JC) Π I(y) = I(xy) for every JC, y E 5.
(2) I(x) n 7(y) = I(xy) for every x, y E S.

In this case we have I(x) = I{x) for every x E S.

Proof (1) Φ (2) follows from J(JC) Π E = /(JC) for every JC E 5.
(2) Φ (1). We will prove that /(JC) = /(JC) for every JC E 5. Let

a E /(JC). Then a = axa. Hence αjc = (αjc)(αx) = (αjc)(αjc)(αjc). Thus
ax Gl(ax) = I(a) Π/(JC). Hence αjc E/(α), i.e., ax = (ax)a(ax). Hence
axa=(axa)(axa), i.e., a =a\ Therefore a E 7 ( J C ) Π £ = /(JC). Thus
/(JC) C/(JC). Clearly /(JC) C /(JC). Hence /(JC) = /(JC) for every JC E S.

PROPOSITION 2. Lei N be the set of elements x of S such that
/(JC ) = 0 . IfN is nonempty then Nis an ideal of S and idempotent free.
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Proof. Suppose that N is nonempty. It is easy to see that N is
idempotent free. Let x E N and y E S. If xygzN there exists a ES
such that a = axya. Hence ya = (ya)x(ya) and so ya E I{x). This
contradicts the fact that ϊ(x) = 0. Thus JcyEN. Similarly
yx E N. This completes our proof.

LEMMA 1. Let N be an idempotent free ideal of S. Then S
satisfies /(JC, S) Π /(y, S) = /(jcy, S) for every JC, y E 5 if and only if the
Rees factor semigroup SIN satisfies /(JC, SIN) Π /(y, S/N) = I(xy, S/N)
for every JC, y E S/N.

Proof Let 0 denote the equivalence class N in S/N. Since N is
idempotent free E(S/N) = E(S) U {0}. If α, JC£ N, then α E /(JC, 5) if
and only if a E /(JC, S/N). Furthermore /(0, S/N) = 0 and /(z, 5) = 0
for z EN, since TV is an idempotent free ideal of 5. Hence /(JC,5) U
{0} = /(JC,S/JV) for every JC E S, where JC = JC if x£ N and Jc = 0 if
x EN. From this, our result follows easily.

From Proposition 1, Proposition 2 and Lemma 1, we have the
following

THEOREM 1. Let E(S)^0. The following are equivalent.
(1) /(JC, 5) Π /(y, S) = /(jcy, 5) for every JC, y E 5.
(2) 5 /s an ideal extension of an idempotent free semigroup

(possibly empty) by a semigroup Tsuch that /(JC, T) Π /(y, T) = /(jcy, T)
/(*, Γ) 7̂  0 /or eόery x, y E Γ.

Let T be a congruence on S. If S/τ is a semilattice, r is called a
semilattice congruence on 5. In this note, p denotes the smallest
semilattice congruence on S and σ denotes the relation on 5 defined by
jcσy if and only if /(jc) = /(y). If p = 5 x 5, then 5 is called s-
indecomposable. Furthermore, for any congruence τ on a semigroup
S we denote by r | E the restriction of r to E and by JCT the equivalence
class mod r containing an element JC.

Now we note that S is quasi-rectangular if and only if £(S) is
nonempty and e = ejce for every e E E(S) and x E S.

THEOREM 2. The following are equivalent.
(1) /(JC) Π /(y) = /(jcy) for every x, y ES.
(2) (i) σ is a semilattice congruence on S,

(ii) each σ-class is either idempotent free or a quasi-
rectangular semigroup.
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(3) 5 is a semilatice of s-indecomposable semigroups each of
which is either idempotent free or quasi-rectangular.

(4) S is a semillatice of semigroups each of which is either
idempotent free or quasi-rectangular.

In this case, for a semilattice congruence τ on S induced by the
decomposition in (4) we have p Cτ Cσ and p \ E = T | E =
σ IE. Moreover, for any a, b E E we have a σ b if and only if a = aba
and b = bab.

roof. (1) => (2) follows from easy calculations.
(1) φ (3). S is a semilattice of s- indecomposable semigroups

([5]). On the other hand, since S satisfies I(x) Π I(y) = I(xy) for every
x, y E S, any subsemigroup of 5 satisfies also the same. Therefore, if
we consider the congruence σ on each component of 5, it follows from
(2) (ii) above that any component is idempotent free or quasi-
rectangular. Thus (3) holds.

(2) φ (4) and (3) Φ (4) a fortiori.
(4) => (1). Let T be the congruence induced by the decomposition

in (4) and let x, y E S. If a EJ(jt) Π J(y), we have a = axa =
aya. Since r is a semilattice congruence on 5, we have
aτaxτ ay. Hence axy E aτ. On the other hand, a E aτ Π £*. Hence
α = fl(ίocy)fl = flxyα. Thus a E J(jty). Conversely, if a El(xy) we
have fl = axy a. Hence a τ axy. Thus ay τ axy2 τ axy. Hence
ay E aτ. Since a G aτ Π E, a = α(αy)tf = αyα. Hence 0 E /(y).
Similarly, α E I(x). Hence α E /(JC) Π J(y). Therefore I(x) Π /(y) =
/( cy), i.e., (1) holds.

Now let x, yES such that xry. Let aSl(x). Then α =
axa. Hence αx E αxr Π £ and αy E axτ. Since αxT is quasi-
rectangular, ax = (ax)(ay)(ax). Hence a = axa = (ax)(ay)(ax)a-
(axa)y(axa) = aya, i.e., aGl(y). Thus /(x)C/(y). By symmetry,
/(y)C/(x). Hence J(x) = /(y). Thus xσy. This shows that τC
σ. On the other hand, clearly p Cτ. Now let α, b E E. If a σ\E b,
then a, b E /(α) = /(b). Hence α = aba and & = bab. Conversely, if
a = aba and b = έ>#b we have ap \Eb since p is a semilattice
congruence on 5. On the other hand, p Cτ Cσ. Hence p | E = τ \ E =

COROLLARY. Let S be a semigroup such that I(x) ΠI(y) = I(xy)
and xp Π E φ 0 for every x, y E 5. Then:

(1) p = τ = σ, where τ is a congruence induced by the decomposi-
tion in Theorem 2 (4).

(2) 5 is s-indecomposable if and only if E is a rectangular
band. In this case,. S is quasi-rectangular.
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Proof. (1) Let JC, y G S such that xσy. Let aExpΠE and
b G yp Π E. Since p C ί C σ , aσxσyσb, that is, aσ\Eb. Hence
aρ\Eb by Theorem 2. Therefore xpapbpy, i.e., spy. Since
p C r C σ , this shows that p = r = σ.

(2) Let 5 be s -indecomposable. From Theorem 2 (3), S is
quasi-rectangular and so £ is a rectangular band. Conversely, let E be
a rectangular band. Let JC, y G S. Then there exist a Exp Π E and
fr G yp Π E. Since α = aba and b = bαb, a p b and so JC p y. Hence 5
is s- indecomposable.

We shall say that S has the decomposition (D) if S satisfies the
following condition (D).

(D) E(S) is nonempty and E(S) is a disjoint union of maximal
rectangular subbands Ea(a EΓ) of 5, that is, if M is a rectangular
subband of S and M Π Ea^0 for α G f , then M C £α.

In this case, each £α(α G Γ) will be called a (Ό)-component of E.

PROPOSITION 3. Lei S be a semigroup such that E is
nonempty. Then the following are equivalent.

(1) /(JC) Π J(y) C /(jcy) for every JC, y G S.
(2) 5 /ιαs ίfte decomposition (D).

Proof. (1) => (2). Let r be the relation on E defined by uτv if
and only if u = uvu and v = ιwι;. We shall prove that if (1) holds then τ
is an equivalence relation on E. The reflexive law and the symmetric
law hold evidently. We prove that the transitive law holds. Let uτv
and vτw. Then v = vuv = vwv. Since υ E I(u) Π I(w) C /(MWM), V =
v(uwu)v. Therefore u = uvu = u{v(uwu)v}u = (uvu)w(uvu) = uwu.
Similarly w = wuw. Hence uτw. The decomposition of E by τ
shows that S has the decomposition (D).

(2) => (1). Let eEE and JC, y G S such that eEl(x)Π
J(y). Since e = exe = eye, {e, ex} and {e, ye} are rectangular subbands
of S. On the other hand, there exists a (D)-component Ea such that
e G Ea. Then {e, ex}Π Ea/0 and {e, ye} Π Eα ̂  0 . Hence e, ex, ye G
Ea by (2). Thus exye = (ex)(ye) G Eα. Hence e=e(ejcye)e =
exye. This shows that (1) holds.

REMARK. It is well known that any band has the decomposition
(D) where the set Γ of suffixes is a semilattice and EaEβ C Ey if aβ = y
for α, /3, γ G Γ ([2] and [3]). But, even if a semigroup 5 satisfies
I(x) Π /(y) = I(xy) for every JC, y G 5 and E is nonempty, E need not
be a subsemigroup of S. The following example shows it.
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PROPOSITION 4. The following are equivalent.
(1) I(xy) C I(x) IΊ /(y) for every x, y E 5.
(2) For any x, y E 5, e = exe whenever e = xy E E.
(3) For any x, y 6 S, ^ = eye whenever e = xy EE.
(4) (i) For any x, y E 5, ί/xy, yx E £ then {xy, yx} w contained in

a rectangular subband of S,
(ii) for any x, y E S, e = ex = ey whenever e = xy = yx E E.

Proo/. (1)Φ(2) follows from e E/(e) = /(xy)C/(x) Π/(y)C

(2) Φ (1). Let e E /(xy). Then e = exye and hence e = e(ex)e =
exe. Set w = yex. Then u EE and hence w = uyeu by (2). Thus
yex = yexyeyex. Hence ex(yex)e = ex(yexyeyex)e. Therefore e =
(exye)(exe) = exyexe = ̂ xy^xy^yexe = Oxyexye)y(£X£) = eye. Hence
e E I(x) n 7(y). Thus /(xy) C /(x) Π /(y).

(1) <̂> (3) is proved by the same way as used in the proof of
(1) <^ (2).

( l )Φ(4)( i ) . Since xy E/(xy) =/(xyxy)C/(yx) by (1), xy =
xy(yx)xy. Similarly yx = yx(xy)yx. Hence (4) (i) holds.

(1) φ (4) (ii). If e = xy = yx E E for x, y E S, then e E /(xy) C
/(x) ΓΊ /(y). Hence e = exe = eye and so e = ex = ey.

(4) => (1). Let e E /(xy). Then e = x̂ŷ  = (^x)(y^). Set w =
(ye)(ex). Then u EE. Hence e — eue and u = wew by (4) (i), that is,
e = eyexe and yex = yexeyex. Hence ex(yex)ye = ex(yexeyex)ye, that
is, (exye)(exye) = (exye)xey(exye). Hence e = exeye. Thus e =
(eye)(exe) = (exe)(eye). Hence, by (4) (ii), e = e(exe) = exe and e =
e(eye) = eye. This shows that /(xy) C /(JC) Π /(y).

PROPOSITION 5. Le/ S be a semigroup such that E is a left (right)
ideal of S. Then /(x) Π /(y) = /(xy) /or ei ery x, y E 5.

Proof Let F be a left ideal of S. Since F is a band, S has the
decomposition (D). Now let e = xy E F. Then ye E F. Hence ye =
yeye and so xye = xyeye. Thus e = eye. Therefore the condition (3) in
Proposition 4 holds. Hence, by Proposition 3 and Proposition 4,
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I(x) Π ί(y) = I(xy) for every x, y G S. In the case that E is a right
ideal of 5, we can prove it by the same way.

THEOREM 3. The following are equivalent.
(1) I(x) Π I(y) = I(xy) for every JC, y G 5.
(2) Every β-class of S is either idempotent free or a rectangular

subband of S.
(3) Every 3-class of S is either idempotent free or a rectangular

subband of S.

Proof. (1) Φ (2). Let\jc, y G S. Suppose that jc/y. Then there
exist a, b, c, d G Sι such that x = ayb and y = cxd. Hence I(x) =
I(ayb)Cl(y) and I(y) = I(cxd)Ql{x). Thus /(jc) = /(y). This
shows that JC β y implies x σy. Now suppose that e / x and e £ y for
e G £(5) and JC, y G S. We shall prove β / jcy. Since I(e) = I(x) =
/(y), έ? G J(e) = /(JC) Π /(y) = J(jcy). Hence e = exye and so SιeSιC
SιxySι. On the other hand, S'xyS1 CS'xS1 = SιeS\ Therefore
SιeSι = SιxySι. Hence e$ xy. This shows that any /-class contain-
ing an idempotent is a subsemigroup of S. Next let e G JB(5) and JC G 5
such that e $ JC. Then /(e) = /(*). Hence e = βjĉ . Therefore any
/-class containing an idempotent is a quasi-rectangular subsemigroup
of S. Now let / be a /-class of 5 and a quasi-rectangular subsemi-
group of 5. Then E(J) is an ideal of /, so / = E(J). For, by [1,
Lemma 2.39], / U{0} is 0-simple, so / is simple. Hence (2) holds.

(2) φ (3). Let D and / be a SD-class and a /-class containing the
same idempotent, respectively. Since a rectangular subband of 5 is
contained in a 3)-class of S, J CD. Thus, D =J follows from 3) C
$. Hence (3) holds.

(3) φ (1). Suppose e G /(JC) Π /(y). Then e = exe = eye. Hence
£jc S e 2 ye and s o e 3 {ex){ye). Therefore e - e{(ex)(ye)}e = exye,
that is, e G /(jcy). Conversely, suppose e G /(jcy). Then e = exye and
so ejc = (ejc)y(ejc). Hence (ex)y E E and ex 3) (ex)y. Thus ĴC G
JB. Hence e = ejcye = (exex)ye = ex (exye) = ĴC .̂ Similarly e = eye.

Hence e G /(JC) Π /(y). Thus (1) holds.

PROPOSITION 6. The following are equivalent.
(1) (i) 5 is a regular semigroup,

(ii) /(JC) Π /(y) = /(jcy) /or m?ry x, y G 5.
(2) S is a band.

Proof. (1) => (2). Let JC G S. Then there exists y G 5 such that
JC = jcyjc, i.e., x G /(y). On the other hand, /(y) = /(y) by Proposition
1. Hence x G/(y) and so JC is an idempotent. Thus 5 is a band.

(2) φ (1) (i) Obvious.
(2) φ (1) (ii) follows from Proposition 5.
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A semigroup is called viable if for any x, y E 5, xy = yx whenever
xy, yx E £. The following lemma is due to M. S. Putcha and J.
Weissglass ([4]).

LEMMA 2. The following are equivalent.
(1) S is viable.
(2) S is a semilattice of semigroups having at most one idempotent.
(3) 5 is a semilattice of s-indecompo sable semigroups having at

most one idempotent.
(4) Every β-class of S has at most one idempotent.
(5) Every 2-class of S has at most one idempotent.

Now let N be the set-valued function on S defined by N(x) =
{e \e E E,e = ex = xe}.

THEOREM 4. The following are equivalent.
(1) S is viable and I(x) Π /(y) = I(xy) for every x, y E S.
(2) N(x) Π N(y) = N(jcy) for every x, y E 5.
(3) 5 is a semilattice of semigroups each of which is either

idempotent free or contains only one idempotent as zero element.
(4) S is a semilattice of s-indecompo sable semigroups each of

which is either idempotent free or contains only one idempotent as zero
element.

(5) For any x, y E S1, jcy = yxy = xyx whenever xy E E.
(6) For any JC, y E 5, xy = yjc = JC 2y = y 2x whenever xy, yx E E.
(7) Every β-class of S is either idempotent free or consists of a

single idempotent.
(8) Every 3)-class of S is either idempotent free or consists of a

single idempotent.

Proof. (1) Φ (2). Clearly N(x) Π N(y) C N(xy). Let e E N(xy).
Then e = exy = exye. Hence e E /(xy) = /(JC) Π /(y). Therefore e =
£X£ and e -eye. Hence e(ex), (ex)e, e(ey), (ey)eGE. Since 5 is
viable, e = ex = ey. Similarly e = xe = ye and hence
e E N(x) Π N(y). Thus N(xy) C N(x) Π N(y) and so (2) holds.

(2) Φ (3). Let r be the relation on 5 defined by x τy if and only if
N(x) - N(y). Then r is a semilattice congruence on S. If we con-
sider the decomposition of S by r then it is easy to see that (3) holds.

(3) φ (1). follows from Theorem 2 and Lemma 2.
(1) <^ (4). For any semigroup, there exists the smallest semilattice

congruence and every component in the decomposition by this congru-
ence is s- indecomposable ([5]). Hence it follows from Theorem 2 and
Lemma 2 that (1) and (4) are mutually equivalent.
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(2) φ (5). Let JC and y be elements of S such that xy E E. Then
xy EN(xy) = N(x)ΠN(y). Hence xyEN(x) and xy G
N(y). Therefore xy = xyx = yjcy.

(5) φ (6) obvious.
(6) φ (1). In this case, 5 is viable. Since any rectangular sub-

band of a viable semigroup consists of a single element, 5 has the
decomposition (D). Moreover, Proposition 4 (4) (i) and (ii)
hold. Hence (1) follows from Proposition 3 and Proposition 4.

(1) <=> (7) and (1) <Ξ> (8) follow from Theorem 3 and Lemma 2.

PROPOSITION 7. The following are equivalent.
(1) (i) S is a regular semigroup,

(ii) N(x) Π N(y) = N(xy) for every JC, y G 5.
(2) S is a semilattice.

Proof. This follows from Proposition 6 and Theorem 4.
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