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STOCHASTIC CONVEX PROGRAMMING:
BASIC DUALITY

R. T. ROCKAFELLAR AND R. J.-B. WETS

A duality theory is developed for stochastic programs with
convex objective and convex constraints. The problem consists
in selecting xtE Rn* and x2 E ££°°(S, S, σ R"*) so as to satisfy the
constraints and minimize total expected cost, where σ is a
probability measure and the constraints as well as the objective
are functions of the random elements of the problem. Under
the additional restriction that JCI and x2(s) belong to compact
subsets of Rn' and R "* respectively, it is shown that the problem
is equivalent to the more common dynamic formulation for
stochastic programs with recourse, a basic duality theorem — of
the type min = sup — is proved and qualitative results on the
existence of dual solutions are derived.

1. Introduct ion. In this paper we study a two-stage stochastic
optimization problem associated with the following heuristic
model. First, a vector xx in JR"J is chosen subject to the constraints

(1.1) x,eC, and fu(xl)^09 i = 1, s/fij,

at a cost represented by the expression /io(*i) Next an element s of S is
"observed", where (S, Σ, σ) is a probability space. Finally, a vector
x2(s) in JR"2 is chosen subject to the constraints

(1.2) x2(s)£C2 and / 2 ί ( 5 , x b x 2 ( s p O , i = l, ,m 2,

at a cost /20(s, xux2(s)). The problem is to choose x, and the function
x2( ) so as to minimize the total expected cost

(1.3) /io(*i)+ f2ΰ(s,xux2(s))σ(ds).
Js

This is a stochastic programming problem with recourse the function x2( )
specifies the recourse decision.

To make the formulation rigorous, one needs, besides appropriate
assumptions on the sets Ck and functions /kι, some restriction on the class
of recourse functions which are admitted, in particular in ensuring that
the expected cost (1.3) is in some sense well-defined. For technical
reasons, we concentrate below on the case where x2(s) is an essentially
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bounded, measurable function of s E 5, and the second-stage constraint
(1.2) is only required to hold almost surely (i.e. except for s in a subset of
S of σ-measure zero). However, some justification of this restriction is
offered in §3, and it is shown that, at least when C2 is bounded, no real
generality is lost thereby.

Our main purpose is to exploit the possibilities of the convex case,
where everything is convex in xx and JC2. We introduce a Lagrangian
function in terms of multipliers for the first-stage and second-stage
constraints. This leads to a saddle-point condition for optimality which
is sufficient and "almost" necessary. The optimal multipliers are solu-
tions to a certain dual problem and can be interpreted as "equilibrium
prices" relative to certain perturbations. The dual problem furnishes a
description of the directional derivatives of the infimum in the original
problem with respect to the perturbation parameters. The vehicle for
this analysis is the general "perturbational" theory of duality for convex
optimization problems [7], [8], and various results on convex integral
functionals and their conjugates [9], [10], [11].

The following technical assumptions are in force throughout the
paper. The sets Cx and C2 are convex, closed and nonempty. The
functions fu on R "• and f2ι (s, , ) on Rnx R"2 are convex, everywhere-
defined and finite (hence continuous). Furthermore, for each (xu x2) in
Rnx R"2 the functions f2ι ( , xu x2) are measurable on 5, in fact summa-
ble for i = 0 and bounded for / = 1, , m2. These assumptions imply
that if %,: S —»Rn' and x2: S-> R"2 are arbitrary bounded, measurable
functions, then the functions

s -> f2t (s, xλ(s), x2(s)\ i = 0,1, , m2,

are measurable, in fact summable for / = 0 and essentially bounded for
/ = 1, , ra2; see [11, Theorem 2] and [10, Theorem 4]. In particular,
the cost expression (1.3) represents well-defined real number if x2(s) is a
bounded, measurable function of s E S.

Duality is developed by embedding the problem in a class of
"perturbed" problems. Let

X = « " x i ? ; 2 and U = Rm*x£l2,

where Xp

n denotes the usual Lebesgue space of Rn-valued functions over
(5, Σ, σ). The function

F:Xx U^R U{ + }̂

is defined as follows. If x = (xu x2) E X and u = (w,, u2) E U satisfy

(1.4) xx<ΞCx and ^ ( X ^ M , , , f = l, ,m,,



STOCHASTIC CONVEX PROGRAMMING: BASIC DUALITY 175

and almost surely

(1.5) x2(s)EC2 and / 2 / ( s , x 1 ? x 2 ( s p w 2 i ( s ) , i = l, ,m 2 ,

then F(x, u) is the expected cost (1.3); otherwise F(x, w) = +00. We
denote by P(u) the problem of minimizing F(x, u) over all JC E X, i.e. the
problem of minimizing (1.3) over all xt E R"1 and x2 E i?~2 satisfying (1.4)
and almost surely (1.5). The problem P(C), corresponding to the
original model, is denoted simply by P. The problems all make sense
technically, in view of the remarks above.

The system of perturbations can lead to different forms of the dual
problem and Lagrangian, depending on how a space Y is paired with
U. Here we take

(1.6) (M,y)=M1 y1-f| s u2(s) y2(s)σ(ds) for y E Y = Λ - x 21,.

We remark, however, that complementary results of considerable inter-
est can be obtained if !£ι

m2 is replaced in this pairing by the dual Banach
space («2^2)*. These results will be treated in a subsequent paper.

According to general theory [8], the Lagrangian associated with the
system of perturbations u E U is the function:

L: X x Y - » J R U{±oo}

defined by

(1.7) L(x,y)=mf{(u,y) + F(x,u)}.
u£U

In the case at hand, with the pairing given by (1.6), it is easy to calculate
that

(1.8) L(x, y) = Lx{xu yx) + £ L2(s, xu x2(s), y2(s))σ(ds)

if x E Xo and y E Yo,

= - 00 if x e Xo and y ̂  y 0 ,

= +00 if χ £ X 0 ,

where

(1.9) Xo = {x = (xl9 x2) E XI X! E C, and almost surely JC2(S) E C2}

(1.10) y 0 = {y = (yu y2) E Y | y, g 0 and almost surely y2(s) ^ 0},
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(1.11) L,(x,, y.) = /10(x,) + Σ ϊufu (*.),

m2

(1.12) L2(sy xu x2, y2) = / 2 0 (s, xu x2) + ] £ y2if2ι (s, xu x2).

Note that L (JC, y) is convex in x E X and concave in y E Y.
From formula (1.7), one also calculates at once that

(1.13) F(JC,W) = sup{L(x,y)-(w,y)} for all xEX, uEU.

In particular, the essential objective function in P is represented by

(1.14) F(x,O)=supL(jc,y),
yey

and the optimal value in P is therefore

(1.15) infP= inf sup L(x,y).

We define the dual of P to be the problem: D maximize g(y) over all
y E Y, where g(y) = infxEXL(x, y). The function g is concave, since
L(x, y) is concave in y. The optimal value in D is

(1.16) sup D = sup inf L(x, y),
xex

and properties relating the optimal values and optimal solutions of P and
D are minimax properties of the Lagrangian L. For example, the
following fact is a simple consequence of the definition of D and the
representation (1.14) of the essential objective function in P (cf. [8,
Theorem 2]):

The pair (jc,y)6Xx Yis a saddle-point ofL if and only ifx gives the
minimum in P, y gives the maximum in D, and min P = max D (finite).

If a duality theorem of the type inf P = max D could be established,
one would have from this a Kuhn-Tucker characterization of the
solutions of P: under some general hypothesis, x ELX gives the minimum
in P if and only if there is a y E Y such that (JC, y) is a saddle point of
L. (And then y gives the maximum in D.) While such a duality
theorem can be developed, although under more restrictive assumptions
than might be imagined, special techniques, involving the analysis of
so-called induced constraints, are required. This development will not
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be pursued in the present paper. Here we establish instead a duality
theorem of the type min P = sup D and study solutions to D in terms of
the perturbation function

(1.17) φ ( u ) = i n f F(JC,II), u G U.
xex

The context is the case where the sets C\ and C2 are bounded, a property
which is harmless to assume for most practical purposes, such as
computation. Besides characterizing the directional derivatives to φ at
u = 0 in terms of maximizing sequences to D, we obtain results of a
qualitative nature about the existence of solutions to D. It is shown for
instance that "typically" in this context D may be expected to have a
solution y, so that the relation min P = max D holds and the
Kuhn-Tucker characterization of solutions x to P mentioned above is
valid.

The results of this paper complement those obtained for linear
stochastic programs with recourse, i.e. when the functions fxk and f2k are
affine \nxux2 and Cu C2 are polytopes. For linear programs, a first pair
of dual programs appear in [14] for which an inf = sup theorem was
derived by imposing integrability restrictions on the random variables of
the problems. (Earlier results of Madansky [5] have now been shown to
be invalid [3].) In [2] Eisner and Olsen extend the results of Wets [14] to
multistage problems as well as to other variants of the "stochastic
program with recourse" model. It is noteworthy that these "dual" pairs
are not cast as here in the «S?X - 5£λ framework but rather in the «3?p - <Eq

framework. This results from the rather specific form of constraints
which allows one to show — under rather mild restrictions — that if P has
an optimal solution then there exists in fact an optimal .solution with X
replaced by Rn> x Sβp

n2. The natural pairing is then £p - ϊ£\ see e.g. [14,
Theoreme 1 and Remarque 3]. Obviously these inf = sup theorems can
be easily converted to min = sup if it is assumed that the constraints
determine bounded regions for xλ and x2.

The following derivation of D for the linear case is useful in
clarifying the relations between the results of this paper and those of [2]
and [14]. Let /io(*i) = c, x *,; /20(s, *i,x2) = x2(s)x2, /u (*i)= bk -Akxu

k = l, ,mr, /2k(s,jc1,x2) = p ί ( s ) - Γfc(s)x,- W'k(s)x29

C, = {*, | b"k- A"kxx =g 0, k = 1, , m,, JC, ̂  0}

and

C2 = {x2\p"- WUi^O, fc = l, , 7 ^ , jc2gθ}.
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The sets Cu C2 are polytopes (bounded polyhedra). Ek denotes the fcth
row of the matrix E and Ek(s) indicates that the elements are random
variables. Problem P then reads

satisfying

(1.18) A"xλ^b\ jdδO and b'-A'x^O

and almost surely

(1.19) W"x2(s)^p", x2(5)^0 and p\s)- Γ(s)xί-

and such that

(1.20) cΛ+f φ)x2(s)σ(ds)
Js

is minimized. The Lagrangian becomes

I
JS

y1(b'-A'xι)

[φ)x2(s)+y2(s)(p'(s)- T'(s)Xι- W'(s)x2(s))]σ(ds)
JS

( (i) A"xι ^ b", xλ ̂ 0 and almost surely W"x2(s)gp'\x2(s)^0,
if

I (ii) yi ̂  0 and almost surely y2(s) S 0;

= + °° if x = (xu ̂ 2(5)) satisfies (i) but y (yu y2(s)) does not satisfy (ii);

= - 00 if y does not satisfy (ii).

The associated dual program D is obtained by maximizing g(y) =
InfxexL(jt, y) on y = K ^ x ^ . If there is no x that satisfies (i) then
g(y) = + 00 for all y E Y. On the other hand if there is some x satisfying
(i) then g(y) = - 00 for all y that fails to satisfy (ii). Finally it remains to
consider the case when the constraints of (i) are consistent and
y (yu y2(s)) satisfies (ii). Observe that in this case g can be written as

g(y)= Min L - y i A ' - f y2(s)T'(s)σ(ds)} xx
A"xχ^b" I Js J

+ Inf ί [c2(s)-y2(s)W'(s)]x2(s)σ(ds)+yιb
W"X2(s)^p" a.s. Js

X2(s)sθ a.s

+ f y2(s)p'(s)σ(ds)
Js
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where a.s. stands for almost surely and min has replaced inf in the first
term since C] = {xι\A"xι ^ b'\ x1 ^ 0} is compact. We have written
g(y) in this form to stress that fact that the minimization of L in x can be
done separately in JC, and x2(s). Let gi(y) be the first term in the sum
determining g(y), gi(y) the second and gi(y) the sum of the two last
terms. For fixed y, g3(y) is a constant. The term gi(y) is just the
optimal value of a linear program whose constraint set is nonempty and
bounded; _thus there are nonnegative Lagrange multipliers, say yίk,
k = 1, ,m, such that

xx + yλb".

Now gi(y) and consequently g(y) will be - ^ unless the vector cx-

y , A ' - y , A " - y2(s)T\s)σ(ds) is nonnegative. If this holds it follows

Js
that gi(y) = yxb. Observe that the above conditions yield a complemen-
tary slackness condition. The term g2(y) can be handled similarly. Let
y2κ(s)η /c = l, ,m2 be nonnegative Lagrange multipliers associated
with the constraints W"x2(s) ^ p" a.s. Assuming — as can be proved —
that y2(s) and y2(s) can be selected measurable, we have that

[φ)- y2(s)W'(s)~ y2(s)W"(s)]x2(s)σ(ds)

+ Js y2(s)pnσ(ds).

Again g2(y) will be — ̂  unless almost surely

φ)- y2(s)W'(s) - y2(s)W" g 0,

in which case g2(y) = y2(s)p"σ(ds). Regrouping all these conditions,
Js

we get the following form for D: Find (v, π)G R "M+™1 x 58]^^ satisfying

(1.21) c{-vA-

and almost surely

(1.22) Φ)- π(5)W(5)^0, 77(5)^0

and such that



180 R. T. ROCKAFELLAR AND R. J.-B. WETS

(1.23) vb + ί π(s)p(s)σ(ds)
Js

is maximized (provided that Xo be nonempty). We have identified the

following symbols v = (yu yx), π(s) = (y2(s), y2(
s)) b = [yj P(s) =

T A - (Λ ) Γ ( S > = Γ O S ) )
the zero matrix of size rh2 x nx. The objective is obtained by collecting
the remaining terms in gu g2 and g3. It is easy to compare the form of D
to that of the "dual problem" of [14] which it resembles at least
formally. The most obvious differences are that W(s) is allowed to be
random and that the second set of constraints have only to be satisfied
almost surely. A hidden but significant difference is the compactness
assumption on the constraint set of P.

2. Representation of the problem by an integral
functional. It is important for our purposes that the function F
defined above can also be expressed by

(2.1) F(JC,II) = F 1 ( X 1 , M 1 ) + ί F2(s,xux2(s%u2(s))σ(ds),
Js

where

(2.2) F^x, ux) = f10 if xx E d and fu (xλ) g uίh ί = 1, , mu

= + oo otherwise.

(2.3) F2(s, xu x2, u2) = f20(s, xu x2) if x2 e C2 and f2i (s, xu x2) ̂  u2i,

i = 1, , m2,
= -f oo otherwise.

Certain results will be obtained by applying the theory of convex integral
functionals to the integrand F2. The background is developed in this
section.

As in [9], [10], [11], we shall call a function h on S x Rn a normal
convex integrand if h (s, ) is for each s E S a lower semicontinuous
convex function on Rn with values in ( - oo, + oo], not identically -I- oo? and
if furthermore there exists a sequence of measurable functions

zk: S->Rn, fc = l,2, ,

such that h(s,zk(s)) is measurable in s for each k, while for each fixed s
the set of points of the form zk(s) lying in
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dom h (s, ) = {z G R n\ h (s, z ) < + 00}

are dense in the latter set. Various criteria for normality are given in

[9], [10], [11].
This property implies in particular that h(s, z(s)) is measurable in 5

when z(s) is measurable in [10, Corollary of Lemma 5]. The integral
functional

(2.4) Ih(z)= ί h{s,z(s))σ(ds)
Js

therefore has a well-defined value (real or — 00) for every measurable
function z such that his, z(s)) is majorized by a summable function of s;
when h(s,z(s)) is not so majorized, we adopt the convention that
Ih(z)= + 00. This convention is used more generally below to give a

meaning to I θ(s)σ(ds) for any measurable, extended-real-valued func-

tion θ.

The following fact was essentially proved in [10, Theorem 4].

PROPOSITION 1. Let h be a normal convex integrand on S x
JRn. Then the infimwn of h (s, ) over Rn is measurable as a function of s,
and one has

(2.5) inf ί h(s,z(s))σ(ds)=( ί inf h(s,z)]σ(ds)
zetfZ Js Js L ZGR" J

for any p G [ l , -f o°] such that the infimum on the left is rtot + 00.

Proof. The normality of h implies that the conjugate integrand

h*(s, w) = sup {z w - h(s, z)}
zGRn

is likewise normal [10, Lemma 5] and hence in particular is measurable in
s for fixed w. Since

-Λ*(s ,0)= inf h{s,z\
-z&Rn

we conclude that the latter infimum is measurable as a function of s.
It is obvious that the inequality ^ is valid in (2.5). It suffices to

show therefore that, if a: S -» JR is any summable function satisfying

(2.6) inf h(s,z)^a(s),
zGR"
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then

(2.7) inf ί h(s,z(s))σ(ds)^ ί a(s)σ(ds).
zEJZt JS JS

Define

r(s, z) = max{/t(s, z), a(s)}.

Then r is another normal convex integrand (immediate from the defini-
tion; see also [9, Cor. 4.1]). It will be enough to show

(2.8) inf f r(s,z(s))σ(ds)= ί a(s)σ(ds).
zEJZΈ JS JS

Arguing as above, we use the fact that the conjugate integrand

r*(s, w) = sup {z - w - r(s, z)}
zER"

is also normal and satisfies

(2.9) - r * ( 5 ? 0 ) = mίn r(s,z) = a(s).

Thus the integral functional Ir* on 5£q

n (where 1/p + 1/q = 1) is finite at the
origin, while on the other hand, since Ih is not identically + <*> on «S?J, the
integral functional Ir is finite at some point of 5£p

n. It follows then from a
basic theorem on integral functionals [10, Theorem 2] that Ir and Ir* are
conjugate to each other with respect to the natural pairing between «S?J
and ££q

n, and hence in particular

(2.10) Jr.(0) = sup {<z, 0) - I (z)} = - krf Ir (2).

Recalling (2.9), one sees that (2.10) is precisely the desired relation (2.8).

PROPOSITION 2. The function F2 is a normal convex integrand on
S x Rni x JR ̂  x R m\

Proof. Let

F2 ί (s, xu x2, u2) = f2i (5, xu x2)-u2i for i = 1, , m2,

Ft / \ / * / * \

2θV 3? Λi, Λ2, U2) — J2o^3,'Λi, Λ 2 j .
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Then F2ι (s,xu x2y u2) is finite, measurable in s and convex in (xu x2, u2), so
that F2ι is a normal convex integrand, i = 0,1, , m2 [4, Lemma 2]. For
i = 1, , m2 let

ht (s, xu x2, u2) = 0 if F2ι (s, xu x2y u2) ^ 0,

= + oo if F2i (s, xu x2j u2) > 0.

Then hi is a normal convex inegrand [9, Theorem 4, Cor. 4.4]. Further-
more the function

h(s, xu x2, u2) = 0 if x 2 £ C 2

= + oo if χ2 £ C2

is a normal convex integrand [10, Lemma 1]. We have

F2 = F2O+h+Σ ht9
i = l

and F2(5, , , ) is not identically -hoo O n Rn*x R^xR"1* for any
5. Therefore, as a sum of normal convex integrands, F2 is a normal
convex integrand [9, Cor. 4.2].

The last result of this section involves continuity properties of F as a
functional on X x 17. Of course, X x U has a natural normable topol-
ogy, but we shall also be interested in the weak topology which is the
product of the weak topology on U induced by the pairing (1.6) with the
space Y and the weak topology on X induced by the pairing

(2.11) (x,v)=zx]'ViJr x2(s)- v2(s)σ(ds)
Js

for

(2.12) υ^{υuυ2)ίΞ V - Rn>x£ι

n2.

PROPOSITION 3. The functional F on X x U is lower semicontinuous,
convex and not identically + α% the lower semicontinuity being not only
with respect to the normable topology, but also with respect to the weak
topology on X x U induced by the above pairing with V x Y.

Proof. It is easy to see that F^ + ^: choose any (xu x2) in Xo, the
set defined in (1.9). Since the function 5 -»(x u Xi(s)) is measurable and
essentially bounded, we know that the functions s ~*f2i (s, xux2(s)) for
i = 1, , m2 are measurable and essentially bounded. Define u -
(κ,,M2)e U by
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Mil =/ii(*i),

= 1, , m 2 .

The constraints (1.4) and (1.5) are then satisfied, so F(x, u) has by
definition a finite value.

The convexity of F is obvious from (2.1) and the convexity of the
functions Fx and F2(s, •,*,•)• To establish the lower semicontinuity, it
will be enough to show, setting

Rn = RnxR^xR^7 z = (x1? x2, u2),

that the integral functional

IF2(z)= I F2(s,z(s))σ(ds)
Js

is lower semicontinuous on «S?" with respect to the weak topology induced
byif ί .

From what we have already noted, there is at least one z E if; such
that / f i(z)< +°°. We shall demonstrate for the conjugate integrand

F ? (5, w) = sup {z: w - F2(s, z)}

it is also true that /F (w) < + 00 for some w 6 ί l . This will imply by the
fundamental theorem on integral functionals invoked above in proving
Proposition 1 [10, Theorem 2] that IF2 on J£; and JF on if i are conjugate
to each other with respect to the natural pairing between S£Z and if 1, and
hence in particular are lower semicontinuous with respect to the weak
topologies induced by this pairing.

Define h on S x Rn by

ft (5, z) = /20(s, xu x2) for z = (x1? JC2, u2).

Since h is finite, convex in z and summable in 5, it is a normal convex
integrand [10, Lemma 2]. Indeed, according to [11, Theorem 2], the
integral functionals Ih on if; and /h* on ifj; are conjugate to each
other. The latter relationship implies Ih* is not identically +00, since
otherwise the conjugate of Ih* would be identically -°°, contrary to Ih

being finite on the constant functions (in fact finite throughout
if;). Since ft ^ F 2, we have ft * g F?. Taking any w E ^\ such that
//1*(w)< +°o? we have IF 2(w)< +00 as desired.
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3. The problem seen from the first stage. To provide
some partial justification for our restriction to recourse functions which
are measurable and essentially bounded, we consider the relationship
between the problem in this formulation and two versions of the problem
in terms of the initial choice of xλ.

For convenience, let us denote by / the essential objective function
in P; thus / ( J C ) ^ F(JC, 0) or in more complete fashion

(3.1) f(xux2) = Fx(xu0) + j^ F2(s,xux2(sl0)σ(ds)

for (xux2)SX = Rn*x&Z2.

As seen fron the first stage, P amounts to minimizing the function

(3.2) J(Xι)= inf f(xux2)

over R"1; this may be termed the first-stage problem induced by P. On
the other hand, for each xλ E Rnι and s E 5 let

q(syxι) = inf F2(s, xu x2,0);
X2GR" 2

in other words, q(s, Xι) is the infimum of the second-stage cost /20(s, Xι, χτ)
over all recourses x2 satisfying the second-stage constraints. The
problem

Q minimize j(xί) = F{(xu0)+ I q(s,Xι)σ(ds) over all x}ERni

may then be termed the intrinsic first-stage problem. Here, following
our earlier convention, we regard /(JCI) as + °° unless Fλ(xu 0) < + oo and
the function s —> q(s, xx) is majorized by a summable function of s. The
measurability which is needed in this definition is asserted by the next
proposition.

PROPOSITION 4. For each xhERn\ qfaxx) is measurable as a
function of s E S.

Proof Fix xu let h (5, x2) = F2(s, xu JC2, 0) and

(3.3) S' = {s ES\3 x2 with / φ , x2)< +00};
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Since F2 is a normal convex integrand (Proposition 2), the set S' is
measurable, and h is a normal convex integrand on S' x R"2 [9, Corollary
4.5]. We may conclude then from Proposition 1 and the formula

(3.4) q(s,Xt)= inf h(s,x2)

that q(s, Xι) is measurable as a function of 5 E 5'. Since q(s, Xι)= + °°
for s£ S\ the result is thereby established.

Obviously it is true that

(3.5) j(x1)^f(xι,x2) for all JC2 E Λ"1, x2E^x

n2,

and therefore

(3.6) inf Q g inf P.

The question in justifying P is whether under fairly general circumstances
equality holds, and if so, whether solutions to one problem correspond to
solutions to the other. More specifically, we may ask under what
assumptions the function / in (3.2) coincides with /, and when the
infimum in the definition of / is attained.

Let p(s, xλ) denote the distance from the origin of the set of all
x2 E R "* satisfying the second-stage constraints corresponding to xλ and
s:

(3.7) p(s, x1) = inf{|x 2 | |F 2(5, xux2,0)< + °o}.

(By convention, ρ(s, x})= + o° if the set is empty.) We shall say that a
point jcj is intrinsically feasible in the first stage if j(xι)< + 00, which
implies of course that xx satisfies the first-stage constraints (1.1) and has
ρ(s, Xi)< +oo except for a set of probability measure zero.

THEOREM 1. Suppose that for each xλ which is intrinsically feasible
in the first stage p(s,Xι) is essentially bounded in s. Then

(3.8) j(Xι)= inf f(xux2) for all xίERn

ι.

In particular one has infQ = infP, and xx gives the minimum in the
intrinsic first-stage problem Q if and only if it gives the minimum in the
first-stage problem induced by P.

Proof Relation (3.8) is trivial if JCI is not intrinsically feasible in the
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first stage, so we henceforth fix such an xx. Consider the set 5' and
normal convex integrand h on Sf x R"2 defined in the proof of Proposi-
tion 4. Since (3.4) holds and y(jci) < + °°? S' differs from S only by a set
of zero measure. Thus (3.8) is equivalent to the relation

(3.9) ί ί inf h(s,x2)]σ(ds) = inf ί h(s,x2(s))σ(ds),
Js' Lχ2<ΞR"2 χ2eΛ, Js'

and this is valid by Proposition 1 if the infimum over £β"2 is not + <». We
can therefore prove the theorem by showing the existence of x2 E 5£™2

with F2(s,xu JC2(S), 0) summable in s. Since F2 is given by (2.3), where
f20(s, xu x2(s)) is always summable in s for x2 E «S?"2, the equation reduces
to the following. For each s E S let

(3.10) Γ(s) = {x2ER^\x2EC2 and f2i(s,xu J t 2 )^0, ί = 1, • , m2}.

We want x2 E 5£x

m satisfying x2(s) E Γ(s) almost surely. Observe that the
multifunction Γ is closed-convex-valued, and Γ ( s ) ^ φ for s E S'. We
claim Γ is also measurable (in the sense that {s\Γ(s)Π K^ φ} is
measurable in 5 for every closed k C i?"2). This follows from (3.8) and
the fact that C2 is closed and the functions

k (s, x2) = f2i (sy xu * 2 ) , i = 1,' * , m2,

being finite, measurable in s and convex in x2, are normal convex
integrands; see [9, Corollary 4.4]. Because

we may conclude ρ(s, JC2) is measurable in 5; in fact, if x2(s) denotes for
each s E S' the unique point of Γ(s) nearest 0, then x2 is a measurable
function on 5' [9, Theorem 3(f)], and of course | JC2(S)| = p(s, JCi). Since
p(s,Xι) is essentially bounded in s by hypothesis, and S' differs from S
only by a set of measure 0, the function x2 so constructed may be
regarded as an element of ϊ£™m satisfying J C 2 ( S ) E Γ ( S ) almost surely, as
desired.

THEOREM 2. Suppose the set C2 is bounded. Then not only are the
conclusions of Theorem 1 valid, but also the infimum in (3.8) is attained
for each x^R^ by at least one x2E <£„.

Proof The hypothesis of Theorem 1 is satisfied, becuase

p(5, Xi) ^ r - max{|jc2| | x 2 E C2}.
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Attainment in (3.8) is trivial if y(jCi) = + oo? so fix x1 with j(xι)< + oo and
consider the set S' and normal convex integrand h on-S' x Rn defined in
the proof of Proposition 4. As observed in the proof of Theorem 1,5'
differs from S only by a set of measure zero, and (3.8) can be written as
(3.9). The question reduces thus to whether the infimum on the right in
(3.9) is attained. For each s E S', let Γ(s) denote the set of all x2E JR"2

at which the infimum of h(s, ) is attained. Since h(s, •) is lower
semicontinuous and

h(s,x2)< + °° implies X2ELC2,

Γ(s) is a nonempty, compact subset of C2. Moreover Γ is a measurable
multifunction from S' to i?"2, because h is a normal convex integrand [9,
Theorem 4]. There exists therefore a measurable function x2: S'-^R"2

such that JC 2 (S)EΓ(,S) for every s [9, Corollary 1.1]. This function
satisfies in particular x2(s)G C2 and hence is bounded. Thus it can be
identified with an element of i?*2 for which the infimum on the right in
(3.9) is attained.

COROLLARY. Suppose the set C2 is bounded. Then XiER"1 gives
the minimum in Q // and only if there exists x2 E !£™m such that x = (xu x2)
gives the minimum in P.

If the functions flk, f2k are linear and Cu C2 are convex polyhedral
(not necessarily bounded) one can then use the somewhat more special-
ized results of linear parametric programming to obtain variants of
Theorems 1 and 2, see [4], [14] and [6]

4. Dual i ty . The properties of the functional F established in
Proposition 3 allow us to apply the general duality theory of [8] to P and
D. Thus the perturbation function φ defined in (1.17) is convex on U,
and its conjugate φ * on Y with respect to the pairing (1.6) is related to
the concave essential objective function g in D by

(1.4) g(y)=inΐ{(u,y) + φ(u)}= -φ*{-y).
uGU

In terms of the biconjugate φ**, one has

(4.2)

whereas of course

(4.3)
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Moreover

(4.4) φ**(0) = liminf φ(u),
u—•()

if for instance φ **(0) > - o°, or if the limit in (4.4) is not + α>, the limit is
taken with respect to the weak topology induced on U by Y. The
relation

(4.5) g(y) = maxD = infP

is equivalent to the subgradient relation

(4.6) -yEdφ(0),

or in other words

(4.7) φ(u)^φ(0)-(u,y) for all u E U.

This can be interpreted in turn as saying that y is an "equilibrium price
system" for P, in the sense that the expression

(4.8) F(x,u) + (u,y)

is minimized over X x U when u — 0 and x gives the minimum in P.
The duality theorem below leads to a sharpening of these facts.

THEOREM 3. Suppose the sets Cλ and C2 are bounded. Then

min P = sup D > - oo.

In fact, the perturbation function φ is a proper convex function on U which
is lower semicontinuous with respect to the weak topology on U induced by
the pairing with Y, and the infimum defining φ is always attained, i.e. for
each u E U there exists at least one x E X such that F(x, u)- φ(u). In
particular, φ** = φ.

Proof. The relation min P = sup D follows from (4.2), (4.3), and the
asserted properties of φ. To derive these properties, we could invoke
broader results of Rockafellar [8] or Wets [13], but it is easy in the case at
hand to furnish a direct proof.

First we argue that the set Xo C X, defined in (1.9), is under the
present hypothesis compact relative to the weak topology induced on X
by V in the pairing (2.11), (2.12). This amounts to the assertion that the
set
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(4.9) X'o = {x2 E ^ : 2 1 x2(s) E C2 almost surely}

is compact in the weak topology induced on j?"2 by £β\2. Certainly X'o is
relatively compact in this topology, inasmuch as C2 is bounded. We
verify that X'Q is also closed, hence indeed compact, by considering the
function h on S x R"2 defined by

(4.10) /φ,x 2 ) = 0 if JC 2£C 2,

= +oo if χ2£ C 2.

This is a normal convex integrand, because C2 is a nonempty, closed,
convex set [10, Lemma 1]. The corresponding integral functional Ih on
i?~2 satisfies

(4.11) Ih(x2) = 0 if x 2 G X ί ,

if χ2£X'o.

In particular, Ih (x2) < + °° for at least one x2 E i?"2. On the other hand,
the conjugate integrand

(4.12) h*(s,υ2)= sup {x2-υ2-h(s,x2)}

has ft *(s, 0) = 0, and hence Ih*(v2) < + °° for at least one v2 E S£\2, namely
υ2 = 0. It follows that Ih on i ? ^ and Ih* on i?i2 are convex functionals
conjugate to each other [10, Theorem 2], and this implies, among other
things, that Ih is lower semicontinuous with respect to the weak topology
induced on ϊ£l2 by Se\2. But

(4.13) X'() = {x2ϊΞ£e:2\Ih(x)^0},

in view of (4.11). Therefore X'o is closed as claimed.
The compactness of Xo implies that in the definition

(4.14) φ(u) = infχF(x,u)
χ

the infimum is always attained, since F is lower semicontinuous in the
weak topology (Proposition 3), and

(4.15) F ( x , u ) < + o o implies x E X 0 .

Thus, like F (Proposition 3), φ is not identically 4- °o and nowhere has the
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value -oo (i.e. φ is "proper"), and each of the level sets {u E U\φ(u)
g α } is the projection on U of the corresponding level set of F:

(4.16) Da={(x,u)EXxU\F(x,u)^a}.

But the projection of Da on U is closed in the weak topology. This is
true because Da is closed (by the lower semicontinuity of F), and the
projection of Da on X is contained in the compact set Xo. Therefore φ
is lower semicontinuous (in the weak topology induced on U by
Y). Inasmuch as φ is a proper convex function on U which is lower
semicontinuous in a topology compatible with the pairing between U and
Y, we have φ** = φ.

COROLLARY 1. Suppose the sets Cx and C2 are bounded. Then y
gives the maximum in D // and only if - y £ dφ(0). Thus if dφ(O) ̂  0
one has the following characterization: x E Xgives the minimum in P //
and only if there exists y E Y such that (x, y) is a saddle point of the
Lagrangian L.

The interesting feature of this corollary is the qualitative information
it provides about the necessity of the saddle point criterion for optimality,
in reducing this necessity to the question of whether dφ(0)^ 0 . Let us
think of P again as embedded in the class of perturbed problems
P(M). If P is replaced by a particular P(u), this amounts merely to a
translation of F in the space U\ the Lagrangian L is replaced corre-
spondingly by

(4.17) Lu(x,y) = L(x,y)-<W,y>,

and the dual D is replaced by

D(M): maximize g(y) — (u,y) over all y E Y.

Assuming the sets C] and C2 are bounded, we have

min P(w) = sup D(w),

where the supremum in Ό(u) is attained at y if and only if - y E
dψ(u). Let us say that P(w) is a regular problem if

min P(w) = max D(w),

so that the saddle point criterion for optimality in P(w), in terms of the
Lagrangian Lu, is a necessary condition. We then have:
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COROLLARY 2. Suppose the sets Cx and C2 are bounded. Then
P(w) is a regular problem for every u such that dφ(u)^0. Moreover,
given any u E U such that inf P(w) < + o°, and any y E Y and e > 0 such
that y is an e-solution to the dual Ό(u) (i.e. yields the maximum in D(w) to
w i t h i n € ) , there exist u' E U and y ' E Y with

(4.18) \\u'-u\\x^V~e and \\y'-y\U*V~e9

such that P(w') is a regular problem andy' gives the maximum in D(w').

The norms here are

(4.19) llylliHyil + IMIi for y = ( y i , y 2 ) e γ ,

(4.20) IIu |U = max{I M l | , | |M2 |U} for u=(uuu2)EU.

The last part of the corollary is a restatement of an existence lemma for
subgradients in Br0ndsted-Rockafellar [1]: if - y E<9eφ(w), then there
exist u' and y' satisfying (4.18) such that - y ' E dφ(u'). This is applic-
able because Y is a Banach space under the norm (4.19) whose dual can
be identified with U under the norm (4.20), and because φ is according to
Theorem 1 the conjugate of a convex function on Y (namely φ*, since
<p** = φy The elements y such that - y belongs to the e-subgradient
set deφ(u) are the β-solutions to D(w), in view of (4.1). We have seen,
on the other hand, that the relation - y' E dφ(u') means that P(w') is a
regular problem and y' gives the maximum in Ό(u').

In particular, Corollary 2 says that the set of u such that P(M) is a
regular problem is norm-dense in the set of u such that inf P(w) < + oo.

The final result of this paper furnishes a complete characterization of
the directional derivatives

φ;(0, u) = lim {φ(λu)- φ(0)]/λ.
λ | 0

These exist of course by the convexity of φ, when φ(0) is finite.

THEOREM 4. Suppose the sets d and C2 are bounded, and inf P <
+ °°. Then for every u E U one has

φ'(0;w) = lim sup (u, -y>,
e | 0 y£M(e)

where M{e) is the set of e-solutions to D.
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Proof. The hypothesis implies by Theorem 3 that φ(0) is finite and
φ** = φ. The formula

φ'(0;u) = lim sup (u, y)
e | 0 (0)

is then valid [8, Theorem 3]. The e-subgradient set dcφ(0), consisting of
the elements y such that

φ(u)^[φ(0)-e] + (uyy) for all u E U,

coincides with - M ( e ) by (4.1).

COROLLARY. Suppose the sets Cx and C2 are bounded, and inf P <
+ oo. Let u EU and a E JR. Then the inequality φ'(0, u)^a holds if
and only if there exists a maximizing sequence (yfc)Γ=i for D such that

limsup (u, - yk)^ a.
fc-» °o

5. A n e x a m p l e . Here we give a very simple example which
shows that this theory allows only for a min = sup duality theorem. Let
us consider the following problem P: Find(xux2(s))ERnix &Z2

satisfying

and almost surely

x2^ 1} and J d - x2S

with JCI minimized. The random variables s has a uniform distribution
on [0,1]. The corresponding problem D obtained from this linear
stochastic program is given by (1.21), % (1.23) which becomes here:
Find v E R, π(s) = (rr^s), ττ2(s)) E 5£\ satisfying

almost surely

and maximizing

- v + E{ττx{s) - s - π2(s)}.
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It obvious that the optimal solution will have τr2(s) = 0 a.s. and since
πι(s)^0 it follows that the constraint πλ(s)+ π2(s)^ - 1 a.s. is never
binding. Thus the optimal solution will have v = Max[0, £{τri(s)}- 1].
Examining both cases it is clear that v must be = 0 in an optimal
solution. Thus the problem D is equivalent to finding πλ{s)E.S£ι such
that

7τ,(s)^0 a.s. and

which maximize E{πλ(s)- s}. It is easy to verify that the maximum is
not attained by an ϊ£λ function. The sequence of functions

0 for 0 ^ 5 ^ 1 - -
ί H

π^Λs)= n if 1-±<S2ΠI n

is a sequence of feasible solutions such that

lim E{πu (s) s} = lim 1 - τr~ = 1 = sup D.
n-«° n-^oo 2.ΪX

But the cluster point of the sequence {ττln} is not in ££ι.
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