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THE UNLOADING PROBLEM
FOR SEVERELY TWISTED BARS

TSUAN Wu TING

Suppose that a cylindrical bar is twisted by terminal couples
beyond its elastic range. What will happen if the applied load is
(gradually) removed? This question will be formulated, ac-
cording to the deformation theory of plasticity, as a problem of
variational inequalities over a convex set in a Hubert space and
the existence, uniqueness and the regularity of the solution will
be established. In addition, physically relevant results will be
derived.

1. Introduction. If the bar is twisted in the elastic range only,
then the behavior is well-known. For elastic-plastic torsion, i.e., torsion
beyond the elastic range of the material, the problem was also essentially
solved by various authors during the last decade [1, 2, 4, 9, 10, 13, 15].
However, these results are applicable only when the applied torque is a
continuous nondecreasing function of time. This case is known as the
"loading process". The question we raise here is about the "unloading
process". This question has an immediate answer if the applied torque is
sufficiently small or if the material is perfectly elastic. However, the
answer is not obvious if the material is elastic-plastic and if the applied
torque is so large as to cause permanent "set".

Throughout this paper, %we shall denote by G a plane domain
describing the cross-section of the bar. We state our restrictions on G
explicitly as follows:

(i) dG, the boundary of G, is a twice continuously differentiate
Jordan curve;

(ii) The curvature of dG, as a function of its arc length, assumes
only a finite number of maxima and minima;

(iii) G is simply connected.
We present here three equivalent formulations of the unloading

process. The basic existence and uniqueness questions are settled in §4
and the equivalence of the different formulations are proved in §§6, 9. To
eliminate the inequality constraints, two types of Lagrange's multipliers
are introduced. Their existence and uniqueness are established in §§5, 8,
9 and 12. Since the problem is formulated as a problem for determining
the stresses in what is known as the dual problem, we are obliged to
consider the corresponding primary problem for determining the dis-
placement field. This is carried out in §12 by first solving the topological
elastic-plastic partition problem in §11.

559
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2. Known facts on the loading problem. We state the
loading problem together with known results. Let Co (G) be the class of
infinitely smooth functions with compact .support in G. For / and g in
G, we write

(/>g)o = f(*)g(x)dx,
JG

(2.1) ,
(/> g)i = (/> g)o + grad f(x) grad g(x)dx,

JG

where x = {xu x2) and dx = dxλdx2. The corresponding ZΛnorm and the
Dirichlet norm is denoted by || ||β, a = 0,1. As usual, the completion of
Co(G) under || | | rnorm is denoted by Hl{G) which is a separable
Hubert space.

Let k be a positive (yield) constant and let

(2.2) Y = {u;u<ΞHι

0(G), \grad u\^k a . e . in G } .

Then Y is a closed convex subset of H\{G) [4]. The loading problem is to
find a function ψ* in Y such that

(2.3) I[ψ*] = inf/[w] = inf ί [|grad w | 2 - 4μθu]dx,
γ γ

 JG

where μ and θ positive constants standing for the shear modulus and the
angle of twist per unit length, respectively.

The minimizer ψ* is known as the Prandtl stress function and
grad ψ* represents the nonzero components of the stresses. The yielding
constant k in (2.2) is the upper bound for the maximum shearing stress
and is also the upper bound of distortion energy density.

Let C f c + α(G)be the class of functions whose derivatives of order ^ k
are Holder continuous in G with exponent α, 0 < a < 1. Then we have
the following existence, uniqueness and regularity results [1, 2, 9,15].

THEOREM 2.1. The loading problem (2.3) has a unique minimizer
ψ* such that Δψ* belongs to LP(G) for allp E (I,0 0) and hence it can be
represented by a function in Cι+a(G) for all a E (0,1).

There exists a unique function Ψ in Y [9, 15], such that

(2.4) P[Ψ] = sup P[u] = sup ί u(x)dx,
Y Y JG

where Ψ is referrred to as the completely plastic stress function. Let

(2.5) Γ ^ M MG H O ( G ) , O^U^Ψ a.e. in G}.



THE UNLOADING PROBLEM FOR SEVERELY TWISTED BARS 561

Then K+ is a closed convex subset of Hι

0(G) and we have the following
equivalent formulation for the loading problem [2], [15].

THEOREM 2.2. There is a unique ψ in K+ such that

(2.6) I[φ] = inίl[u] and ψ = ψ* in Cι+a(G).

κ+

This equivalent formulation provides certain conveniences in estab-
lishing the regularity results for ψ as well as for setting up numerical
schemes [2], [15]. Moreover, it gives a clear picture of how the domain G
is partitioned into elastic and plastic zones by the stress function ψ. Such
information is not only essential for the existence of the warping function
[1] but also for treating the unloading problem.

Since the minimizer ψ belongs to Cί+a(G), the sets,

E ={x;xEG,\gτadψ(x)\<k},

( 2 7 ) P = {x;xEG,\gvιdφ(x)\ = k],

are well-defined. Moreover, we have the following equivalent character-
ization for E and P [15],

(2.8) E = {x in G;ψ(x)<Ψ(x)}, P = G\E.

Denote by Γ(Ψ) the set of all points in G over which grad Ψ is
discontinuous. Then, under the restrictions (i) and (ii) on the domain G,
Γ(Ψ) consists of a finite number of smooth Jordan arcs [15a]. Moreover,
we have [15c].

THEOREM 2.3. The open set E is simply connected and contains the
set Γ(Ψ). The set P consists of inward normal segments to dG.

Finally, we have the following results which ensures the existence of
a unique warping function [1].

THEOREM 2.4. There exists a unique continuous function λ(x) such
that

(2.9)λ(*)^0 in G + ^G, λ(*)[fc - |grad φ(x)\] = 0 on G + dG,

and such that

(2..10) ί [(l + λ(x))Vι// Vw-2μ0w]djc = 0 for all u in Hl(G).
JG
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3. Formulation of the unloading problem. Let φ be
the minimizer of the loading problem (2.6) and λ(x) be the correspond-
ing Lagrange multiplier, as in Theorem 2.4. Let

(3.1) Z = \u in HJ(G); ί u(x)dx = θ} .

Then Z is a closed subspace of Hl(G). The unloading problem for a
elastically-plastically twisted bar with cross-section G is to find a function
ζ*(x) in y Π Z such that

(3.2) J[ ί*] = inf/[iι] = i n f | [|Viι |2

where Y is the closed convex set defined in (2.2).
Apparently, the above minimization principle is proposed here for

the first time in accordance with the deformation theory in plasticity.
Nevertheless, it is in agreement with other such principles which are
based on the theory of Prandtl-Reuss [1].

It is also worthwhile to make a few observations before attacking the
problem. Since the problem is formulated in terms of a single stress
function ζ*9 the conditions of equilibrium are automatically satisfied.
Moreover, the restrictions on the admissible class of functions assure us
two things. First, if an admissible function u has mean value zero and
vanishes on dG then there is no applied terminal torque and the lateral
surface of the bar is free from applied forces. Secondly, the modulus of
the residual stress, |V£*|, remains below the yield constant k. The
minimization principle takes the place of the constitutive relations.

The term λ(x)Vψ(x) Vζ*(x) in (3.2) represents the permanent
deformation caused by the stress, VΨ, in the course of loading. If this
term were omitted, then ζ* would be identically equal to zero. In fact,
if the multiplier A equals zero identically, which is possible if θ is
sufficiently small, then ζ* = 0 identically in G. Hence, in this case, there
is no residual stress after unloading. This is just what one would expect
from the plasticity theory. The problem so formulated can be solved
explicitly if the domain G is a circular disk.

Just as for the case of loading, it is desirable to have another
formulation of the unloading problem. To do this, let

(3.3) K = {u in m(G); -ψ^u^Ψ a.e. in G},

where Ψ is the completely plastic stress function defined as the solution of
problem (2.4). As is easily seen, K is also a closed convex set in Hl{G).
Instead of finding ζ*, we consider the problem of finding a function ζ in
K Π Z such that
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(3.4) J[f] = inf/[«].
KΓ)Z

Problem (3.4) has been so constructed that it is equivalent to
problem (3.2) in the sense that these two problems have one and the same
solution. However, this will not be proved until §6.

4. Existence and uniqueness of the solution. It turns
out that these basic questions can be easily answered. Since the proof is
elementary and since the reasoning used in the proof will also be useful
later on, we present it in detail.

THEOREM 4.1. Both problems (3.2) and (3.4) have unique solutions.

Proof. Since the proof for the two problems is essentially the same,
we carry it out for problem (3.4). Let {ζn} be a minimizing sequence of
J[u] over KHZ, i.e.,

(4.1) HmJ[ζn] = d = inίJ[u] over K Π Z.
n—*oo

Clearly, d is finite. Since J[u] is defined on all of HJ(G), simple
computation leads to the identity

(4.2) J[Kζm + ζ«)]

Now, for every number 6 >0, we can, by virtue of (4.1), choose an
integer N so large that for all m, n g N,

(4.3) J[ζn]^d + el2, J[ζn]^d + e/2.

On the other hand, (ζm + ζn)/2 belongs to K Π Z for all values of m and
n. It follows that

(4.4) J[(ζm + ζn)/2]*d.

By replacing the 1st term on the left-hand side of (4.2) and the two terms
on the right-hand side of (4.2) by their respective lower and upper bounds
in (4.4) and (4.3), we obtain the estimates

(4.5) ±lG\gnd(ζm-ζn)\2dx^c for all m and n^N.

Since 6 is arbitrary, we conclude from (4.5) and Poincare's inequality that
the minimizing sequence {ζn} is actually a Cauchy sequence in Hι

0(G).
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Denote by ζ the || ||i-limit of ζn. Then, the Lebesgue dominated
convergence theorem ensures that J[ζ] = d. Since the function ζ so
constructed belongs to K Π Z, it is a minimizer of J[u] over K Π Z.

For the uniqueness, let ζx and ζ2 be two minimizers of J[u] over
K H Z Then

J ^ /[(ft + f2)/2], /[£] =S /[(ίi + ί2)/2].

By adding the corresponding sides of these two inequalities, we find

(4.6) ί \gτέd(ζί-ζ2)\2dx^0.
JG

By virtue of Poincare's inequality, (4.6) holds if and only if ζx = ζ2 in
Hl{G). The theorem is now established.

Having answered the basic question, we procceed to derive informa-
tion about the solution. To this end, we first establish

5. The existence of a deformation multiplier. We wish
to show that without destroying the minimization principle, a Lagrange
multiplier can be introduced so as to eliminate one of the side constraints.
Let ω be a parameter ^ 0. Consider the one-parameter family of
functionals,

(5.1) J»[u]^i [| Vw |2-f- 2λVψ Vu-4μωu]dx
JG

over the closed convex set K in Hι

0(G). By completely similar reasoning
as used in the proof of Theorem 4.1, we have

THEOREM 5.1. For every ω ̂  0, there exists a unique function ζω in K
such that

(5.2)

Recall that the angle of twist per unit length at the end of loading is
equal to θ. We wish to show that if the loading is elastic-plastic, i.e., if θ
is sufficiently large, then the bar remains partially twisted even after
complete unloading. More precisely,

THEOREM 5.2. Suppose that the multiplier λ (x) ^ 0. Then there is a
number ω**, 0 < ω** < θ such that if ζ** is the minimizer of Jω**[u] over
K, then ζ** = ζ in Hl{G), where ζ is the solution of problem (3.4).
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The multiplier ω represents the angle of twist per unit length of the
completely unloaded bar relative to its natural (unstrained) state. If the
permanent deformation occurred at at the end of the loading process,
then the bar cannot recover its original shape after the removal of the
applied torque. This physical reasoning indicates that ω**>0. In par-
ticular, θ cannot decrease to zero in the process of unloading. Again,
physical reasoning shows that the displacement of each material point
must be reduced when the terminal couples are released. Accordingly, if
our formulation of the problem does serve as a model of reality, then we
must have ω**<0. These are the physical reasonings leading to
Theorem 5.2. For clarity, we split the proof into lemmas.

LEMMA 5.3. Let ζω be the unique minimizer of problem (5.2). Then

(5.3) ω - > / ( ω ) = ί ζω(x)dx
JG

is continuous and nondecreasing on [0, °°).

Proof. Let 0 < ωx < ω2 be given numbers and let ζx and ζ2 be,
respectively, the minimizers of /ωJ«] and /ωJw] over the convex set
K. Then for all e in [0, 1], the function, (1 - e)ζx + eζ2, lies in K. Hence,
from the minimizing property of ζu we have

dJω[(l - e)ζx + eζ2]/de ^ 0 a t 6 = 0 .

This means that

Similarly, we have

[(Vζ2 + λVψ) V(ζx - ζ2) - 2μω2(ζx - ζ2)]dx ^ 0.

By adding these two inequalities together, we obtain

(5.4) 2μ{ω2-ωx)[ (ζ2- ζx)dx ^ [ \V{ζ2-ζx)\2dx ^0
JG JG

which show that /(ω), defined in (5.3) is, indeed, a nondecreasing
function of ω.

To establish the continuity of /, we denote by diam(G) the diameter



566 TSUAN WU TING

of G and by | G | the area of G. Similar notations will also be used later
on for other measurable sets. Clearly,

O^Ψ^k diam(G), -Ψ^ζuζ2^Ψ.

It follows immediately that

(5.5) | ^ 2 - ^ | ^ 2

On the other hand, Poincare's inequality states that there is a constant
C(G) depending only on G such that

C(G) ί \V(ζ2-ζtfdx * ί \ζ2-ζι\
2dx.

JG JG

A further application of the Schwartz inequality gives

(5.6) C(G)\G\jG \V(ζ2-ζtfdx

Now, it follows from (5.4)-(5.6) that

4kμC(G)(ω2-ωλ)\G \2diam(G)^

which ensures the continuity of /.
Actually, we can iterate the above procedure to prove the Lipschitz

continuity of /, but we do not need it for later work.

REMARK 5.4. It is an open question whether f{ω) is a strictly
increasing function of ω for all ω ̂  0. However, we shall establish the
uniqueness of the deformation multiplier in §8.

LEMMA 5.5. Letf(ω) be defined by equation (5.3). Thenfφ) < 0.

Proof. Denote by ζ0 the minimizer of Jω[u] over K with ω = 0.
Since the minimizer ψ of the loading problem belongs to K+, the function
- φ belongs to K. Consequently, for the minimizer ζ0, we have the
variational inequality,

ί [Vζo V(Ψ + ζo)+λVψ-V(ψ + ζo)]dx^O.
JG

It follows from this inequality and equation (2.10) that
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2μθί ζo(x)dx=ί [(l + λ)Vφ Vζo]dx
JG JG

^- ! [\Vζo\
2 + λ\Vψ\2]dx<O.

JG

This proves the lemma. We used the positivity of A(JC) over a set of
positive area in obtaining the last inequality. This means that the loading
process does cause a "permanent set". Of course, this is what one would
like to have.

LEMMA 5.6. Let f(ω) be defined by formula (5.3). Then, f(ω)>0
for all ω^θ.

Proof Since^equation (2.10) holds for all u in Hι

0(G), the function
φ minimizes the functional Jθ[u] over Hl(G). If u belongs to Hl(G)
with u = φ 4- w, then

(5.7) Jθ[u]-Jβ[Ψ]= I
JG

From this fact and the uniqueness of the minimizer for Jθ[u] over
Hl(G), we conclude that ζθ = φ in H\{G).

Recall that ψ minimizes I[u] over K+. Hence, ψ ^ 0 in G. Suppose
that ψ(x0) = 0 at some point x0 in G. Then, according to (2.7) and (2.8),
the point x0 lies in E which is an open set contained in G. It follows
from continuity that for some number e >0, |gradψ|<A: in the
diskD(jt0, e) centered at xo with radius e such that D(xo,e)CE. It is
known [15c] that Δψ = -2μθ in E. We have, in particular,

Aφ=-2μθ in Γ>(jco,e), φ ^ 0 on dD(xo,e).

Now, φ(x0) = 0 is an interior minimum of φ in the disk D(x0, β), and we
have a contradiction with the strong maximum principle for the solutions
of elliptic differential inequalities. Thus, we conclude that

φ(x)>0 for all x in G.

This inequality ensures that

f(θ)= ί ζθ(x)dx = ί φ(x)dx>0.
JG JG

The fact that /(ω)>0 for ω > θ follows from Lemma 5.3.
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Proof of Theorem 5.2. We have shown that f(ω) defined in (5.3) is a
continuous nondecreasing function of ω and that /(0)<0 and f(θ)>0.
Hence, there exists a number ω**,0<.ω** < 0, such that if ζ** is the
minimizer Jω**[u] over K, then /(ω**) = 0.

To show that ζ** = ζ, we observe that ζ**EKΠZ. Hence,

intJΛ»] = JΛζ**] = inf JΛu] = inf/[«].

Thus, both f and £** are the minimizers of the same functional J[u] over
the same closed convex set K Π Z. It follows from the uniqueness of the
minimizer that £** = ζ in H

6. Regularity of the minimizer and equivalence of
two formulations. Having established the existence of the deforma-
tion multiplier ω**, we now regard ζ as the minimizer of /ω**[w] over
K. To simplify notation, we write ω for ω** so that

(6.1) J ω [f] = i n f ί {\Vu\2 + 2λVψ-Vu-4μωu}dx.
K JG

We wish to show that ζ belongs to Cι+a(G) for all a G (0,1). As a
consequence of the proof, we shall see that | V£ | ̂  k in G. The technique
used in the proof is exactly the same as is given in [3]. However, the same
device is applied to a different problem. Accordingly, we first describe
the essential steps and then add some clarification.

THEOREM 6.1. // ζ is the minimizer of problem (6.1), then ζ E
Hl'p(G) for all p E (1, °o)? and hence, it can be represented by a function in
Cι+a(G) for alia E (0,1).

Since ζ is the minimizer of Jω[u] over K, we have the variational
inequality,

(6.2) f
JG

for all u in K. This inequality together with equation (2.10) implies that

( 6 3 ) ί
JG

for all u in K. Inequality (6.3) is easier to handle, because it does not
involve the multiplier λ (x) which is not, in general, differentiate. To use
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variational inequality (6.3), we first construct a suitable elliptic differen-
tial operator. To do this, let

dGr = {x E G I dist(x, dG) < r}.

Since dG is of class C\G\ there is [3, p. 172] a function β{x) in C2(G)
such that

(6.4) β(x)=k dist(x, dG) on dGn β(x)^k dist(x, dG) on G,

provided the positive number r is small enough. Now, let

M = max {sup Σ d2β/dxtdxh Of ,

(6.5) bt(x) ̂  Mdβ/dxn γ >2M/r,

A = 2 aV^to, - Σ bι(x)3/dxι - γ.

Having defined the operator A, we consider, for all 6 > 0 and for all even
integers p > 2, the nonlinear Dirichlet problems,

(6.6) eAζe = (ζe-ζf^ in H^(G)ΠH^(G)9

for determining ζe. Here Hkp(G) stands for the space of functions
whose distribution derivatives of order ^ k are in LP(G). For the
problems in (6.6), we have the following results.

1. For all e > 0 and all even integers p>2, problem (6.6) has a
solution ζ€ in Hlp{G) Γ) H2 P(G). This can be proved by considering the
linear problems obtained by replacing ζ€ on the right-hand side in (6.6) by
a given function in Hι

o

p(G) and then apply Schauder's fixed-point
theorem, [8, 15c].

2. If ζe is a solution of (6.6), then - β < ζe < β in G. This is a
consequence of the weak maximum principle and its proof is similar to
that given in [3, p. 174]. In fact, the operator A was so constructed that
Aβ ^ 0 on G.

3. If ζe is a solution of (6.6) with γ greater than a fixed number
which depends only on β and its first two derivatives, then | Vζ€ | ^ k in
G. A detailed proof of this is given in [3, pp. 174-175].

4. If {e} is a positive numerical sequence tending to zero and if {ζe}
are the corresponding solutions of (6.6), then
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(6.7) | | Δ £ | | O , P ^ constant

which is independent of e. Here, || ||fc p stands for the usual norm on
Hkp(G).

Proof of assertion 4. We derive the last statement as a consequence
of variational inequality (6.3). Since | V£e | ̂  k in G for all small e > 0, we
may replace u in (6.3) by ζe to obtain

^-ί \V(ζe-ζ)\2dx.
JG

Applying the divergence theorem to the first integral on the left, we get

(6.8) f (Aζe)(ζ€-ζ)dx^[ [2μ(θ-ω) + Aψ](ζ€-ζ)dx.
JG JG

Since the first equation in (6.6) can be written as

in

we can substitute this expression into (6.8) for (ζf - ζ) to obtain

(6.9) ί (Aζe)(Aζe)^dx ^ ί
JG JG

Applying the binomial theorem to expand (Aζe)
p~ι into polynomials in

Δ£€, we can write (6.9) as follows:

(6.10) f
JG

where Pp^γ{Aζe) and Op_i(Δ^e) are polynomials of degree g p - 1 in Δ£
with coefficients being monomials of degree ^ p in (γ + l,bidζjdxi).
Since | Vζe \ ̂  k in G and since β E C\G\ it is clear that | y + XbβζJdXi |
is bounded by a constant independent of 6. Since ψ E H2p{G) for all
p E (I, 0 0 ) , Holder's inequality leads to the estimates,

With these facts in mind, we now repeatedly apply Holder's inequality to
the right-hand side in (6.10) to obtain the desired estimate,
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( | | Δ £ | | O , P ) P ^ const. Σ ( I | Δ £ lkP) 7,

where the constant is independent of e. This is possible, if and only if,
inequality (6.7) holds.

Proof of Theorem 6.1. Let {e} be a positive numerical sequence
tending to zero and let {ζe} be the corresponding solutions of (6.6) with p
being an even integer > 2. Then the estimates in (6.7) hold. Conse-
quently, {ζe} is a bounded sequence in the reflexive Banach space
HQPΠ H2 P(G). Hence, a subsequence of {£}, which we also denote by
{£}, converges weakly on HιόpΓ\ H2 p to a function ζ in H]opΠ H2p. On
the other hand, (6.6) and (6.7) imply that for q = p/(p - 1),

o.PY-*0 as e-*0.

This shows that ζ is the strong limit of ζe on Lq(G) as e —>0. Since the
injection map of H o p Π H2 P(G) into Lq(G) is continuous for p > 2 , we
conclude that ζ = ζ in HlpC\H2p{G). By Sobolev's imbedding theorem,
we also conclude that ζ E Cι+a(G) with a = 1 - 2/p. Since p is arbitrary,
the proof is now complete.

As a consequence of the above proof, we have the following
equivalence result which is essential for deriving the information given in
§11 and §12.

THEOREM 6.2. Problems (3.2) and (3.4) are equivalent in the sense
that a solution of one problem is a solution of the other

Proof Clearly, the set Y defined in (2.2) is a subset of K defined in
(3.3). Hence,

Jω[ζ] = inf JJu] = inf J[u] ^ inf J[u] = J[ζ*].
K L J KDZ L J YΠZ L J J

Since the solutions to problems (3.2) and (3.3) are both unique, it suffices
to show that ζ belongs to Y.

Let {ζe} be the sequence of solutions to problems (6.6). Then, for all
6 > 0 , \Vζe\^k everywhere in G. By Arzela's theorem, the subse-
quence of {ζe} can be so selected that ζe together with its first partial
derivatives converges uniformly to ζ in G and that \Vζ\^k. Thus, ζ
belongs to Y and the proof is complete.

REMARK 6.3. Problem (3.2) has a nonlinear side constraint; while
the side constraint for (3.4) is linear. Thus, it is not obvious that they are



572 TSUAN WU TING

equivalent problems. It would be good, if this equivalence could be
proved under weaker restrictions on dG, because it is the equivalent
formulation in (3.4) that leads to the solution of elastic-plastic partition
problem later in §11 and the existence of the compatibility multiplier for
the unloading problem. It is also worth to note that we have made use of
equation (2.10) for the loading problem in deriving the variational
inequality in (6.3).

7. A natural admissibility condition and its conse-
quences. Having established the equivalence of the two formulations,
we may now regard the residual stress function ζ either as the minimizer
of J[u] over Y Π Z or as the minimizer of Jω[u] over K according to our
convenience. As a first consequence, we derive a natural admissibility
condition for the unloading problem.

THEOREM 7.1. Let φ and ζ be the stress functions of the loading and
the unloading problems, respectively. Then

(7.1) — φ ̂  ζ ̂  φ everywhere in G.

Proof. From equation (2.10), we see that ψ minimizes the func-
tional,

f
J G

over the whole space Hl{G). In fact, for all u in Hι

0(G), we write
u = φ + w. Then

Iλ[u]-Iλ[φ]= ί {2[(l + λ)Vί// Vw -2μθw] + \Vw\2}dx
JG

= ί (l + λ)|Vw|2djci^0.
JG

Hence, for all u in Hi(G), we have

(7.2) ί [(l + λ)Vφ'V(u-φ)-2μθ(u-φ)]dx=0.
JG

On the other hand, for the minimizer ζ, we have for all w in K,

(7.3) ί
J G
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Let D+ be the set of points in G over which ζ > ψ. Then, D+ is an
open set properly contained in G. Now, defining

(ζ(x) in D\ rφ(x) in D\
( 7 . 4 ) u ( x ) = w(x) =

U(JC) in G\D\ lζ(x) in G\D\

and setting the test functions u and w in (7.2) and (7.3) equal to the ones
defined in (7.4), we find

[(1 + λ)Vφ V(ζ - ψ)~2μθ(ζ - ψ)]dx = 0,

By adding these two relations, we obtain

ί
JD +

Since θ-ω>0 and ζ>ψ on D + , this inequality holds only when
D + \ = 0. This proves the second inequality in (7.1).

To establish the first inequality in (7.1), we let D~ = {x\ζ(x)<
- φ(x)] and define

f-ζ(x) in D", (-Ψ(x) in Γ>~,
(7.5) M(jc) = w(x) =

U(JC) in G\D-, U(x) in G\D",

and then choose them as the test functions in (7.2) and (7.3), respectively.
This gives

(7.6) ί [(1 + λ)Vφ V(ζ +φ)- 2μθ(ζ + φ)]dx = 0,
JD~

(7-7) f [<yζ + λVψ) V(ζ+φ)-2μω(ζ + φ)]dx^0.

By adding these variational conditions together, we get

(7.8) ί [\V(ζ + φ)\2 + 2λVφ -V(ζ + φ)-2μ(θ + ω)(ζ + φ)]dx ^0.
JD'

We wish to determine the sign of the integeral of λV^ V(ζ + φ)
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over D . To this end, we note that I[φ] = inf I[u] over the set Y. By
Theorem 6.2, the unloading stress function ζ also belongs to Y Conse-
quently, if we choose u{x) in (7.5) as the testing function for the
minimizer φ of I[u] over Y, then

ί
JD

φ) - 2μθ(ζ + φ)]dx ^ 0.

By combining this estimate with (7.6), we obtain

2μθ ί (ζ + φ)dx = ί (1 + A )Vψ V(£ + ψ)dx
J D JD

^ 2μ0 ί (ζ+φ)dx + ί λVφ-V(ζ+φ)dx
JD JD

which shows that

ί λVφ -V(ζ+φ)dx ̂ 0.
JD~

Finally, it follows from this inequality and (7.8) that

ψ)fdx -2μ(θ + ω)(ζ + ψ))dx ^ 0.f
JD

Since ζ + φ < 0 on D", the above inequality holds only when \D~\ — 0.
The theorem is now proved.

Having established Theorems 6.1 and 7.1, we derive useful informa-
tion for the unloading problem. First, we recall the elastic region E
defined in (2.7) for the loading problem. We know that £ is a simply
connected domain contained in G and containing the ridge, Γ(G), of G
[15c]. Under the restrictions (i) and (ii) as stated in §1 on G, the boundary
of E ,dE, consists of a finite number of Jordan arcs. Moreover, each point
on dE is an end point of the unique inward normal segment to dG, which
wholly lies in P = G\E. Thus, £ is a rather nice Jordan domain for which
the Dirichlet problem for the Poisson equation can always be solved by
means of the Dirichlet principle [6]. It is this fact that enables us to derive
what follows.

Consider the restrictions of both φ and ζ to the elastic region
E. From Theorem 7.1 and the result for the loading problem, we
conclude that

(7.9) - Ψ(JC) < - φ(x) ^ ζ(x) ^ φ(x) < Ψ(x)
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everywhere in E. Since λ(x) = 0 identically in E, the restriction of ζ to
E minimizes the functional,

{| Vu | 2 - 4μωu}dx,

over the closed convex set

KE = {u I u E H\E\ u = ζ a.e. on dE, - Ψ ̂  u ̂  Ψ}.

Because of the two strict inequalities in (7.9), it follows from standard
analysis [5, 6, 12, 15] that

THEOREM 7.2. If E is the elastic region of G at the end of loading
and if ζ is the residual stress function after complete unloading, then ζ is
analytic in E and Aζ = -2μω in E.

REMARK 7,3. Since ζ satisfies the Poisson equation in E, the
compatibility conditions for the existence of the warping function over E
are satisfied [11, 15]. Moreover, the residual stress and the residual strain
relations in E are still given by Hooke's law. As we shall see later on,
|grad ζ\ < k everywhere in E. Consequently, the material in E remains
elastic after complete unloading. This is, of course, what one would
expect.

8. The uniqueness of the deformation multiplier. In
§5, we established the existence of a deformation multiplier ω, 0 < ω < θ,
under the assumption that λ(x)>0 over a set of positive area. The
multiplier ω represents the angle of twist of the unloaded bar with
reference to the natural state. We left the uniqueness question open.
Now, it is easy to prove it by negation.

Suppose that there are two deformation multipliers, ωu ω2 such that
0 < ωx < ω2 < θ. Let ζλ and ζ2 be, respectively, the minimizers of problem
(6.1) with ω = ωx and ω2. Then, all the preceding analyses hold for both
ζι and ζ2. By Lemma 5.3, £2= ζ\ in G. This, together with Theorem
7.1 and the results on loading process, implies that

-Ψ< - ψ^ ζ^ ζ2^ψ <Ψ in E.

In particular, these inequalities hold on dE. By Theorem 7.2, the
function ζ2-ζ\ satisfies the Poisson equation

\— ζι)= — 2μ(ω2— ωx) in E.
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By hypothesis, ω2 - ω2 > 0. It follows from the strong maximum princi-
ple for the solution of elliptic differential inequalities that ζ2 > ζx

everywhere in E. Since | E | > 0,

ί (ζ2-ζί)dx= ί {ζ2-ζx)dx+ I
JG JP JE

This contradicts the fact that the integrals of both ζι and ζ2 over the
domain G are both equal to zero. Hence, the assumption, ωx ̂  ω2, is
wrong, and hence, the uniqueness of the deformation multiplier is
proved.

Although, the fact, |JE|>0, is decisive for the uniqueness of the
deformation multiplier ω, it was proved in [15c] that the elastic core E
always exists provided G is simply connected.

9. A minimization principle for stress decrement.
Because of the presence of permanent deformation, we cannot expect the
complete release of the stress after complete unloading. However, on the
ground of physical reasoning, it is expected that the unloading process
would reduce the modulus of the stress. Accordingly, we formulate a
minimization principle for direct determination of ζ - ψ. Also, this
principle will be used later in §11 in solving the elastic-plastic partition
problem.

To formulate the principle, we write, for all u in K,

(9.1) u = ψ + w.

Then, w also lies in Hl(G). In fact, w lies in the translate of K by the
minimizer φ. Moreover,

JΛu]= ί [|V(ψ+ w)|2 + 2λVψ V(ψ + w)-4μω(ψ + w)]dx
JG

= ί [\Vw\2 + 4μ(θ-ω)w]dx
JG

λ)Vφ Vw -2μθw]dx

l)\Vψ\2-4μωψ]dx.

ί
JG

ί
JG

Since the value of the second integral is zero and that of the third integral
is a constant independent of the function w, we have established

THEOREM 9.1. Let ψ and ζ be, respectively, the solutions of the
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loading and the unloading problems and let χ = ζ - ψ. Then, χ minimizes
the functional,

(9.2) Ie-Λu]

over the closed convex subset,

Kφ ^{w\w EHι

0(G), -(Ψ+φ)^w^Ψ-φ a.e.},

ofHl(G).

10. The existence of elastic core. For the loading prob-
lem in (2.6), the existence of an elastic core E is always assured [15c]. We
wish to show that this elastic region E remains elastic after the removal
of the terminal couples.

THEOREM 10.1. Let E be the elastic region at the end of the loading
process and let ζ be the minimizer of the unloading problem, then every-
where in E

(10.1) |Vf|<fc, -φ<ζ<φ.

Proof Theorem 6.2 ensures that \Vζ\^k everywhere in G. In
particular, \Vζ\^k everywhere on dE. By Theorem 7.2, ζ is analytic
and satisfies the equation, Δζ = — 2μω, in E. Hence, we may appeal to
computation to verify that

Δ | V £ | 2 > 0 everywhere in E.

Consequently, the strong maximum principle for the solutions of elliptic
differential inequalities [12] ensures that | V£ | is strictly less than k in E.

Since φ is analytic and satisfies the equation, Δφ = - 2μθ, in E with
θ > ω and since - φ g ζ g ψ in G, the functions ψ - ζ and ψ + ζ satisfy
the following equations:

(10.2) Δ ( ψ - £ ) = ~2μ(θ-ω)<0 in E, ψ-ζ^O on dE,

(10.3) Δ ( ψ + ζ ) = - 2 μ ( θ + ω ) < 0 i n E , ψ + ζ^O o n dE.

Again, as the solutions of problems (10.2) and (10.3), respectively, both
φ - ζ and φ + ζ must, by virtue of the strong maximum principle, be
strictly positive in E. The inequalities in (10.1) are now proved.

REMARK 10.2. After complete unloading, the simply connected set



578 TSUAN WU TING

E remains elastic in the sense that (i) the modulus of the residual stress is
strictly less than the yield constant and (ii) the relations between the
residual stress and the strain referred to the natural state are governed by
Hooke's law.

11. Elastic-plastic partition of the unloaded bar. With
the regularity theorem on hand, we may partition the cross section of the
unloaded bar into the elastic zones and plastic zones according to the
stress and strain relations. To this end, we first establish the following
theorem, which is a sharpened version of the second inequality in
Theorem 7.1.

THEOREM 11.1. Let ψ and ζ be the loading and the unloading stress
functions, respectively. Then ζ < φ everywhere in G.

Proof. By Theorem 7.1. ^ = £ - ^ ^ 0 everywhere in G. Accord-
ingly, we need only to show that χ < 0 in G. To do this we assume the
contrary and then derive a contradiction.

Let jc0 be a point in G such that

(11.1) *(*o) = O and (Ψ + φ)(x0) = C > 0 .

Let D(xQ,r0) be a disk centered at x0 with radius r0 so small that
D(jCo, r0) C G. Let (r, φ) be plane polar coordinates with origin at JC0.
Consider the Dirichlet problem:

(11.2) Δw = 2μ(θ - ω) in D(x 0, r0), w = χ on dD{x(h r0).

Then w is explicitly given by the formula, [7],

(11.3) H>(r,φ) =

Since χ(rih σ ) ^ 0 for | σ | ^ τ r , the formula shows that w(r,φ)<0 in
D(x(h r0). In particular, w(0, φ)<0.

We proceed to derive a lower bound for w so as to ensure that the
function w so constructed will lie in the admissible class of the restriction
of the minimizer χ on D(xih r0). Clearly, 0 ^ ^ ( r 0 , σ ) ^ - fcr0. Hence,
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Now, we choose r0 so small that

w(r, φ)^ -[Ψ(r, φ) + ψ(r, φ)] everywhere in D(xo,ro).

This is so, if

(11.4) C>hμ(θ-ω)r2

0+kr0.

Since C is a fixed constant for fixed choice of x0 in G, (11.4) holds if r0 is
less than a fixed positive number.

Finally, if w is the solution of problem (11.2) with r0 satisfying
inequality (11.4), then the Dirichlet principle states that

ί [\Vw\2 + 4μ(θ-ω)w]dx ^ ί [\Vχ\2 + 4μ(θ - ω)χ]dx.
jD(xo,ro) JD (xo.ro)

Consequently, the uniqueness of the minimizer demands that w = χ
everywhere in D(x0, r0). Thus, we reach the contradiction that 0 =
χ(0,φ)<0. The theorem is thereby proved.

Having established the above theorem, we now partition G as
follows:

Eu={xEG; -Ψ(x)<ζ(x)<Ψ(x%

and call them the elastic and the plastic zones of G. By Theorem 7.1, we
know that - Ψ ̂  ζ g Ψ everywhere in G. Hence

EuΠPu=0 and Eu U Pu = G.

Thus, Eu and Pu does constitute a partition for G. Moreover, Eu D E.
This means that the elastic region E at the end of loading remains elastic
after complete unloading. This is what has been shown before. Although,
for some domain G such as circular disk, Pu may be empty. However, if
G possesses a re-entrant corner, then Pu is nonempty.

Finally, we mention that the sets,

E*u = {xEG; |grad f (JC)| < k}, P*u - G\E*U,

also constitute a partition of G. It is easy to see that Pu CP* and hence
E*UCEU. In the case of loading, the above two types of partition turns out
to be identical. It is not known, however, whether this remains true for
the unloading problem.
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We proceed to establish the next theorem which shows the relative
position of Eu in G as well as its extent in G. Moreover, the truth of the
next theorem is decisive for the existence of a unique compatibility
multiplier and hence for the existence of a warping function which is
unique up to a constant.

THEOREM 11.2. The elastic region Eu is a simply connected domain
containing the ridge Γ(G) of G; the plastic zone Pu consists of the inward
normal segments of dG, i.e., the intersection of Pu with any inward normal
to dG is either empty or is a single segment with one end point on dG.

Proof. Suppose that x0 E Pu and that ζ(x0)
 = ~~ Ψ(*o) Since Pu =

G\EU and since EUD E D Γ(G), there exists a unique point y0 E dG such
that the segment jcoyo lies in G and is perpendicular to dG. We assert that
segment jcoyo is contained in Pu. In fact, if this were not the case, then we
could apply the mean-value theorem in differential calculus to derive a
contradiction to the fact established in Theorem 6.2 that |grad ζ\ ̂  k in
G U dG. This proves the second part of the theorem.

For the simple connectivity of Ew we recall that Γ(G) is a simply
connected set contained in G [1, 15c]. Moreover, for every point
γ E Γ(G), there exists at least one point, in general two points, s on dG
such that dist(γ, s) = dist(γ, dG) and that the segment ys lies in G. From
the intersection property of Pu, we see that any two points in Eu can be
connected by a portion of Γ(G) and the inward normal segments to dG
through the two points in Eu. The proof is now complete.

12. The existence of residual-displacement field. We
have seen in Theorem 7.2 that grad ζ satisfies the Beltrami-Michell
compatibility conditions, Δζ = -2μω, in E, [15g]. Consequently, the
existence of a warping function unique up to an additive constant is
assured in E.

Consider now the "annular region", EU\E. Since -Ψ < ζ <Ψ in
EU\E, the minimizer of problem (6.1) is free from any side constraint in
EU\E. Hence, for any function u in Hι

0(Eu\E), the variational equality,

L {(Vζ + λVφ) - Vu - 2μωu}dx = 0,

holds. Since this is precisely the compatibility condition for the stress
field, Vζ + λVψ, in EU\E, see e.g. [11], to have a corresponding displace-
ment in accordance with Hooke's law, the existence of a unique warping
function in EU\E is also assured. Because of the presence of the terms
λVψ, which represents "plastic strain", Hooke's law holds in EU\E only
when the residual strain is referred to the permanently deformed state.
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But this is just the special feature of the plasticity theory. I also
emphasized that it is in this sense that EU\E is said to be elastic.

Finally, we consider the plastic zone Pu. As was already emphasized,
Theorem 10.2 ensures, by the same analysis given in [1], the existence of
a unique compatibility multiplier λu(x) such that

λu(x) = 0 in Ew λu(x)>0 in Pu,

λVφ] - Vu - 2μωu}dx = 0I {[(1
JG

for all u in Hι

0(G). It follows that there exists a unique warping
function in Pu. Needless to say, the warping function matches continu-
ously along d{Eu\E).
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